mirror of
https://github.com/Yours3lf/rpi-vk-driver.git
synced 2025-01-07 00:46:10 +01:00
1306 lines
44 KiB
C++
1306 lines
44 KiB
C++
#include <iostream>
|
|
#include <vector>
|
|
#include <algorithm>
|
|
#include <string.h>
|
|
#include "driver/CustomAssert.h"
|
|
|
|
#include <vulkan/vulkan.h>
|
|
|
|
#include "driver/vkExt.h"
|
|
|
|
//#define GLFW_INCLUDE_VULKAN
|
|
//#define VK_USE_PLATFORM_WIN32_KHR
|
|
//#include <GLFW/glfw3.h>
|
|
|
|
//#define GLFW_EXPOSE_NATIVE_WIN32
|
|
//#include <GLFW/glfw3native.h>
|
|
|
|
//GLFWwindow * window;
|
|
|
|
//#define WINDOW_WIDTH 640
|
|
//#define WINDOW_HEIGHT 480
|
|
|
|
// Note: support swap chain recreation (not only required for resized windows!)
|
|
// Note: window resize may not result in Vulkan telling that the swap chain should be recreated, should be handled explicitly!
|
|
void run();
|
|
void setupVulkan();
|
|
void mainLoop();
|
|
void cleanup();
|
|
void createInstance();
|
|
void createWindowSurface();
|
|
void findPhysicalDevice();
|
|
void checkSwapChainSupport();
|
|
void findQueueFamilies();
|
|
void createLogicalDevice();
|
|
void createSemaphores();
|
|
void createSwapChain();
|
|
void createCommandQueues();
|
|
void draw();
|
|
void CreateRenderPass();
|
|
void CreateFramebuffer();
|
|
void CreateShaders();
|
|
void CreatePipeline();
|
|
void CreateUniformBuffer();
|
|
void CreateDescriptorSet();
|
|
void CreateVertexBuffer();
|
|
void CreateTexture();
|
|
void recordCommandBuffers();
|
|
VkSurfaceFormatKHR chooseSurfaceFormat(const std::vector<VkSurfaceFormatKHR>& availableFormats);
|
|
VkExtent2D chooseSwapExtent(const VkSurfaceCapabilitiesKHR& surfaceCapabilities);
|
|
VkPresentModeKHR choosePresentMode(const std::vector<VkPresentModeKHR> presentModes);
|
|
uint32_t getMemoryTypeIndex(VkPhysicalDeviceMemoryProperties deviceMemoryProperties, uint32_t typeBits, VkMemoryPropertyFlags properties);
|
|
|
|
VkInstance instance; //
|
|
VkSurfaceKHR windowSurface; //
|
|
VkPhysicalDevice physicalDevice;
|
|
VkDevice device; //
|
|
VkSemaphore imageAvailableSemaphore; //
|
|
VkSemaphore renderingFinishedSemaphore; //
|
|
VkSwapchainKHR swapChain; //
|
|
VkCommandPool commandPool; //
|
|
std::vector<VkCommandBuffer> presentCommandBuffers; //
|
|
std::vector<VkImage> swapChainImages; //
|
|
VkRenderPass renderPass; //
|
|
std::vector<VkFramebuffer> fbs; //
|
|
VkShaderModule shaderModule; //
|
|
VkPipeline pipeline; //
|
|
VkQueue graphicsQueue;
|
|
VkQueue presentQueue;
|
|
VkBuffer vertexBuffer1;
|
|
VkDeviceMemory vertexBufferMemory1;
|
|
VkBuffer vertexBuffer2;
|
|
VkDeviceMemory vertexBufferMemory2;
|
|
VkPhysicalDeviceMemoryProperties pdmp;
|
|
std::vector<VkImageView> views; //?
