1
0
mirror of https://github.com/Yours3lf/rpi-vk-driver.git synced 2024-12-13 01:08:53 +01:00
rpi-vk-driver/test/MSAA/MSAA.cpp
Unknown 963cdf3c9e Fixed read/write surface handling
now load/store ops are supported
2020-02-18 21:59:15 +00:00

1312 lines
45 KiB
C++

#include <iostream>
#include <vector>
#include <algorithm>
#include <string.h>
#include "driver/CustomAssert.h"
#include <vulkan/vulkan.h>
#include "driver/vkExt.h"
//#define GLFW_INCLUDE_VULKAN
//#define VK_USE_PLATFORM_WIN32_KHR
//#include <GLFW/glfw3.h>
//#define GLFW_EXPOSE_NATIVE_WIN32
//#include <GLFW/glfw3native.h>
//GLFWwindow * window;
//#define WINDOW_WIDTH 640
//#define WINDOW_HEIGHT 480
// Note: support swap chain recreation (not only required for resized windows!)
// Note: window resize may not result in Vulkan telling that the swap chain should be recreated, should be handled explicitly!
void run();
void setupVulkan();
void mainLoop();
void cleanup();
void createInstance();
void createWindowSurface();
void findPhysicalDevice();
void checkSwapChainSupport();
void findQueueFamilies();
void createLogicalDevice();
void createSemaphores();
void createSwapChain();
void createCommandQueues();
void draw();
void CreateRenderPass();
void CreateFramebuffer();
void CreateShaders();
void CreatePipeline();
void CreateDescriptorSet();
void CreateVertexBuffer();
void CreateTexture();
void recordCommandBuffers();
VkSurfaceFormatKHR chooseSurfaceFormat(const std::vector<VkSurfaceFormatKHR>& availableFormats);
VkExtent2D chooseSwapExtent(const VkSurfaceCapabilitiesKHR& surfaceCapabilities);
VkPresentModeKHR choosePresentMode(const std::vector<VkPresentModeKHR> presentModes);
VkInstance instance; //
VkSurfaceKHR windowSurface; //
VkPhysicalDevice physicalDevice;
VkDevice device; //
VkSemaphore imageAvailableSemaphore; //
VkSemaphore renderingFinishedSemaphore; //
VkSwapchainKHR swapChain; //
VkCommandPool commandPool; //
std::vector<VkCommandBuffer> presentCommandBuffers; //
std::vector<VkImage> swapChainImages; //
VkRenderPass renderPass; //
std::vector<VkFramebuffer> fbs; //
VkShaderModule shaderModule; //
VkPipeline pipeline; //
VkQueue graphicsQueue;
VkQueue presentQueue;
VkBuffer vertexBuffer;
VkDeviceMemory vertexBufferMemory;
VkPhysicalDeviceMemoryProperties pdmp;
std::vector<VkImageView> views; //?
VkSurfaceFormatKHR swapchainFormat;
VkExtent2D swapChainExtent;
VkPipelineLayout pipelineLayout;
VkImage MSAAResolveImage;
VkDeviceMemory MSAAResolveImageMemory;
VkImageView MSAAResolveImageView;
uint32_t graphicsQueueFamily;
uint32_t presentQueueFamily;
void cleanup() {
vkDeviceWaitIdle(device);
// Note: this is done implicitly when the command pool is freed, but nice to know about
vkFreeCommandBuffers(device, commandPool, presentCommandBuffers.size(), presentCommandBuffers.data());
vkDestroyCommandPool(device, commandPool, nullptr);
vkDestroySemaphore(device, imageAvailableSemaphore, nullptr);
vkDestroySemaphore(device, renderingFinishedSemaphore, nullptr);
for(int c = 0; c < views.size(); ++c)
vkDestroyImageView(device, views[c], 0);
for (int c = 0; c < fbs.size(); ++c)
vkDestroyFramebuffer(device, fbs[c], 0);
vkDestroyRenderPass(device, renderPass, 0);
vkDestroyShaderModule(device, shaderModule, 0);
vkDestroyPipeline(device, pipeline, 0);
// Note: implicitly destroys images (in fact, we're not allowed to do that explicitly)
vkDestroySwapchainKHR(device, swapChain, nullptr);
vkDestroyDevice(device, nullptr);
vkDestroySurfaceKHR(instance, windowSurface, nullptr);
vkDestroyInstance(instance, nullptr);
}
void run() {
// Note: dynamically loading loader may be a better idea to fail gracefully when Vulkan is not supported
// Create window for Vulkan
//glfwInit();
//glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);
//glfwWindowHint(GLFW_RESIZABLE, GLFW_FALSE);
//window = glfwCreateWindow(WINDOW_WIDTH, WINDOW_HEIGHT, "The 630 line cornflower blue window", nullptr, nullptr);
// Use Vulkan
setupVulkan();
mainLoop();
cleanup();
}
void setupVulkan() {
createInstance();
findPhysicalDevice();
createWindowSurface();
checkSwapChainSupport();
findQueueFamilies();
createLogicalDevice();
createSemaphores();
createSwapChain();
createCommandQueues();
CreateTexture();
CreateRenderPass();
CreateFramebuffer();
CreateVertexBuffer();
CreateShaders();
CreatePipeline();
recordCommandBuffers();
}
void mainLoop() {
//while (!glfwWindowShouldClose(window)) {
for(int c = 0; c < 300; ++c){
draw();
//glfwPollEvents();
}
}
void createInstance() {
VkApplicationInfo appInfo = {};
appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
appInfo.pApplicationName = "VulkanTriangle";
appInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0);
appInfo.pEngineName = "TriangleEngine";
appInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0);
appInfo.apiVersion = VK_API_VERSION_1_0;
// Get instance extensions required by GLFW to draw to window
//unsigned int glfwExtensionCount;
//const char** glfwExtensions;
//glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount);
// Check for extensions
uint32_t extensionCount = 0;
vkEnumerateInstanceExtensionProperties(nullptr, &extensionCount, nullptr);
if (extensionCount == 0) {
std::cerr << "no extensions supported!" << std::endl;
assert(0);
}
std::vector<VkExtensionProperties> availableExtensions(extensionCount);
vkEnumerateInstanceExtensionProperties(nullptr, &extensionCount, availableExtensions.data());
std::cout << "supported extensions:" << std::endl;
for (const auto& extension : availableExtensions) {
std::cout << "\t" << extension.extensionName << std::endl;
}
const char* enabledExtensions[] = {
"VK_KHR_surface",
"VK_KHR_display"
};
VkInstanceCreateInfo createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
