mirror of
https://github.com/Yours3lf/rpi-vk-driver.git
synced 2024-12-01 13:24:20 +01:00
552 lines
18 KiB
C
552 lines
18 KiB
C
#include "common.h"
|
||
|
||
#include "declarations.h"
|
||
|
||
#include "kernel/vc4_packet.h"
|
||
|
||
//-----------------------------
|
||
//Semaphore vs Fence:
|
||
// Semaphore is GPU to GPU sync
|
||
// Fence is GPU to CPU sync
|
||
// Both are signalled by the GPU
|
||
// Both are multi-queue
|
||
// But Fence can be waited on by the CPU
|
||
// Semaphore can only be waited on by the GPU
|
||
//
|
||
//Events are general can be signalled by the CPU or the GPU
|
||
// But can only be waited on by the GPU
|
||
// Limited to a single queue
|
||
//
|
||
//TODO as a result the current semaphore
|
||
//implementation is wrong
|
||
//maybe use:
|
||
//clInsertWaitOnSemaphore
|
||
//clInsertIncrementSemaphore
|
||
//
|
||
//seems like each binCL needs to end with increment semaphore
|
||
//signalling that binning is done
|
||
//and each renderCL starts with a wait semaphore (to wait for binning)
|
||
//
|
||
//in theory we could add a wait for semaphore to the start of a binCL
|
||
//and an increment semaphore to either to the end of another binCL or renderCL
|
||
//but we can't control renderCLs as the kernel side creates those...
|
||
//
|
||
//also there's only one of this semaphore, and in Vulkan you can have many
|
||
//and should only signal those selected
|
||
//so maybe we could emulate this in shaders?
|
||
//ie. stall shader until a value is something?
|
||
//and increment said value?
|
||
//but we'd need to patch shaders and it'd probably be slow...
|
||
//
|
||
//Apparently the RPi contains 16 4bit semaphores that are accessible for each QPU via SFU
|
||
//-----------------------------
|
||
|
||
/*
|
||
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkCreateSemaphore
|
||
* Semaphores are a synchronization primitive that can be used to insert a dependency between batches submitted to queues.
|
||
* Semaphores have two states - signaled and unsignaled. The state of a semaphore can be signaled after execution of a batch of commands is completed.
|
||
* A batch can wait for a semaphore to become signaled before it begins execution, and the semaphore is also unsignaled before the batch begins execution.
|
||
* As with most objects in Vulkan, semaphores are an interface to internal data which is typically opaque to applications.
|
||
* This internal data is referred to as a semaphore’s payload. However, in order to enable communication with agents outside of the current device,
|
||
* it is necessary to be able to export that payload to a commonly understood format, and subsequently import from that format as well.
|
||
* The internal data of a semaphore may include a reference to any resources and pending work associated with signal or unsignal operations performed on that semaphore object.
|
||
* Mechanisms to import and export that internal data to and from semaphores are provided below.
|
||
* These mechanisms indirectly enable applications to share semaphore state between two or more semaphores and other synchronization primitives across process and API boundaries.
|
||
* When created, the semaphore is in the unsignaled state.
|
||
*/
|
||
VKAPI_ATTR VkResult VKAPI_CALL RPIFUNC(vkCreateSemaphore)(
|
||
VkDevice device,
|
||
const VkSemaphoreCreateInfo* pCreateInfo,
|
||
const VkAllocationCallbacks* pAllocator,
|
||
VkSemaphore* pSemaphore)
|
||
{
|
||
PROFILESTART(RPIFUNC(vkCreateSemaphore));
|
||
|
||
assert(device);
|
||
assert(pSemaphore);
|
||
|
||
//we'll probably just use an IOCTL to wait for a GPU sequence number to complete.