|
|
VkSurfaceFormatKHR swapchainFormat;
|
|
VkExtent2D swapChainExtent;
|
|
VkPipelineLayout pipelineLayout;
|
|
|
|
uint32_t graphicsQueueFamily;
|
|
uint32_t presentQueueFamily;
|
|
|
|
void cleanup() {
|
|
vkDeviceWaitIdle(device);
|
|
|
|
// Note: this is done implicitly when the command pool is freed, but nice to know about
|
|
vkFreeCommandBuffers(device, commandPool, presentCommandBuffers.size(), presentCommandBuffers.data());
|
|
vkDestroyCommandPool(device, commandPool, nullptr);
|
|
|
|
vkDestroySemaphore(device, imageAvailableSemaphore, nullptr);
|
|
vkDestroySemaphore(device, renderingFinishedSemaphore, nullptr);
|
|
|
|
for(int c = 0; c < views.size(); ++c)
|
|
vkDestroyImageView(device, views[c], 0);
|
|
|
|
for (int c = 0; c < fbs.size(); ++c)
|
|
vkDestroyFramebuffer(device, fbs[c], 0);
|
|
|
|
vkDestroyRenderPass(device, renderPass, 0);
|
|
|
|
vkDestroyShaderModule(device, shaderModule, 0);
|
|
|
|
vkDestroyPipeline(device, pipeline, 0);
|
|
|
|
// Note: implicitly destroys images (in fact, we're not allowed to do that explicitly)
|
|
vkDestroySwapchainKHR(device, swapChain, nullptr);
|
|
|
|
vkDestroyDevice(device, nullptr);
|
|
|
|
vkDestroySurfaceKHR(instance, windowSurface, nullptr);
|
|
|
|
vkDestroyInstance(instance, nullptr);
|
|
}
|
|
|
|
void run() {
|
|
// Note: dynamically loading loader may be a better idea to fail gracefully when Vulkan is not supported
|
|
|
|
// Create window for Vulkan
|
|
//glfwInit();
|
|
|
|
//glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);
|
|
//glfwWindowHint(GLFW_RESIZABLE, GLFW_FALSE);
|
|
|
|
//window = glfwCreateWindow(WINDOW_WIDTH, WINDOW_HEIGHT, "The 630 line cornflower blue window", nullptr, nullptr);
|
|
|
|
// Use Vulkan
|
|
setupVulkan();
|
|
|
|
mainLoop();
|
|
|
|
cleanup();
|
|
}
|
|
|
|
void setupVulkan() {
|
|
createInstance();
|
|
findPhysicalDevice();
|
|
createWindowSurface();
|
|
checkSwapChainSupport();
|
|
findQueueFamilies();
|
|
createLogicalDevice();
|
|
createSemaphores();
|
|
createSwapChain();
|
|
createCommandQueues();
|
|
CreateRenderPass();
|
|
CreateFramebuffer();
|
|
CreateVertexBuffer();
|
|
//CreateUniformBuffer();
|
|
CreateShaders();
|
|
CreatePipeline();
|
|
recordCommandBuffers();
|
|
}
|
|
|
|
void mainLoop() {
|
|
//while (!glfwWindowShouldClose(window)) {
|
|
for(int c = 0; c < 300; ++c){
|
|
draw();
|
|
|
|
//glfwPollEvents();
|
|
}
|
|
}
|
|
|
|
void createInstance() {
|
|
VkApplicationInfo appInfo = {};
|
|
appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
|
|
appInfo.pApplicationName = "VulkanTriangle";
|
|
appInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0);
|
|
appInfo.pEngineName = "TriangleEngine";
|
|
appInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0);
|
|
appInfo.apiVersion = VK_API_VERSION_1_0;
|
|
|
|
// Get instance extensions required by GLFW to draw to window
|
|
//unsigned int glfwExtensionCount;
|
|
//const char** glfwExtensions;
|
|
//glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount);
|
|
|
|
// Check for extensions
|
|
uint32_t extensionCount = 0;
|
|
vkEnumerateInstanceExtensionProperties(nullptr, &extensionCount, nullptr);
|
|
|
|
if (extensionCount == 0) {
|
|
std::cerr << "no extensions supported!" << std::endl;
|
|
assert(0);
|
|
}
|
|
|
|
std::vector<VkExtensionProperties> availableExtensions(extensionCount);
|
|
vkEnumerateInstanceExtensionProperties(nullptr, &extensionCount, availableExtensions.data());
|
|
|
|
std::cout << "supported extensions:" << std::endl;
|
|
|
|
for (const auto& extension : availableExtensions) {
|
|
std::cout << "\t" << extension.extensionName << std::endl;
|
|
}
|
|
|
|
const char* enabledExtensions[] = {
|
|
"VK_KHR_surface",
|
|
"VK_KHR_display"
|
|
};
|
|
|
|
VkInstanceCreateInfo createInfo = {};
|
|
createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
|
|
createInfo.pNext = 0;
|
|
createInfo.pApplicationInfo = &appInfo;
|
|
createInfo.enabledExtensionCount = sizeof(enabledExtensions) / sizeof(const char*);