createInfo.pNext = 0;
createInfo.pApplicationInfo = &appInfo;
createInfo.enabledExtensionCount = sizeof(enabledExtensions) / sizeof(const char*);
createInfo.ppEnabledExtensionNames = enabledExtensions;
createInfo.enabledLayerCount = 0;
createInfo.ppEnabledLayerNames = 0;
// Initialize Vulkan instance
if (vkCreateInstance(&createInfo, nullptr, &instance) != VK_SUCCESS) {
std::cerr << "failed to create instance!" << std::endl;
assert(0);
}
else {
std::cout << "created vulkan instance" << std::endl;
}
}
void createWindowSurface() {
PFN_vkCreateRpiSurfaceEXT vkCreateRpiSurfaceEXT = 0;
vkCreateRpiSurfaceEXT = (PFN_vkCreateRpiSurfaceEXT)vkGetInstanceProcAddr(instance, "vkCreateRpiSurfaceEXT");
windowSurface = 0;
LoaderTrampoline* trampoline = (LoaderTrampoline*)physicalDevice;
VkRpiPhysicalDevice* realPhysicalDevice = trampoline->loaderTerminator->physicalDevice;
VkRpiSurfaceCreateInfoEXT ci = {};
ci.pSurface = &windowSurface;
realPhysicalDevice->customData = (uintptr_t)&ci;
if (vkCreateRpiSurfaceEXT(physicalDevice) != VK_SUCCESS) {
std::cerr << "failed to create window surface!" << std::endl;
assert(0);
}
std::cout << "created window surface" << std::endl;
}
void findPhysicalDevice() {
// Try to find 1 Vulkan supported device
// Note: perhaps refactor to loop through devices and find first one that supports all required features and extensions
uint32_t deviceCount = 1;
VkResult res = vkEnumeratePhysicalDevices(instance, &deviceCount, &physicalDevice);
if (res != VK_SUCCESS && res != VK_INCOMPLETE) {
std::cerr << "enumerating physical devices failed!" << std::endl;
assert(0);
}
if (deviceCount == 0) {
std::cerr << "no physical devices that support vulkan!" << std::endl;
assert(0);
}
std::cout << "physical device with vulkan support found" << std::endl;
vkGetPhysicalDeviceMemoryProperties(physicalDevice, &pdmp);
// Check device features
// Note: will apiVersion >= appInfo.apiVersion? Probably yes, but spec is unclear.
VkPhysicalDeviceProperties deviceProperties;
VkPhysicalDeviceFeatures deviceFeatures;
vkGetPhysicalDeviceProperties(physicalDevice, &deviceProperties);
vkGetPhysicalDeviceFeatures(physicalDevice, &deviceFeatures);
uint32_t supportedVersion[] = {
VK_VERSION_MAJOR(deviceProperties.apiVersion),
VK_VERSION_MINOR(deviceProperties.apiVersion),
VK_VERSION_PATCH(deviceProperties.apiVersion)
};
std::cout << "physical device supports version " << supportedVersion[0] << "." << supportedVersion[1] << "." << supportedVersion[2] << std::endl;
}
void checkSwapChainSupport() {
uint32_t extensionCount = 0;
vkEnumerateDeviceExtensionProperties(physicalDevice, nullptr, &extensionCount, nullptr);
if (extensionCount == 0) {
std::cerr << "physical device doesn't support any extensions" << std::endl;
assert(0);
}
std::vector<VkExtensionProperties> deviceExtensions(extensionCount);
vkEnumerateDeviceExtensionProperties(physicalDevice, nullptr, &extensionCount, deviceExtensions.data());
for (const auto& extension : deviceExtensions) {
if (strcmp(extension.extensionName, VK_KHR_SWAPCHAIN_EXTENSION_NAME) == 0) {
std::cout << "physical device supports swap chains" << std::endl;
return;
}
}
std::cerr << "physical device doesn't support swap chains" << std::endl;
assert(0);
}
void findQueueFamilies() {
// Check queue families
uint32_t queueFamilyCount = 0;
vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueFamilyCount, nullptr);
if (queueFamilyCount == 0) {
std::cout << "physical device has no queue families!" << std::endl;
assert(0);
}
// Find queue family with graphics support
// Note: is a transfer queue necessary to copy vertices to the gpu or can a graphics queue handle that?
std::vector<VkQueueFamilyProperties> queueFamilies(queueFamilyCount);
vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueFamilyCount, queueFamilies.data());
std::cout << "physical device has " << queueFamilyCount << " queue families" << std::endl;
bool foundGraphicsQueueFamily = false;
bool foundPresentQueueFamily = false;
for (uint32_t i = 0; i < queueFamilyCount; i++) {
VkBool32 presentSupport = false;
vkGetPhysicalDeviceSurfaceSupportKHR(physicalDevice, i, windowSurface, &presentSupport);
if (queueFamilies[i].queueCount > 0 && queueFamilies[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) {
graphicsQueueFamily = i;
foundGraphicsQueueFamily = true;
if (presentSupport) {
presentQueueFamily = i;
foundPresentQueueFamily = true;
break;
}
}
if (!foundPresentQueueFamily && presentSupport) {
presentQueueFamily = i;
foundPresentQueueFamily = true;
}
}
if (foundGraphicsQueueFamily) {
std::cout << "queue family #" << graphicsQueueFamily << " supports graphics" << std::endl;
if (foundPresentQueueFamily) {
std::cout << "queue family #" << presentQueueFamily << " supports presentation" << std::endl;
}
else {
std::cerr << "could not find a valid queue family with present support" << std::endl;
assert(0);
}
}
else {
std::cerr << "could not find a valid queue family with graphics support" << std::endl;
assert(0);
}
}
void createLogicalDevice() {
// Greate one graphics queue and optionally a separate presentation queue
float queuePriority = 1.0f;
VkDeviceQueueCreateInfo queueCreateInfo[2] = {};
queueCreateInfo[0].sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queueCreateInfo[0].queueFamilyIndex = graphicsQueueFamily;
queueCreateInfo[0].queueCount = 1;
queueCreateInfo[0].pQueuePriorities = &queuePriority;
queueCreateInfo[0].sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queueCreateInfo[0].queueFamilyIndex = presentQueueFamily;
queueCreateInfo[0].queueCount = 1;
queueCreateInfo[0].pQueuePriorities = &queuePriority;
// Create logical device from physical device
// Note: there are separate instance and device extensions!