|
||
sem_t* s = ALLOCATE(sizeof(sem_t), 1, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
|
||
if(!s)
|
||
{
|
||
PROFILEEND(RPIFUNC(vkCreateSemaphore));
|
||
return VK_ERROR_OUT_OF_HOST_MEMORY;
|
||
}
|
||
sem_init(s, 0, 0); //create semaphore unsignalled, shared between threads
|
||
|
||
*pSemaphore = (VkSemaphore)s;
|
||
|
||
PROFILEEND(RPIFUNC(vkCreateSemaphore));
|
||
return VK_SUCCESS;
|
||
}
|
||
|
||
/*
|
||
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkCmdPipelineBarrier
|
||
* vkCmdPipelineBarrier is a synchronization command that inserts a dependency between commands submitted to the same queue, or between commands in the same subpass.
|
||
* When vkCmdPipelineBarrier is submitted to a queue, it defines a memory dependency between commands that were submitted before it, and those submitted after it.
|
||
* If vkCmdPipelineBarrier was recorded outside a render pass instance, the first synchronization scope includes all commands that occur earlier in submission order.
|
||
* If vkCmdPipelineBarrier was recorded inside a render pass instance, the first synchronization scope includes only commands that occur earlier in submission order within the same subpass.
|
||
* In either case, the first synchronization scope is limited to operations on the pipeline stages determined by the source stage mask specified by srcStageMask.
|
||
*
|
||
* If vkCmdPipelineBarrier was recorded outside a render pass instance, the second synchronization scope includes all commands that occur later in submission order.
|
||
* If vkCmdPipelineBarrier was recorded inside a render pass instance, the second synchronization scope includes only commands that occur later in submission order within the same subpass.
|
||
* In either case, the second synchronization scope is limited to operations on the pipeline stages determined by the destination stage mask specified by dstStageMask.
|
||
*
|
||
* The first access scope is limited to access in the pipeline stages determined by the source stage mask specified by srcStageMask.
|
||
* Within that, the first access scope only includes the first access scopes defined by elements of the pMemoryBarriers,
|
||
* pBufferMemoryBarriers and pImageMemoryBarriers arrays, which each define a set of memory barriers. If no memory barriers are specified,
|
||
* then the first access scope includes no accesses.
|
||
*
|
||
* The second access scope is limited to access in the pipeline stages determined by the destination stage mask specified by dstStageMask.
|
||
* Within that, the second access scope only includes the second access scopes defined by elements of the pMemoryBarriers, pBufferMemoryBarriers and pImageMemoryBarriers arrays,
|
||
* which each define a set of memory barriers. If no memory barriers are specified, then the second access scope includes no accesses.
|
||
*
|
||
* If dependencyFlags includes VK_DEPENDENCY_BY_REGION_BIT, then any dependency between framebuffer-space pipeline stages is framebuffer-local - otherwise it is framebuffer-global.
|
||
*/
|
||
VKAPI_ATTR void VKAPI_CALL RPIFUNC(vkCmdPipelineBarrier)(
|
||
VkCommandBuffer commandBuffer,
|
||
VkPipelineStageFlags srcStageMask,
|
||
VkPipelineStageFlags dstStageMask,
|
||
VkDependencyFlags dependencyFlags,
|
||
uint32_t memoryBarrierCount,
|
||
const VkMemoryBarrier* pMemoryBarriers,
|
||
uint32_t bufferMemoryBarrierCount,
|
||
const VkBufferMemoryBarrier* pBufferMemoryBarriers,
|
||
uint32_t imageMemoryBarrierCount,
|
||
const VkImageMemoryBarrier* pImageMemoryBarriers)
|
||
{
|
||
PROFILESTART(RPIFUNC(vkCmdPipelineBarrier));
|
||
|
||