|
|
createInfo.ppEnabledExtensionNames = enabledExtensions;
|
|
createInfo.enabledLayerCount = 0;
|
|
createInfo.ppEnabledLayerNames = 0;
|
|
//
|
|
// Initialize Vulkan instance
|
|
VkResult res;
|
|
if ((res = vkCreateInstance(&createInfo, nullptr, &instance)) != VK_SUCCESS) {
|
|
std::cerr << "failed to create instance! " << res << std::endl;
|
|
assert(0);
|
|
}
|
|
else {
|
|
std::cout << "created vulkan instance" << std::endl;
|
|
}
|
|
}
|
|
|
|
void createWindowSurface() {
|
|
PFN_vkCreateRpiSurfaceEXT vkCreateRpiSurfaceEXT = 0;
|
|
vkCreateRpiSurfaceEXT = (PFN_vkCreateRpiSurfaceEXT)vkGetInstanceProcAddr(instance, "vkCreateRpiSurfaceEXT");
|
|
|
|
windowSurface = 0;
|
|
|
|
LoaderTrampoline* trampoline = (LoaderTrampoline*)physicalDevice;
|
|
VkRpiPhysicalDevice* realPhysicalDevice = trampoline->loaderTerminator->physicalDevice;
|
|
|
|
VkRpiSurfaceCreateInfoEXT ci = {};
|
|
ci.pSurface = &windowSurface;
|
|
|
|
realPhysicalDevice->customData = (uintptr_t)&ci;
|
|
|
|
if (vkCreateRpiSurfaceEXT(physicalDevice) != VK_SUCCESS) {
|
|
std::cerr << "failed to create window surface!" << std::endl;
|
|
assert(0);
|
|
}
|
|
|
|
std::cout << "created window surface" << std::endl;
|
|
}
|
|
|
|
void findPhysicalDevice() {
|
|
// Try to find 1 Vulkan supported device
|
|
// Note: perhaps refactor to loop through devices and find first one that supports all required features and extensions
|
|
uint32_t deviceCount = 1;
|
|
VkResult res = vkEnumeratePhysicalDevices(instance, &deviceCount, &physicalDevice);
|
|
if (res != VK_SUCCESS && res != VK_INCOMPLETE) {
|
|
std::cerr << "enumerating physical devices failed!" << std::endl;
|
|
assert(0);
|
|
}
|
|
|
|
if (deviceCount == 0) {
|
|
std::cerr << "no physical devices that support vulkan!" << std::endl;
|
|
assert(0);
|
|
}
|
|
|
|
std::cout << "physical device with vulkan support found" << std::endl;
|
|
|
|
vkGetPhysicalDeviceMemoryProperties(physicalDevice, &pdmp);
|
|
|
|
// Check device features
|
|
// Note: will apiVersion >= appInfo.apiVersion? Probably yes, but spec is unclear.
|
|
VkPhysicalDeviceProperties deviceProperties;
|
|
VkPhysicalDeviceFeatures deviceFeatures;
|
|
vkGetPhysicalDeviceProperties(physicalDevice, &deviceProperties);
|
|
vkGetPhysicalDeviceFeatures(physicalDevice, &deviceFeatures);
|
|
|
|
uint32_t supportedVersion[] = {
|
|
VK_VERSION_MAJOR(deviceProperties.apiVersion),
|
|
VK_VERSION_MINOR(deviceProperties.apiVersion),
|
|
VK_VERSION_PATCH(deviceProperties.apiVersion)
|
|
};
|
|
|
|
std::cout << "physical device supports version " << supportedVersion[0] << "." << supportedVersion[1] << "." << supportedVersion[2] << std::endl;
|
|
}
|
|
|
|
void checkSwapChainSupport() {
|
|
uint32_t extensionCount = 0;
|
|
vkEnumerateDeviceExtensionProperties(physicalDevice, nullptr, &extensionCount, nullptr);
|
|
|
|
if (extensionCount == 0) {
|
|
std::cerr << "physical device doesn't support any extensions" << std::endl;
|
|
assert(0);
|
|
}
|
|
|
|
std::vector<VkExtensionProperties> deviceExtensions(extensionCount);
|
|
vkEnumerateDeviceExtensionProperties(physicalDevice, nullptr, &extensionCount, deviceExtensions.data());
|
|
|
|
for (const auto& extension : deviceExtensions) {
|
|
if (strcmp(extension.extensionName, VK_KHR_SWAPCHAIN_EXTENSION_NAME) == 0) {
|
|
std::cout << "physical device supports swap chains" << std::endl;
|
|
return;
|
|
}
|
|
}
|
|
|
|
std::cerr << "physical device doesn't support swap chains" << std::endl;
|
|
assert(0);
|
|
}
|
|
|
|
void findQueueFamilies() {
|
|
// Check queue families
|
|
uint32_t queueFamilyCount = 0;
|
|
vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueFamilyCount, nullptr);
|
|
|
|
if (queueFamilyCount == 0) {
|
|
std::cout << "physical device has no queue families!" << std::endl;
|
|
assert(0);
|
|
}
|
|
|
|
// Find queue family with graphics support
|
|
// Note: is a transfer queue necessary to copy vertices to the gpu or can a graphics queue handle that?