VkDeviceCreateInfo deviceCreateInfo = {};
deviceCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
deviceCreateInfo.pQueueCreateInfos = queueCreateInfo;
if (graphicsQueueFamily == presentQueueFamily) {
deviceCreateInfo.queueCreateInfoCount = 1;
}
else {
deviceCreateInfo.queueCreateInfoCount = 2;
}
const char* deviceExtensions = VK_KHR_SWAPCHAIN_EXTENSION_NAME;
deviceCreateInfo.enabledExtensionCount = 1;
deviceCreateInfo.ppEnabledExtensionNames = &deviceExtensions;
if (vkCreateDevice(physicalDevice, &deviceCreateInfo, nullptr, &device) != VK_SUCCESS) {
std::cerr << "failed to create logical device" << std::endl;
assert(0);
}
std::cout << "created logical device" << std::endl;
// Get graphics and presentation queues (which may be the same)
vkGetDeviceQueue(device, graphicsQueueFamily, 0, &graphicsQueue);
vkGetDeviceQueue(device, presentQueueFamily, 0, &presentQueue);
std::cout << "acquired graphics and presentation queues" << std::endl;
}
void createSemaphores() {
VkSemaphoreCreateInfo createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
if (vkCreateSemaphore(device, &createInfo, nullptr, &imageAvailableSemaphore) != VK_SUCCESS ||
vkCreateSemaphore(device, &createInfo, nullptr, &renderingFinishedSemaphore) != VK_SUCCESS) {
std::cerr << "failed to create semaphores" << std::endl;
assert(0);
}
else {
std::cout << "created semaphores" << std::endl;
}
}
void createSwapChain() {
// Find surface capabilities
VkSurfaceCapabilitiesKHR surfaceCapabilities;
if (vkGetPhysicalDeviceSurfaceCapabilitiesKHR(physicalDevice, windowSurface, &surfaceCapabilities) != VK_SUCCESS) {
std::cerr << "failed to acquire presentation surface capabilities" << std::endl;
assert(0);
}
// Find supported surface formats
uint32_t formatCount;
if (vkGetPhysicalDeviceSurfaceFormatsKHR(physicalDevice, windowSurface, &formatCount, nullptr) != VK_SUCCESS || formatCount == 0) {
std::cerr << "failed to get number of supported surface formats" << std::endl;
assert(0);
}
std::vector<VkSurfaceFormatKHR> surfaceFormats(formatCount);
if (vkGetPhysicalDeviceSurfaceFormatsKHR(physicalDevice, windowSurface, &formatCount, surfaceFormats.data()) != VK_SUCCESS) {
std::cerr << "failed to get supported surface formats" << std::endl;
assert(0);
}
// Find supported present modes
uint32_t presentModeCount;
if (vkGetPhysicalDeviceSurfacePresentModesKHR(physicalDevice, windowSurface, &presentModeCount, nullptr) != VK_SUCCESS || presentModeCount == 0) {
std::cerr << "failed to get number of supported presentation modes" << std::endl;
assert(0);
}
std::vector<VkPresentModeKHR> presentModes(presentModeCount);
if (vkGetPhysicalDeviceSurfacePresentModesKHR(physicalDevice, windowSurface, &presentModeCount, presentModes.data()) != VK_SUCCESS) {
std::cerr << "failed to get supported presentation modes" << std::endl;
assert(0);
}
// Determine number of images for swap chain
uint32_t imageCount = surfaceCapabilities.minImageCount + 1;
if (surfaceCapabilities.maxImageCount != 0 && imageCount > surfaceCapabilities.maxImageCount) {
imageCount = surfaceCapabilities.maxImageCount;
}
std::cout << "using " << imageCount << " images for swap chain" << std::endl;
// Select a surface format
swapchainFormat = chooseSurfaceFormat(surfaceFormats);
// Select swap chain size
swapChainExtent = chooseSwapExtent(surfaceCapabilities);
// Check if swap chain supports being the destination of an image transfer
// Note: AMD driver bug, though it would be nice to implement a workaround that doesn't use transfering
//if (!(surfaceCapabilities.supportedUsageFlags & VK_IMAGE_USAGE_TRANSFER_DST_BIT)) {
// std::cerr << "swap chain image does not support VK_IMAGE_TRANSFER_DST usage" << std::endl;
//assert(0);
//}
// Determine transformation to use (preferring no transform)
VkSurfaceTransformFlagBitsKHR surfaceTransform;
if (surfaceCapabilities.supportedTransforms & VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR) {
surfaceTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
}
else {
surfaceTransform = surfaceCapabilities.currentTransform;
}
// Choose presentation mode (preferring MAILBOX ~= triple buffering)
VkPresentModeKHR presentMode = choosePresentMode(presentModes);
// Finally, create the swap chain
VkSwapchainCreateInfoKHR createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
createInfo.surface = windowSurface;
createInfo.minImageCount = imageCount;
createInfo.imageFormat = swapchainFormat.format;
createInfo.imageColorSpace = swapchainFormat.colorSpace;
createInfo.imageExtent = swapChainExtent;
createInfo.imageArrayLayers = 1;
createInfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
createInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
createInfo.queueFamilyIndexCount = 0;
createInfo.pQueueFamilyIndices = nullptr;
createInfo.preTransform = surfaceTransform;
createInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
createInfo.presentMode = presentMode;
createInfo.clipped = VK_TRUE;
createInfo.oldSwapchain = VK_NULL_HANDLE;
if (vkCreateSwapchainKHR(device, &createInfo, nullptr, &swapChain) != VK_SUCCESS) {
std::cerr << "failed to create swap chain" << std::endl;
assert(0);
}
else {
std::cout << "created swap chain" << std::endl;
}
// Store the images used by the swap chain
// Note: these are the images that swap chain image indices refer to
// Note: actual number of images may differ from requested number, since it's a lower bound
uint32_t actualImageCount = 0;
if (vkGetSwapchainImagesKHR(device, swapChain, &actualImageCount, nullptr) != VK_SUCCESS || actualImageCount == 0) {