assert(commandBuffer);
|
||
|
||
//TODO pipeline stage flags
|
||
//VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT
|
||
//VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT
|
||
//VK_PIPELINE_STAGE_VERTEX_INPUT_BIT
|
||
//VK_PIPELINE_STAGE_VERTEX_SHADER_BIT
|
||
//VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT
|
||
//VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT
|
||
//VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT
|
||
//VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT
|
||
//VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT
|
||
//VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT
|
||
//VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT
|
||
//VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT
|
||
//VK_PIPELINE_STAGE_TRANSFER_BIT
|
||
//VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT
|
||
//VK_PIPELINE_STAGE_HOST_BIT
|
||
//VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT
|
||
//VK_PIPELINE_STAGE_ALL_COMMANDS_BIT
|
||
|
||
//TODO dependency flags
|
||
//VK_DEPENDENCY_BY_REGION_BIT,
|
||
//VK_DEPENDENCY_DEVICE_GROUP_BIT,
|
||
//VK_DEPENDENCY_VIEW_LOCAL_BIT
|
||
|
||
//TODO access flags
|
||
//VK_ACCESS_INDIRECT_COMMAND_READ_BIT
|
||
//VK_ACCESS_INDEX_READ_BIT
|
||
//VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT
|
||
//VK_ACCESS_UNIFORM_READ_BIT
|
||
//VK_ACCESS_INPUT_ATTACHMENT_READ_BIT
|
||
//VK_ACCESS_SHADER_READ_BIT
|
||
//VK_ACCESS_SHADER_WRITE_BIT
|
||
//VK_ACCESS_COLOR_ATTACHMENT_READ_BIT
|
||
//VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT
|
||
//VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT
|
||
//VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT
|
||
//VK_ACCESS_TRANSFER_READ_BIT
|
||
//VK_ACCESS_TRANSFER_WRITE_BIT
|
||
//VK_ACCESS_HOST_READ_BIT
|
||
//VK_ACCESS_HOST_WRITE_BIT
|
||
//VK_ACCESS_MEMORY_READ_BIT
|
||
//VK_ACCESS_MEMORY_WRITE_BIT
|
||
//VK_ACCESS_COMMAND_PROCESS_READ_BIT_NVX
|
||
//VK_ACCESS_COMMAND_PROCESS_WRITE_BIT_NVX
|
||
|
||
//TODO Layout transition flags
|
||
//VK_IMAGE_LAYOUT_UNDEFINED
|
||
//VK_IMAGE_LAYOUT_GENERAL
|
||
//VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL
|
||
//VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL
|
||
//VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL
|
||
//VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL
|
||
//VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL
|
||
//VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
|
||
//VK_IMAGE_LAYOUT_PREINITIALIZED
|
||
//VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL
|
||
//VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL
|
||
//VK_IMAGE_LAYOUT_PRESENT_SRC_KHR
|
||
//VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR
|
||
|
||
for(int c = 0; c < memoryBarrierCount; ++c)
|
||
{
|
||
//TODO
|
||
}
|
||
|
||
for(int c = 0; c < bufferMemoryBarrierCount; ++c)
|
||
{
|
||
//TODO
|
||
}
|
||
|
||
for(int c = 0; c < imageMemoryBarrierCount; ++c)
|
||
{
|
||
_image* i = pImageMemoryBarriers[c].image;
|
||
|
||
// if(srcStageMask & VK_PIPELINE_STAGE_TRANSFER_BIT &&
|
||
// pImageMemoryBarriers[c].srcAccessMask & VK_ACCESS_TRANSFER_WRITE_BIT)
|
||
// {
|
||
// assert(i->layout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
|
||
// }
|
||
|
||
//transition to new layout
|
||
i->layout = pImageMemoryBarriers[c].newLayout;
|
||
}
|
||
|
||
PROFILEEND(RPIFUNC(vkCmdPipelineBarrier));
|
||
}
|
||
|
||
/*
|
||
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkDeviceWaitIdle
|
||
* vkDeviceWaitIdle is equivalent to calling vkQueueWaitIdle for all queues owned by device.
