1
0
mirror of https://github.com/Yours3lf/rpi-vk-driver.git synced 2025-01-19 11:52:16 +01:00
rpi-vk-driver/driver/ConsecutivePoolAllocator.c

289 lines
6.0 KiB
C

#include "ConsecutivePoolAllocator.h"
#include "CustomAssert.h"
#include <stdint.h>
#include <string.h>
ConsecutivePoolAllocator createConsecutivePoolAllocator(void* b, unsigned bs, unsigned s)
{
assert(b); //only allocated memory
assert(bs >= sizeof(void*)); //we need to be able to store
assert(s%bs==0); //we want a size that is the exact multiple of block size
assert(s >= bs); //at least 1 element
ConsecutivePoolAllocator pa =
{
.buf = b,
.nextFreeBlock = b,
.blockSize = bs,
.size = s,
.numFreeBlocks = s / bs
};
//initialize linked list of free pointers
uint32_t* ptr = pa.nextFreeBlock;
unsigned last = s/bs - 1;
for(unsigned c = 0; c < last; ++c)
{
*ptr = (char*)ptr + bs;
ptr = (char*)ptr + bs;
}
*ptr = 0; //last element
return pa;
}
void destroyConsecutivePoolAllocator(ConsecutivePoolAllocator* pa)
{
//actual memory freeing is done by caller
pa->buf = 0;
pa->nextFreeBlock = 0;
pa->blockSize = 0;
pa->size = 0;
}
//allocate numBlocks consecutive memory
//return an offset into the pool buffer, as pool could be reallocated!
uint32_t consecutivePoolAllocate(ConsecutivePoolAllocator* pa, uint32_t numBlocks)
{
assert(pa);
assert(pa->buf);
assert(numBlocks);
uint32_t* ptr = pa->nextFreeBlock;
if(!ptr)
{
return -1; //no free blocks
}
for(; ptr; ptr = *ptr)
{
uint32_t found = 1;
char* nextBlock = (char*)ptr + pa->blockSize;
uint32_t* nextFree = *ptr;
for(uint32_t c = 1; c != numBlocks; ++c)
{
if(nextBlock == nextFree)
{
nextFree = *nextFree;
nextBlock += pa->blockSize;
}
else
{
found = 0;
break;
}
}
if(found)
{
//set the next free block to the one that the last block we allocated points to
uint32_t* nextFreeBlockCandidate = *(uint32_t*)((char*)ptr + (numBlocks - 1) * pa->blockSize);
if(pa->nextFreeBlock == ptr)
{
pa->nextFreeBlock = nextFreeBlockCandidate;
break;
}
uint32_t* prevPtr = pa->nextFreeBlock;
uint32_t* currPtr = prevPtr;
for(; currPtr; currPtr = *currPtr)
{
if(currPtr == ptr)
{
break;
}
prevPtr = currPtr;
}
assert(currPtr);
*prevPtr = nextFreeBlockCandidate;
break;
}
if(!(*ptr))
{
return -1;
}
}
#ifdef DEBUG_BUILD
if(ptr) memset(ptr, 0, numBlocks * pa->blockSize);
#endif
pa->numFreeBlocks -= numBlocks;
return (char*)ptr - (char*)pa->buf;
}
//free numBlocks consecutive memory
void consecutivePoolFree(ConsecutivePoolAllocator* pa, void* p, uint32_t numBlocks)
{
assert(pa);
assert(pa->buf);
assert(p);
assert(numBlocks);
#ifdef DEBUG_BUILD
memset(p, 0, numBlocks * pa->blockSize);
#endif
//if linked list of free entries is empty
if(!pa->nextFreeBlock)
{
//then restart linked list
pa->nextFreeBlock = p;
char* listPtr = pa->nextFreeBlock;
for(uint32_t c = 0; c < numBlocks - 1; ++c)
{
*(uint32_t*)listPtr = listPtr + pa->blockSize;
listPtr += pa->blockSize;
}
//end list
*(uint32_t*)listPtr = 0;
}
else
{