std::cerr << "failed to acquire number of swap chain images" << std::endl;
assert(0);
}
swapChainImages.resize(actualImageCount);
views.resize(actualImageCount);
if (vkGetSwapchainImagesKHR(device, swapChain, &actualImageCount, swapChainImages.data()) != VK_SUCCESS) {
std::cerr << "failed to acquire swap chain images" << std::endl;
assert(0);
}
std::cout << "acquired swap chain images" << std::endl;
}
VkSurfaceFormatKHR chooseSurfaceFormat(const std::vector<VkSurfaceFormatKHR>& availableFormats) {
// We can either choose any format
if (availableFormats.size() == 1 && availableFormats[0].format == VK_FORMAT_UNDEFINED) {
return { VK_FORMAT_R8G8B8A8_UNORM, VK_COLORSPACE_SRGB_NONLINEAR_KHR };
}
// Or go with the standard format - if available
for (const auto& availableSurfaceFormat : availableFormats) {
if (availableSurfaceFormat.format == VK_FORMAT_R8G8B8A8_UNORM) {
return availableSurfaceFormat;
}
}
// Or fall back to the first available one
return availableFormats[0];
}
VkExtent2D chooseSwapExtent(const VkSurfaceCapabilitiesKHR& surfaceCapabilities) {
if (surfaceCapabilities.currentExtent.width == -1) {
VkExtent2D swapChainExtent = {};
#define min(a, b) (a < b ? a : b)
#define max(a, b) (a > b ? a : b)
swapChainExtent.width = min(max(640, surfaceCapabilities.minImageExtent.width), surfaceCapabilities.maxImageExtent.width);
swapChainExtent.height = min(max(480, surfaceCapabilities.minImageExtent.height), surfaceCapabilities.maxImageExtent.height);
return swapChainExtent;
}
else {
return surfaceCapabilities.currentExtent;
}
}
VkPresentModeKHR choosePresentMode(const std::vector<VkPresentModeKHR> presentModes) {
for (const auto& presentMode : presentModes) {
if (presentMode == VK_PRESENT_MODE_MAILBOX_KHR) {
return presentMode;
}
}
// If mailbox is unavailable, fall back to FIFO (guaranteed to be available)
return VK_PRESENT_MODE_FIFO_KHR;
}
void createCommandQueues() {
// Create presentation command pool
// Note: only command buffers for a single queue family can be created from this pool
VkCommandPoolCreateInfo poolCreateInfo = {};
poolCreateInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
poolCreateInfo.queueFamilyIndex = presentQueueFamily;
if (vkCreateCommandPool(device, &poolCreateInfo, nullptr, &commandPool) != VK_SUCCESS) {
std::cerr << "failed to create command queue for presentation queue family" << std::endl;
assert(0);
}
else {
std::cout << "created command pool for presentation queue family" << std::endl;
}
// Get number of swap chain images and create vector to hold command queue for each one
presentCommandBuffers.resize(swapChainImages.size());
// Allocate presentation command buffers
// Note: secondary command buffers are only for nesting in primary command buffers
VkCommandBufferAllocateInfo allocInfo = {};
allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
allocInfo.commandPool = commandPool;
allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
allocInfo.commandBufferCount = (uint32_t)swapChainImages.size();
if (vkAllocateCommandBuffers(device, &allocInfo, presentCommandBuffers.data()) != VK_SUCCESS) {
std::cerr << "failed to allocate presentation command buffers" << std::endl;
assert(0);
}
else {
std::cout << "allocated presentation command buffers" << std::endl;
}
}
void recordCommandBuffers()
{
// Prepare data for recording command buffers
VkCommandBufferBeginInfo beginInfo = {};
beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
beginInfo.flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT;
// Note: contains value for each subresource range
VkClearColorValue clearColor = {
{ 0.4f, 0.6f, 0.9f, 1.0f } // R, G, B, A
};
VkClearValue clearValue[2];
clearValue[0].color = clearColor;
clearValue[1].color = clearColor;
VkImageSubresourceRange subResourceRange = {};
subResourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subResourceRange.baseMipLevel = 0;
subResourceRange.levelCount = 1;
subResourceRange.baseArrayLayer = 0;
subResourceRange.layerCount = 1;
VkRenderPassBeginInfo renderPassInfo = {};
renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
renderPassInfo.renderPass = renderPass;
renderPassInfo.renderArea.offset.x = 0;
renderPassInfo.renderArea.offset.y = 0;
renderPassInfo.renderArea.extent.width = swapChainExtent.width;
renderPassInfo.renderArea.extent.height = swapChainExtent.height;
renderPassInfo.clearValueCount = 2;
renderPassInfo.pClearValues = clearValue;
VkViewport viewport = { 0 };
viewport.height = (float)swapChainExtent.width;
viewport.width = (float)swapChainExtent.height;
viewport.minDepth = (float)0.0f;
viewport.maxDepth = (float)1.0f;
VkRect2D scissor = { 0 };
scissor.extent.width = swapChainExtent.width;
scissor.extent.height = swapChainExtent.height;
scissor.offset.x = 0;
scissor.offset.y = 0;
// Record the command buffer for every swap chain image
for (uint32_t i = 0; i < swapChainImages.size(); i++) {
// Record command buffer
vkBeginCommandBuffer(presentCommandBuffers[i], &beginInfo);
renderPassInfo.framebuffer = fbs[i];
vkCmdBeginRenderPass(presentCommandBuffers[i], &renderPassInfo, VK_SUBPASS_CONTENTS_INLINE);
vkCmdBindPipeline(presentCommandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
//vkCmdSetViewport(presentCommandBuffers[i], 0, 1, &viewport);
//vkCmdSetScissor(presentCommandBuffers[i], 0, 1, &scissor);
VkDeviceSize offsets = 0;
vkCmdBindVertexBuffers(presentCommandBuffers[i], 0, 1, &vertexBuffer, &offsets );
float Wcoeff = 1.0f; //1.0f / Wc = 2.0 - Wcoeff
float viewportScaleX = (float)(swapChainExtent.width) * 0.5f * 16.0f;