|
||
*/
|
||
VKAPI_ATTR VkResult VKAPI_CALL RPIFUNC(vkDeviceWaitIdle)(
|
||
VkDevice device)
|
||
{
|
||
PROFILESTART(RPIFUNC(vkDeviceWaitIdle));
|
||
|
||
assert(device);
|
||
|
||
for(int c = 0; c < numQueueFamilies; ++c)
|
||
{
|
||
for(int d = 0; d < device->numQueues[c]; ++d)
|
||
{
|
||
uint64_t lastFinishedSeqno;
|
||
uint64_t timeout = WAIT_TIMEOUT_INFINITE;
|
||
vc4_seqno_wait(controlFd, &lastFinishedSeqno, device->queues[c][d].lastEmitSeqno, &timeout);
|
||
}
|
||
}
|
||
|
||
PROFILEEND(RPIFUNC(vkDeviceWaitIdle));
|
||
return VK_SUCCESS;
|
||
}
|
||
|
||
/*
|
||
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkQueueWaitIdle
|
||
*/
|
||
VKAPI_ATTR VkResult VKAPI_CALL RPIFUNC(vkQueueWaitIdle)(
|
||
VkQueue queue)
|
||
{
|
||
PROFILESTART(RPIFUNC(vkQueueWaitIdle));
|
||
|
||
assert(queue);
|
||
|
||
_queue* q = queue;
|
||
uint64_t lastFinishedSeqno;
|
||
uint64_t timeout = WAIT_TIMEOUT_INFINITE;
|
||
vc4_seqno_wait(controlFd, &lastFinishedSeqno, q->lastEmitSeqno, &timeout);
|
||
|
||
PROFILEEND(RPIFUNC(vkQueueWaitIdle));
|
||
return VK_SUCCESS;
|
||
}
|
||
|
||
/*
|
||
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkDestroySemaphore
|
||
*/
|
||
VKAPI_ATTR void VKAPI_CALL RPIFUNC(vkDestroySemaphore)(
|
||
VkDevice device,
|
||
VkSemaphore semaphore,
|
||
const VkAllocationCallbacks* pAllocator)
|
||
{
|
||
PROFILESTART(RPIFUNC(vkDestroySemaphore));
|
||
|
||
assert(device);
|
||
|
||
if(semaphore)
|
||
{
|
||
sem_destroy((sem_t*)semaphore);
|
||
FREE(semaphore);
|
||
}
|
||
|
||
PROFILEEND(RPIFUNC(vkDestroySemaphore));
|
||
}
|
||
|
||
/*
|
||
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkCreateFence
|
||
*/
|
||
VKAPI_ATTR VkResult VKAPI_CALL RPIFUNC(vkCreateFence)(
|
||
VkDevice device,
|
||
const VkFenceCreateInfo* pCreateInfo,
|
||
const VkAllocationCallbacks* pAllocator,
|
||
VkFence* pFence)
|
||
{
|
||
PROFILESTART(RPIFUNC(vkCreateFence));
|
||
|
||
assert(device);
|
||
assert(pCreateInfo);
|
||
assert(pFence);
|
||
|
||
_fence* f = ALLOCATE(sizeof(_fence), 1, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
|
||
|
||
if(!f)
|
||
{
|
||
PROFILEEND(RPIFUNC(vkCreateFence));
|
||
return VK_ERROR_OUT_OF_HOST_MEMORY;
|
||
}
|
||
|
||
f->seqno = 0;
|
||
f->signaled = pCreateInfo->flags & VK_FENCE_CREATE_SIGNALED_BIT;
|
||
|
||
*pFence = f;
|
||
|
||
PROFILEEND(RPIFUNC(vkCreateFence));
|
||
return VK_SUCCESS;
|
||
}
|
||
|
||
/*
|
||
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkDestroyFence
|
||
*/
|
||
VKAPI_ATTR void VKAPI_CALL RPIFUNC(vkDestroyFence)(
|
||
VkDevice device,
|
||
VkFence fence,
|
||
const VkAllocationCallbacks* pAllocator)
|
||
{
|
||
PROFILESTART(RPIFUNC(vkDestroyFence));
|
||
|
||
assert(device);
|
||
|
||
if(fence)
|
||
{
|
||
FREE(fence);
|
||
}
|
||
|
||
PROFILEEND(RPIFUNC(vkDestroyFence));
|
||
}
|
||
|
||
/*
|
||
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkGetFenceStatus
|
||
*/
|
||
VKAPI_ATTR VkResult VKAPI_CALL RPIFUNC(vkGetFenceStatus)(
|
||
VkDevice device,
|
||
VkFence fence)
|
||
{
|
||
PROFILESTART(RPIFUNC(vkGetFenceStatus));
|
||
|
||
assert(device);
|
||
assert(fence);
|
||
|
||
//TODO update fence status based on last completed seqno?