|
|
std::vector<VkQueueFamilyProperties> queueFamilies(queueFamilyCount);
|
|
vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueFamilyCount, queueFamilies.data());
|
|
|
|
std::cout << "physical device has " << queueFamilyCount << " queue families" << std::endl;
|
|
|
|
bool foundGraphicsQueueFamily = false;
|
|
bool foundPresentQueueFamily = false;
|
|
|
|
for (uint32_t i = 0; i < queueFamilyCount; i++) {
|
|
VkBool32 presentSupport = false;
|
|
vkGetPhysicalDeviceSurfaceSupportKHR(physicalDevice, i, windowSurface, &presentSupport);
|
|
|
|
if (queueFamilies[i].queueCount > 0 && queueFamilies[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) {
|
|
graphicsQueueFamily = i;
|
|
foundGraphicsQueueFamily = true;
|
|
|
|
if (presentSupport) {
|
|
presentQueueFamily = i;
|
|
foundPresentQueueFamily = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!foundPresentQueueFamily && presentSupport) {
|
|
presentQueueFamily = i;
|
|
foundPresentQueueFamily = true;
|
|
}
|
|
}
|
|
|
|
if (foundGraphicsQueueFamily) {
|
|
std::cout << "queue family #" << graphicsQueueFamily << " supports graphics" << std::endl;
|
|
|
|
if (foundPresentQueueFamily) {
|
|
std::cout << "queue family #" << presentQueueFamily << " supports presentation" << std::endl;
|
|
}
|
|
else {
|
|
std::cerr << "could not find a valid queue family with present support" << std::endl;
|
|
assert(0);
|
|
}
|
|
}
|
|
else {
|
|
std::cerr << "could not find a valid queue family with graphics support" << std::endl;
|
|
assert(0);
|
|
}
|
|
}
|
|
|
|
void createLogicalDevice() {
|
|
// Greate one graphics queue and optionally a separate presentation queue
|
|
float queuePriority = 1.0f;
|
|
|
|
VkDeviceQueueCreateInfo queueCreateInfo[2] = {};
|
|
|
|
queueCreateInfo[0].sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
|
|
queueCreateInfo[0].queueFamilyIndex = graphicsQueueFamily;
|
|
queueCreateInfo[0].queueCount = 1;
|
|
queueCreateInfo[0].pQueuePriorities = &queuePriority;
|
|
|
|
queueCreateInfo[0].sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
|
|
queueCreateInfo[0].queueFamilyIndex = presentQueueFamily;
|
|
queueCreateInfo[0].queueCount = 1;
|
|
queueCreateInfo[0].pQueuePriorities = &queuePriority;
|
|
|
|
// Create logical device from physical device
|
|
// Note: there are separate instance and device extensions!
|
|
VkDeviceCreateInfo deviceCreateInfo = {};
|
|
deviceCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
|
|
deviceCreateInfo.pQueueCreateInfos = queueCreateInfo;
|
|
|
|
if (graphicsQueueFamily == presentQueueFamily) {
|
|
deviceCreateInfo.queueCreateInfoCount = 1;
|
|
}
|
|
else {
|
|
deviceCreateInfo.queueCreateInfoCount = 2;
|
|
}
|
|
|
|
const char* deviceExtensions = VK_KHR_SWAPCHAIN_EXTENSION_NAME;
|
|
deviceCreateInfo.enabledExtensionCount = 1;
|
|
deviceCreateInfo.ppEnabledExtensionNames = &deviceExtensions;
|
|
|
|
if (vkCreateDevice(physicalDevice, &deviceCreateInfo, nullptr, &device) != VK_SUCCESS) {
|
|
std::cerr << "failed to create logical device" << std::endl;
|
|
assert(0);
|
|
}
|
|
|
|
std::cout << "created logical device" << std::endl;
|
|
|
|
// Get graphics and presentation queues (which may be the same)
|
|
vkGetDeviceQueue(device, graphicsQueueFamily, 0, &graphicsQueue);
|
|
vkGetDeviceQueue(device, presentQueueFamily, 0, &presentQueue);
|
|
|
|
std::cout << "acquired graphics and presentation queues" << std::endl;
|
|
}
|
|
|
|
void createSemaphores() {
|
|
VkSemaphoreCreateInfo createInfo = {};
|
|
createInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
|
|
|
|
if (vkCreateSemaphore(device, &createInfo, nullptr, &imageAvailableSemaphore) != VK_SUCCESS ||