float viewportScaleY = -1.0f * (float)(swapChainExtent.height) * 0.5f * 16.0f;
float Zs = 0.5f;
uint32_t pushConstants[4];
pushConstants[0] = *(uint32_t*)&Wcoeff;
pushConstants[1] = *(uint32_t*)&viewportScaleX;
pushConstants[2] = *(uint32_t*)&viewportScaleY;
pushConstants[3] = *(uint32_t*)&Zs;
vkCmdPushConstants(presentCommandBuffers[i], pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(pushConstants), &pushConstants);
vkCmdDraw(presentCommandBuffers[i], 3, 1, 0, 0);
vkCmdEndRenderPass(presentCommandBuffers[i]);
if (vkEndCommandBuffer(presentCommandBuffers[i]) != VK_SUCCESS) {
std::cerr << "failed to record command buffer" << std::endl;
assert(0);
}
else {
std::cout << "recorded command buffer for image " << i << std::endl;
}
}
}
void draw() {
// Acquire image
uint32_t imageIndex;
VkResult res = vkAcquireNextImageKHR(device, swapChain, UINT64_MAX, imageAvailableSemaphore, VK_NULL_HANDLE, &imageIndex);
if (res != VK_SUCCESS && res != VK_SUBOPTIMAL_KHR) {
std::cerr << "failed to acquire image" << std::endl;
assert(0);
}
std::cout << "acquired image" << std::endl;
// Wait for image to be available and draw
VkSubmitInfo submitInfo = {};
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.waitSemaphoreCount = 1;
submitInfo.pWaitSemaphores = &imageAvailableSemaphore;
submitInfo.signalSemaphoreCount = 1;
submitInfo.pSignalSemaphores = &renderingFinishedSemaphore;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &presentCommandBuffers[imageIndex];
if (vkQueueSubmit(presentQueue, 1, &submitInfo, VK_NULL_HANDLE) != VK_SUCCESS) {
std::cerr << "failed to submit draw command buffer" << std::endl;
assert(0);
}
std::cout << "submitted draw command buffer" << std::endl;
// Present drawn image
// Note: semaphore here is not strictly necessary, because commands are processed in submission order within a single queue
VkPresentInfoKHR presentInfo = {};
presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
presentInfo.waitSemaphoreCount = 1;
presentInfo.pWaitSemaphores = &renderingFinishedSemaphore;
presentInfo.swapchainCount = 1;
presentInfo.pSwapchains = &swapChain;
presentInfo.pImageIndices = &imageIndex;
res = vkQueuePresentKHR(presentQueue, &presentInfo);
if (res != VK_SUCCESS) {
std::cerr << "failed to submit present command buffer" << std::endl;
assert(0);
}
std::cout << "submitted presentation command buffer" << std::endl;
}
void CreateRenderPass()
{
VkAttachmentDescription attachDesc[2];
// Multisampled attachment that we render to
attachDesc[0].format = swapchainFormat.format;
attachDesc[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachDesc[0].storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachDesc[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachDesc[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachDesc[0].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attachDesc[0].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
attachDesc[0].samples = VK_SAMPLE_COUNT_4_BIT;
attachDesc[0].flags = 0;
// This is the frame buffer attachment to where the multisampled image
// will be resolved to and which will be presented to the swapchain
attachDesc[1].format = swapchainFormat.format;
attachDesc[1].loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachDesc[1].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachDesc[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachDesc[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachDesc[1].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attachDesc[1].finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
attachDesc[1].samples = VK_SAMPLE_COUNT_1_BIT;
attachDesc[1].flags = 0;
VkAttachmentReference attachRef = {};
attachRef.attachment = 0;
attachRef.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
// Resolve attachment reference for the color attachment
VkAttachmentReference resolveReference = {};
resolveReference.attachment = 1;
resolveReference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkSubpassDescription subpassDesc = {};
subpassDesc.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpassDesc.colorAttachmentCount = 1;
subpassDesc.pColorAttachments = &attachRef;
// Pass our resolve attachments to the sub pass
subpassDesc.pResolveAttachments = &resolveReference;
VkSubpassDependency dependencies[2];
dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL;
dependencies[0].dstSubpass = 0;
dependencies[0].srcStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
dependencies[0].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[0].srcAccessMask = VK_ACCESS_MEMORY_READ_BIT;
dependencies[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
dependencies[1].srcSubpass = 0;
dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL;
dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[1].dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
dependencies[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dependencies[1].dstAccessMask = VK_ACCESS_MEMORY_READ_BIT;
dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
VkRenderPassCreateInfo renderPassCreateInfo = {};
renderPassCreateInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
renderPassCreateInfo.attachmentCount = 2;
renderPassCreateInfo.pAttachments = attachDesc;
renderPassCreateInfo.subpassCount = 1;
renderPassCreateInfo.pSubpasses = &subpassDesc;
renderPassCreateInfo.dependencyCount = 2;
renderPassCreateInfo.pDependencies = dependencies;
VkResult res = vkCreateRenderPass(device, &renderPassCreateInfo, NULL, &renderPass);
printf("Created a render pass\n");
}
void CreateFramebuffer()