|
||
|
||
_fence* f = fence;
|
||
VkResult retval = f->signaled ? VK_SUCCESS : VK_NOT_READY;
|
||
|
||
PROFILEEND(RPIFUNC(vkGetFenceStatus));
|
||
return retval;
|
||
}
|
||
|
||
/*
|
||
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkResetFences
|
||
*/
|
||
VKAPI_ATTR VkResult VKAPI_CALL RPIFUNC(vkResetFences)(
|
||
VkDevice device,
|
||
uint32_t fenceCount,
|
||
const VkFence* pFences)
|
||
{
|
||
PROFILESTART(RPIFUNC(vkResetFences));
|
||
|
||
assert(device);
|
||
assert(pFences);
|
||
assert(fenceCount > 0);
|
||
|
||
for(uint32_t c = 0; c < fenceCount; ++c)
|
||
{
|
||
_fence* f = pFences[c];
|
||
f->signaled = 0;
|
||
f->seqno = 0;
|
||
}
|
||
|
||
PROFILEEND(RPIFUNC(vkResetFences));
|
||
return VK_SUCCESS;
|
||
}
|
||
|
||
/*
|
||
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkWaitForFences
|
||
*/
|
||
VKAPI_ATTR VkResult VKAPI_CALL RPIFUNC(vkWaitForFences)(
|
||
VkDevice device,
|
||
uint32_t fenceCount,
|
||
const VkFence* pFences,
|
||
VkBool32 waitAll,
|
||
uint64_t timeout)
|
||
{
|
||
PROFILESTART(RPIFUNC(vkWaitForFences));
|
||
|
||
assert(device);
|
||
assert(pFences);
|
||
assert(fenceCount > 0);
|
||
|
||
if(waitAll)
|
||
{
|
||
if(!timeout)
|
||
{
|
||
for(uint32_t c = 0; c < fenceCount; ++c)
|
||
{
|
||
_fence* f = pFences[c];
|
||
if(!f->signaled) //if any unsignaled
|
||
{
|
||
PROFILEEND(RPIFUNC(vkWaitForFences));
|
||
return VK_TIMEOUT;
|
||
}
|
||
|
||
PROFILEEND(RPIFUNC(vkWaitForFences));
|
||
return VK_SUCCESS;
|
||
}
|
||
}
|
||
|
||
//wait for all to be signaled
|
||
for(uint32_t c = 0; c < fenceCount; ++c)
|
||
{
|
||
_fence* f = pFences[c];
|
||
uint64_t lastFinishedSeqno = 0;
|
||
if(!f->signaled)
|
||
{
|
||
int ret = vc4_seqno_wait(controlFd, &lastFinishedSeqno, f->seqno, &timeout);
|
||
|
||
if(ret < 0)
|
||
{
|
||
PROFILEEND(RPIFUNC(vkWaitForFences));
|
||
return VK_TIMEOUT;
|
||
}
|
||
|
||
f->signaled = 1;
|
||
f->seqno = 0;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if(!timeout)
|
||
{
|
||
for(uint32_t c = 0; c < fenceCount; ++c)
|
||
{
|
||
_fence* f = pFences[c];
|
||
if(f->signaled) //if any signaled
|
||
{
|
||
PROFILEEND(RPIFUNC(vkWaitForFences));
|
||
return VK_SUCCESS;
|
||
}
|
||
|
||
PROFILEEND(RPIFUNC(vkWaitForFences));
|
||
return VK_TIMEOUT;
|
||
}
|
||
}
|
||
|
||
//wait for any to be signaled
|
||
for(uint32_t c = 0; c < fenceCount; ++c)
|
||
{
|
||
_fence* f = pFences[c];
|
||
uint64_t lastFinishedSeqno = 0;
|
||
if(!f->signaled)
|
||
{
|
||