//if list is not empty, try to form consecutive parts
//search free list to see if the freed element fits anywhere
uint32_t found = 0;
for(uint32_t* listPtr = pa->nextFreeBlock; listPtr; listPtr = *listPtr)
{
//if the freed block fits in the list somewhere
if(((char*)listPtr + pa->blockSize) == p)
{
//add it into the list
uint32_t* tmp = *listPtr;
*listPtr = p;
//reconstruct linked list within the freed element
char* ptr = *listPtr;
for(uint32_t c = 0; c < numBlocks - 1; ++c)
{
*(uint32_t*)ptr = ptr + pa->blockSize;
ptr += pa->blockSize;
}
//set the last element to point to the one after
*(uint32_t*)ptr = tmp;
found = 1;
}
}
if(!found)
{
//if it doesn't fit anywhere, just simply add it to the linked list
uint32_t* tmp = pa->nextFreeBlock;
pa->nextFreeBlock = p;
char* listPtr = pa->nextFreeBlock;
for(uint32_t c = 0; c < numBlocks - 1; ++c)
{
*(uint32_t*)listPtr = listPtr + pa->blockSize;
listPtr += pa->blockSize;
}
//set the last element to point to the one after
*(uint32_t*)listPtr = tmp;
}
}
pa->numFreeBlocks += numBlocks;
}
uint32_t consecutivePoolReAllocate(ConsecutivePoolAllocator* pa, void* currentMem, uint32_t currNumBlocks, uint32_t newNumBlocks)
{
assert(pa);
assert(pa->buf);
assert(currentMem);
assert(currNumBlocks);
//TODO hack
if(newNumBlocks - currNumBlocks < 2)
{
uint32_t* nextCandidate = (char*)currentMem + pa->blockSize * currNumBlocks;
uint32_t* prevPtr = 0;
for(uint32_t* listPtr = pa->nextFreeBlock; listPtr; listPtr = *listPtr)
{
if(listPtr == nextCandidate)
{
//update next free block to be the one after our current candidate
if(prevPtr)
{
*prevPtr = *listPtr;
pa->nextFreeBlock = prevPtr;
}
else if(*listPtr)
{
pa->nextFreeBlock = *listPtr;
}
pa->numFreeBlocks -= 1;
return (char*)currentMem - (char*)pa->buf;
}
prevPtr = listPtr;
}
}
{
//try to allocate one more block
uint32_t newMemOffset = consecutivePoolAllocate(pa, newNumBlocks);
if(newMemOffset == -1)
{
return -1;
}
pa->numFreeBlocks -= newNumBlocks - currNumBlocks;
//copy over old content
memcpy(pa->buf + newMemOffset, currentMem, currNumBlocks * pa->blockSize);
//free current element
consecutivePoolFree(pa, currentMem, currNumBlocks);
return newMemOffset;
}
}
void* getCPAptrFromOffset(ConsecutivePoolAllocator* pa, uint32_t offset)
{
assert(pa);
assert(pa->buf);
assert(offset < pa->size);
return pa->buf + offset;
}
void CPAdebugPrint(ConsecutivePoolAllocator* pa)
{
fprintf(stderr, "\nCPA Debug Print\n");
fprintf(stderr, "pa->buf %p\n", pa->buf);
fprintf(stderr, "pa->nextFreeBlock %p\n", pa->nextFreeBlock);
fprintf(stderr, "pa->numFreeBlocks %u\n", pa->numFreeBlocks);
fprintf(stderr, "Linear walk:\n");
for(char* ptr = pa->buf; ptr != pa->buf + pa->size; ptr += pa->blockSize)
{
fprintf(stderr, "%p: %p, ", ptr, *(uint32_t*)ptr);
}
fprintf(stderr, "\nLinked List walk:\n");
for(uint32_t* ptr = pa->nextFreeBlock; ptr; ptr = *ptr)
{
fprintf(stderr, "%p: %p, ", ptr, *ptr);
}
fprintf(stderr, "\n");
}