{
fbs.resize(swapChainImages.size());
VkResult res;
for (uint32_t i = 0; i < swapChainImages.size(); i++) {
VkImageViewCreateInfo ViewCreateInfo = {};
ViewCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
ViewCreateInfo.image = swapChainImages[i];
ViewCreateInfo.format = swapchainFormat.format; //Todo
ViewCreateInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
ViewCreateInfo.components.r = VK_COMPONENT_SWIZZLE_IDENTITY;
ViewCreateInfo.components.g = VK_COMPONENT_SWIZZLE_IDENTITY;
ViewCreateInfo.components.b = VK_COMPONENT_SWIZZLE_IDENTITY;
ViewCreateInfo.components.a = VK_COMPONENT_SWIZZLE_IDENTITY;
ViewCreateInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
ViewCreateInfo.subresourceRange.baseMipLevel = 0;
ViewCreateInfo.subresourceRange.levelCount = 1;
ViewCreateInfo.subresourceRange.baseArrayLayer = 0;
ViewCreateInfo.subresourceRange.layerCount = 1;
res = vkCreateImageView(device, &ViewCreateInfo, NULL, &views[i]);
VkImageView fbAttachments[2];
fbAttachments[0] = MSAAResolveImageView;
fbAttachments[1] = views[i];
VkFramebufferCreateInfo fbCreateInfo = {};
fbCreateInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
fbCreateInfo.renderPass = renderPass;
fbCreateInfo.attachmentCount = 2;
fbCreateInfo.pAttachments = fbAttachments;
fbCreateInfo.width = swapChainExtent.width;
fbCreateInfo.height = swapChainExtent.height;
fbCreateInfo.layers = 1;
res = vkCreateFramebuffer(device, &fbCreateInfo, NULL, &fbs[i]);
}
printf("Frame buffers created\n");
}
void CreateShaders()
{
char vs_asm_code[] =
///0x40000000 = 2.0
///uni = 1.0
///rb0 = 2 - 1 = 1
"sig_small_imm ; rx0 = fsub.ws.always(b, a, uni, 0x40000000) ; nop = nop(r0, r0) ;\n"
///set up VPM read for subsequent reads
///0x00201a00: 0000 0000 0010 0000 0001 1010 0000 0000
///addr: 0
///size: 32bit
///packed
///horizontal
///stride=1
///vectors to read = 2 (how many components)
"sig_load_imm ; vr_setup = load32.always(0x00201a00) ; nop = load32.always() ;\n"
///uni = viewportXScale
///r0 = vpm * uni
"sig_none ; nop = nop(r0, r0, vpm_read, uni) ; r0 = fmul.always(a, b) ;\n"
///r1 = r0 * rb0 (1)
"sig_none ; nop = nop(r0, r0, nop, rb0) ; r1 = fmul.always(r0, b) ;\n"
///uni = viewportYScale
///ra0.16a = int(r1), r2 = vpm * uni
"sig_none ; rx0.16a = ftoi.always(r1, r1, vpm_read, uni) ; r2 = fmul.always(a, b) ;\n"
///r3 = r2 * rb0
"sig_none ; nop = nop(r0, r0, nop, rb0) ; r3 = fmul.always(r2, b) ;\n"
///ra0.16b = int(r3)
"sig_none ; rx0.16b = ftoi.always(r3, r3) ; nop = nop(r0, r0) ;\n"
///set up VPM write for subsequent writes
///0x00001a00: 0000 0000 0000 0000 0001 1010 0000 0000
///addr: 0
///size: 32bit
///horizontal
///stride = 1
"sig_load_imm ; vw_setup = load32.always.ws(0x00001a00) ; nop = load32.always() ;\n"
///shaded vertex format for PSE
/// Ys and Xs
///vpm = ra0
"sig_none ; vpm = or.always(a, a, ra0, nop) ; nop = nop(r0, r0);\n"
/// Zs
///uni = 0.5
///vpm = uni
"sig_none ; vpm = or.always(a, a, uni, nop) ; nop = nop(r0, r0);\n"
/// 1.0 / Wc
///vpm = rb0 (1)
"sig_none ; vpm = or.always(b, b, nop, rb0) ; nop = nop(r0, r0);\n"
///END
"sig_end ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;\n"
"sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;\n"
"sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;\n"
"\0";
char cs_asm_code[] =
///uni = 1.0
///r3 = 2.0 - uni
"sig_small_imm ; r3 = fsub.always(b, a, uni, 0x40000000) ; nop = nop(r0, r0);\n"
"sig_load_imm ; vr_setup = load32.always(0x00201a00) ; nop = load32.always() ;\n"
///r2 = vpm
"sig_none ; r2 = or.always(a, a, vpm_read, nop) ; nop = nop(r0, r0);\n"
"sig_load_imm ; vw_setup = load32.always.ws(0x00001a00) ; nop = load32.always() ;\n"
///shaded coordinates format for PTB
/// write Xc
///r1 = vpm, vpm = r2
"sig_none ; r1 = or.always(a, a, vpm_read, nop) ; vpm = v8min.always(r2, r2);\n"
/// write Yc
///uni = viewportXscale
///vpm = r1, r2 = r2 * uni
"sig_none ; vpm = or.always(r1, r1, uni, nop) ; r2 = fmul.always(r2, a);\n"
///uni = viewportYscale
///r1 = r1 * uni
"sig_none ; nop = nop(r0, r0, uni, nop) ; r1 = fmul.always(r1, a);\n"
///r0 = r2 * r3
"sig_none ; nop = nop(r0, r0) ; r0 = fmul.always(r2, r3);\n"
///ra0.16a = r0, r1 = r1 * r3
"sig_none ; rx0.16a = ftoi.always(r0, r0) ; r1 = fmul.always(r1, r3) ;\n"
///ra0.16b = r1
"sig_none ; rx0.16b = ftoi.always(r1, r1) ; nop = nop(r0, r0) ;\n"
///write Zc
///vpm = 0
"sig_small_imm ; vpm = or.always(b, b, nop, 0) ; nop = nop(r0, r0) ;\n"
///write Wc
///vpm = 1.0
"sig_small_imm ; vpm = or.always(b, b, nop, 0x3f800000) ; nop = nop(r0, r0) ;\n"
///write Ys and Xs
///vpm = ra0
"sig_none ; vpm = or.always(a, a, ra0, nop) ; nop = nop(r0, r0) ;\n"
///write Zs
///uni = 0.5
///vpm = uni
"sig_none ; vpm = or.always(a, a, uni, nop) ; nop = nop(r0, r0) ;\n"
///write 1/Wc
///vpm = r3
"sig_none ; vpm = or.always(r3, r3) ; nop = nop(r0, r0) ;\n"
///END
"sig_end ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;\n"
"sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;\n"
"sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;\n"
"\0";
//clever: use small immedate -1 interpreted as 0xffffffff (white) to set color to white
//"sig_small_imm ; tlb_color_all = or.always(b, b, nop, -1) ; nop = nop(r0, r0) ;"
//8bit access
//abcd
//BGRA
/**
//rainbow colors
char fs_asm_code[] =
"sig_none ; r1 = itof.always(a, a, x_pix, uni) ; r3 = v8min.always(b, b) ;" //can't use mul pipeline for conversion :(
"sig_load_imm ; r2 = load32.always(0x3a088888) ; nop = load32() ;" //1/1920
"sig_none ; nop = nop(r0, r0) ; r2 = fmul.always(r2, r3);\n"