int ret = vc4_seqno_wait(controlFd, &lastFinishedSeqno, f->seqno, &timeout);
|
||
|
||
if(ret < 0)
|
||
{
|
||
continue;
|
||
}
|
||
|
||
f->signaled = 1;
|
||
f->seqno = 0;
|
||
PROFILEEND(RPIFUNC(vkWaitForFences));
|
||
return VK_SUCCESS;
|
||
}
|
||
else
|
||
{
|
||
//already signaled
|
||
PROFILEEND(RPIFUNC(vkWaitForFences));
|
||
return VK_SUCCESS;
|
||
}
|
||
}
|
||
|
||
PROFILEEND(RPIFUNC(vkWaitForFences));
|
||
return VK_TIMEOUT;
|
||
}
|
||
|
||
PROFILEEND(RPIFUNC(vkWaitForFences));
|
||
return VK_SUCCESS;
|
||
}
|
||
|
||
VKAPI_ATTR void VKAPI_CALL RPIFUNC(vkCmdWaitEvents)(
|
||
VkCommandBuffer commandBuffer,
|
||
uint32_t eventCount,
|
||
const VkEvent* pEvents,
|
||
VkPipelineStageFlags srcStageMask,
|
||
VkPipelineStageFlags dstStageMask,
|
||
uint32_t memoryBarrierCount,
|
||
const VkMemoryBarrier* pMemoryBarriers,
|
||
uint32_t bufferMemoryBarrierCount,
|
||
const VkBufferMemoryBarrier* pBufferMemoryBarriers,
|
||
uint32_t imageMemoryBarrierCount,
|
||
const VkImageMemoryBarrier* pImageMemoryBarriers)
|
||
{
|
||
UNSUPPORTED(vkCmdWaitEvents);
|
||
}
|
||
|
||
VKAPI_ATTR VkResult VKAPI_CALL RPIFUNC(vkGetEventStatus)(
|
||
VkDevice device,
|
||
VkEvent event)
|
||
{
|
||
UNSUPPORTED(vkGetEventStatus);
|
||
return UNSUPPORTED_RETURN;
|
||
}
|
||
|
||
VKAPI_ATTR void VKAPI_CALL RPIFUNC(vkDestroyEvent)(
|
||
VkDevice device,
|
||
VkEvent event,
|
||
const VkAllocationCallbacks* pAllocator)
|
||
{
|
||
UNSUPPORTED(vkDestroyEvent);
|
||
}
|
||
|
||
VKAPI_ATTR void VKAPI_CALL RPIFUNC(vkCmdResetEvent)(
|
||
VkCommandBuffer commandBuffer,
|
||
VkEvent event,
|
||
VkPipelineStageFlags stageMask)
|
||
{
|
||
UNSUPPORTED(vkCmdResetEvent);
|
||
}
|
||
|
||
VKAPI_ATTR VkResult VKAPI_CALL RPIFUNC(vkCreateEvent)(
|
||
VkDevice device,
|
||
const VkEventCreateInfo* pCreateInfo,
|
||
const VkAllocationCallbacks* pAllocator,
|
||
VkEvent* pEvent)
|
||
{
|
||
UNSUPPORTED(vkCreateEvent);
|
||
return UNSUPPORTED_RETURN;
|
||
}
|
||
|
||
VKAPI_ATTR VkResult VKAPI_CALL RPIFUNC(vkResetEvent)(
|
||
VkDevice device,
|
||
VkEvent event)
|
||
{
|
||
UNSUPPORTED(vkResetEvent);
|
||
return UNSUPPORTED_RETURN;
|
||
}
|
||
|
||
VKAPI_ATTR VkResult VKAPI_CALL RPIFUNC(vkSetEvent)(
|
||
VkDevice device,
|
||
VkEvent event)
|
||
{
|
||
UNSUPPORTED(vkSetEvent);
|
||
return UNSUPPORTED_RETURN;
|
||
}
|
||
|
||
VKAPI_ATTR void VKAPI_CALL RPIFUNC(vkCmdSetEvent)(
|
||
VkCommandBuffer commandBuffer,
|
||
VkEvent event,
|
||
VkPipelineStageFlags stageMask)
|
||
{
|
||
UNSUPPORTED(vkCmdSetEvent);
|
||
}
|