"sig_none ; r1 = itof.pm.always(b, b, x_pix, y_pix) ; r0.8c = fmul.always(r1, r2) ;"
"sig_load_imm ; r2 = load32.always(0x3a72b9d6) ; nop = load32() ;" //1/1080
"sig_none ; nop = nop(r0, r0) ; r2 = fmul.always(r2, r3);\n"
"sig_none ; nop = nop.pm(r0, r0) ; r0.8b = fmul.always(r1, r2) ;"
"sig_small_imm ; nop = nop.pm(r0, r0, nop, 0) ; r0.8a = v8min.always(b, b) ;"
"sig_small_imm ; nop = nop.pm(r0, r0, nop, 1) ; r0.8d = v8min.always(b, b) ;"
"sig_none ; tlb_color_all = or.always(r0, r0) ; nop = nop(r0, r0) ;"
"sig_end ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;"
"sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;"
"sig_unlock_score ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;"
"\0";
/**/
/**/
//display a color
char fs_asm_code[] =
"sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;"
"sig_load_imm ; r0 = load32.always(0xffa14ccc) ; nop = load32() ;"
"sig_none ; tlb_color_all = or.always(r0, r0) ; nop = nop(r0, r0) ;"
"sig_end ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;"
"sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;"
"sig_unlock_score ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;"
"\0";
/**/
char* asm_strings[] =
{
(char*)cs_asm_code, (char*)vs_asm_code, (char*)fs_asm_code, 0
};
VkRpiAssemblyMappingEXT mappings[] = {
//vertex shader uniforms
{
VK_RPI_ASSEMBLY_MAPPING_TYPE_PUSH_CONSTANT,
VK_DESCRIPTOR_TYPE_MAX_ENUM, //descriptor type
0, //descriptor set #
0, //descriptor binding #
0, //descriptor array element #
0, //resource offset
VK_SHADER_STAGE_VERTEX_BIT
},
{
VK_RPI_ASSEMBLY_MAPPING_TYPE_PUSH_CONSTANT,
VK_DESCRIPTOR_TYPE_MAX_ENUM, //descriptor type
0, //descriptor set #
0, //descriptor binding #
0, //descriptor array element #
4, //resource offset
VK_SHADER_STAGE_VERTEX_BIT
},
{
VK_RPI_ASSEMBLY_MAPPING_TYPE_PUSH_CONSTANT,
VK_DESCRIPTOR_TYPE_MAX_ENUM, //descriptor type
0, //descriptor set #
0, //descriptor binding #
0, //descriptor array element #
8, //resource offset
VK_SHADER_STAGE_VERTEX_BIT
},
{
VK_RPI_ASSEMBLY_MAPPING_TYPE_PUSH_CONSTANT,
VK_DESCRIPTOR_TYPE_MAX_ENUM, //descriptor type
0, //descriptor set #
0, //descriptor binding #
0, //descriptor array element #
12, //resource offset
VK_SHADER_STAGE_VERTEX_BIT
}
};
VkRpiShaderModuleAssemblyCreateInfoEXT shaderModuleCreateInfo = {};
shaderModuleCreateInfo.asmStrings = asm_strings;
shaderModuleCreateInfo.mappings = mappings;
shaderModuleCreateInfo.numMappings = sizeof(mappings) / sizeof(VkRpiAssemblyMappingEXT);
shaderModuleCreateInfo.pShaderModule = &shaderModule;
LoaderTrampoline* trampoline = (LoaderTrampoline*)physicalDevice;
VkRpiPhysicalDevice* realPhysicalDevice = trampoline->loaderTerminator->physicalDevice;
realPhysicalDevice->customData = (uintptr_t)&shaderModuleCreateInfo;
PFN_vkCreateShaderModuleFromRpiAssemblyEXT vkCreateShaderModuleFromRpiAssemblyEXT = (PFN_vkCreateShaderModuleFromRpiAssemblyEXT)vkGetInstanceProcAddr(instance, "vkCreateShaderModuleFromRpiAssemblyEXT");
VkResult res = vkCreateShaderModuleFromRpiAssemblyEXT(physicalDevice);
assert(shaderModule);
}
#define VERTEX_BUFFER_BIND_ID 0
void CreatePipeline()
{
VkPushConstantRange pushConstantRanges[1];
pushConstantRanges[0].offset = 0;
pushConstantRanges[0].size = 4 * 4; //4 * 32bits
pushConstantRanges[0].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
VkPipelineLayoutCreateInfo pipelineLayoutCI = {};
pipelineLayoutCI.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
pipelineLayoutCI.setLayoutCount = 0;
pipelineLayoutCI.pushConstantRangeCount = 1;
pipelineLayoutCI.pPushConstantRanges = &pushConstantRanges[0];
vkCreatePipelineLayout(device, &pipelineLayoutCI, 0, &pipelineLayout);
VkPipelineShaderStageCreateInfo shaderStageCreateInfo[2] = {};
shaderStageCreateInfo[0].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
shaderStageCreateInfo[0].stage = VK_SHADER_STAGE_VERTEX_BIT;
shaderStageCreateInfo[0].module = shaderModule;
shaderStageCreateInfo[0].pName = "main";
shaderStageCreateInfo[1].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
shaderStageCreateInfo[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT;
shaderStageCreateInfo[1].module = shaderModule;
shaderStageCreateInfo[1].pName = "main";
VkVertexInputBindingDescription vertexInputBindingDescription =
{
0,
sizeof(float) * 2,
VK_VERTEX_INPUT_RATE_VERTEX
};
VkVertexInputAttributeDescription vertexInputAttributeDescription =
{
0,
0,
VK_FORMAT_R32G32_SFLOAT,
0
};
VkPipelineVertexInputStateCreateInfo vertexInputInfo = {};
vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
vertexInputInfo.vertexAttributeDescriptionCount = 1;
vertexInputInfo.pVertexAttributeDescriptions = &vertexInputAttributeDescription;
vertexInputInfo.vertexBindingDescriptionCount = 1;
vertexInputInfo.pVertexBindingDescriptions = &vertexInputBindingDescription;
VkPipelineInputAssemblyStateCreateInfo pipelineIACreateInfo = {};
pipelineIACreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
pipelineIACreateInfo.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
VkViewport vp = {};
vp.x = 0.0f;
vp.y = 0.0f;
vp.width = (float)swapChainExtent.width;
vp.height = (float)swapChainExtent.height;
vp.minDepth = 0.0f;
vp.maxDepth = 1.0f;
VkPipelineViewportStateCreateInfo vpCreateInfo = {};
vpCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
vpCreateInfo.viewportCount = 1;
vpCreateInfo.pViewports = &vp;
VkPipelineRasterizationStateCreateInfo rastCreateInfo = {};
rastCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
rastCreateInfo.polygonMode = VK_POLYGON_MODE_FILL;
rastCreateInfo.cullMode = VK_CULL_MODE_NONE;
rastCreateInfo.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
rastCreateInfo.lineWidth = 1.0f;
VkPipelineMultisampleStateCreateInfo pipelineMSCreateInfo = {};
pipelineMSCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
pipelineMSCreateInfo.rasterizationSamples = VK_SAMPLE_COUNT_4_BIT;
VkPipelineColorBlendAttachmentState blendAttachState = {};
blendAttachState.colorWriteMask = 0xf;
blendAttachState.blendEnable = false;
VkPipelineColorBlendStateCreateInfo blendCreateInfo = {};
blendCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
blendCreateInfo.attachmentCount = 1;
blendCreateInfo.pAttachments = &blendAttachState;
VkPipelineDepthStencilStateCreateInfo depthStencilState = {};
depthStencilState.depthTestEnable = false;
depthStencilState.stencilTestEnable = false;
VkGraphicsPipelineCreateInfo pipelineInfo = {};
pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
pipelineInfo.stageCount = 2;
pipelineInfo.pStages = &shaderStageCreateInfo[0];
pipelineInfo.pVertexInputState = &vertexInputInfo;
pipelineInfo.pInputAssemblyState = &pipelineIACreateInfo;
pipelineInfo.pViewportState = &vpCreateInfo;
pipelineInfo.pRasterizationState = &rastCreateInfo;
pipelineInfo.pMultisampleState = &pipelineMSCreateInfo;
pipelineInfo.pColorBlendState = &blendCreateInfo;
pipelineInfo.renderPass = renderPass;
pipelineInfo.basePipelineIndex = -1;
pipelineInfo.pDepthStencilState = &depthStencilState;
pipelineInfo.layout = pipelineLayout;
VkResult res = vkCreateGraphicsPipelines(device, VK_NULL_HANDLE, 1, &pipelineInfo, NULL, &pipeline);
printf("Graphics pipeline created\n");
}
uint32_t getMemoryTypeIndex(VkPhysicalDeviceMemoryProperties deviceMemoryProperties, uint32_t typeBits, VkMemoryPropertyFlags properties)
{
// Iterate over all memory types available for the device used in this example
for (uint32_t i = 0; i < deviceMemoryProperties.memoryTypeCount; i++)
{
if ((typeBits & 1) == 1)
{
if ((deviceMemoryProperties.memoryTypes[i].propertyFlags & properties) == properties)
{
return i;
}
}
typeBits >>= 1;
}
return 0;
}
void CreateVertexBuffer()
{
unsigned vboSize = sizeof(float) * 2 * 3; //3 x vec2
VkMemoryRequirements mr;
{ //create staging buffer
VkBufferCreateInfo ci = {};
ci.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
ci.size = vboSize;
ci.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT;
VkResult res = vkCreateBuffer(device, &ci, 0, &vertexBuffer);
vkGetBufferMemoryRequirements(device, vertexBuffer, &mr);
VkMemoryAllocateInfo mai = {};
mai.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
mai.allocationSize = mr.size;
mai.memoryTypeIndex = getMemoryTypeIndex(pdmp, mr.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
res = vkAllocateMemory(device, &mai, 0, &vertexBufferMemory);
float vertices[] =
{
-1, -1,
1, -1,
0, 1
};
void* data;
res = vkMapMemory(device, vertexBufferMemory, 0, mr.size, 0, &data);
memcpy(data, vertices, vboSize);
vkUnmapMemory(device, vertexBufferMemory);
res = vkBindBufferMemory(device, vertexBuffer, vertexBufferMemory, 0);
}
printf("Vertex buffer created\n");
}
void CreateTexture()
{
VkImageCreateInfo info = {};
info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
info.imageType = VK_IMAGE_TYPE_2D;
info.format = swapchainFormat.format;
info.extent.width = swapChainExtent.width;
info.extent.height = swapChainExtent.height;
info.extent.depth = 1;
info.mipLevels = 1;
info.arrayLayers = 1;
info.tiling = VK_IMAGE_TILING_OPTIMAL;
info.samples = VK_SAMPLE_COUNT_4_BIT;
// Image will only be used as a transient target
info.usage = VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
vkCreateImage(device, &info, 0, &MSAAResolveImage);
VkMemoryRequirements memReqs;
vkGetImageMemoryRequirements(device, MSAAResolveImage, &memReqs);
VkMemoryAllocateInfo memAlloc = {};
memAlloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
memAlloc.allocationSize = memReqs.size;
// We prefer a lazily allocated memory type
// This means that the memory gets allocated when the implementation sees fit, e.g. when first using the images
memAlloc.memoryTypeIndex = getMemoryTypeIndex(pdmp, memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT);
if (!memAlloc.memoryTypeIndex)
{
// If this is not available, fall back to device local memory
memAlloc.memoryTypeIndex = getMemoryTypeIndex(pdmp, memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
}
vkAllocateMemory(device, &memAlloc, 0, &MSAAResolveImageMemory);
vkBindImageMemory(device, MSAAResolveImage, MSAAResolveImageMemory, 0);
VkImageViewCreateInfo viewInfo = {};
viewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
viewInfo.image = MSAAResolveImage;
viewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
viewInfo.format = swapchainFormat.format;
viewInfo.components.r = VK_COMPONENT_SWIZZLE_R;
viewInfo.components.g = VK_COMPONENT_SWIZZLE_G;
viewInfo.components.b = VK_COMPONENT_SWIZZLE_B;
viewInfo.components.a = VK_COMPONENT_SWIZZLE_A;
viewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
viewInfo.subresourceRange.levelCount = 1;
viewInfo.subresourceRange.layerCount = 1;
vkCreateImageView(device, &viewInfo, 0, &MSAAResolveImageView);
}
int main() {
// Note: dynamically loading loader may be a better idea to fail gracefully when Vulkan is not supported
// Create window for Vulkan
//glfwInit();
//glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);
//glfwWindowHint(GLFW_RESIZABLE, GLFW_FALSE);
//window = glfwCreateWindow(WINDOW_WIDTH, WINDOW_HEIGHT, "The 630 line cornflower blue window", nullptr, nullptr);
// Use Vulkan
setupVulkan();
mainLoop();
cleanup();
return 0;
}