|
|
vkCreateSemaphore(device, &createInfo, nullptr, &renderingFinishedSemaphore) != VK_SUCCESS) {
|
|
std::cerr << "failed to create semaphores" << std::endl;
|
|
assert(0);
|
|
}
|
|
else {
|
|
std::cout << "created semaphores" << std::endl;
|
|
}
|
|
}
|
|
|
|
void createSwapChain() {
|
|
// Find surface capabilities
|
|
VkSurfaceCapabilitiesKHR surfaceCapabilities;
|
|
if (vkGetPhysicalDeviceSurfaceCapabilitiesKHR(physicalDevice, windowSurface, &surfaceCapabilities) != VK_SUCCESS) {
|
|
std::cerr << "failed to acquire presentation surface capabilities" << std::endl;
|
|
assert(0);
|
|
}
|
|
|
|
// Find supported surface formats
|
|
uint32_t formatCount;
|
|
if (vkGetPhysicalDeviceSurfaceFormatsKHR(physicalDevice, windowSurface, &formatCount, nullptr) != VK_SUCCESS || formatCount == 0) {
|
|
std::cerr << "failed to get number of supported surface formats" << std::endl;
|
|
assert(0);
|
|
}
|
|
|
|
std::vector<VkSurfaceFormatKHR> surfaceFormats(formatCount);
|
|
if (vkGetPhysicalDeviceSurfaceFormatsKHR(physicalDevice, windowSurface, &formatCount, surfaceFormats.data()) != VK_SUCCESS) {
|
|
std::cerr << "failed to get supported surface formats" << std::endl;
|
|
assert(0);
|
|
}
|
|
|
|
// Find supported present modes
|
|
uint32_t presentModeCount;
|
|
if (vkGetPhysicalDeviceSurfacePresentModesKHR(physicalDevice, windowSurface, &presentModeCount, nullptr) != VK_SUCCESS || presentModeCount == 0) {
|
|
std::cerr << "failed to get number of supported presentation modes" << std::endl;
|
|
assert(0);
|
|
}
|
|
|
|
std::vector<VkPresentModeKHR> presentModes(presentModeCount);
|
|
if (vkGetPhysicalDeviceSurfacePresentModesKHR(physicalDevice, windowSurface, &presentModeCount, presentModes.data()) != VK_SUCCESS) {
|
|
std::cerr << "failed to get supported presentation modes" << std::endl;
|
|
assert(0);
|
|
}
|
|
|
|
// Determine number of images for swap chain
|
|
uint32_t imageCount = surfaceCapabilities.minImageCount + 1;
|
|
if (surfaceCapabilities.maxImageCount != 0 && imageCount > surfaceCapabilities.maxImageCount) {
|
|
imageCount = surfaceCapabilities.maxImageCount;
|
|
}
|
|
|
|
std::cout << "using " << imageCount << " images for swap chain" << std::endl;
|
|
|
|
// Select a surface format
|
|
swapchainFormat = chooseSurfaceFormat(surfaceFormats);
|
|
|
|
// Select swap chain size
|
|
swapChainExtent = chooseSwapExtent(surfaceCapabilities);
|
|
|
|
// Check if swap chain supports being the destination of an image transfer
|
|
// Note: AMD driver bug, though it would be nice to implement a workaround that doesn't use transfering
|
|
//if (!(surfaceCapabilities.supportedUsageFlags & VK_IMAGE_USAGE_TRANSFER_DST_BIT)) {
|
|
// std::cerr << "swap chain image does not support VK_IMAGE_TRANSFER_DST usage" << std::endl;
|
|
//assert(0);
|
|
//}
|
|
|
|
// Determine transformation to use (preferring no transform)
|
|
VkSurfaceTransformFlagBitsKHR surfaceTransform;
|
|
if (surfaceCapabilities.supportedTransforms & VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR) {
|
|
surfaceTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
|
|
}
|
|
else {
|
|
surfaceTransform = surfaceCapabilities.currentTransform;
|
|
}
|
|
|
|
// Choose presentation mode (preferring MAILBOX ~= triple buffering)
|
|
VkPresentModeKHR presentMode = choosePresentMode(presentModes);
|
|
|
|
// Finally, create the swap chain
|
|
VkSwapchainCreateInfoKHR createInfo = {};
|
|
createInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
|
|
createInfo.surface = windowSurface;
|
|
createInfo.minImageCount = imageCount;
|
|
createInfo.imageFormat = swapchainFormat.format;
|
|
createInfo.imageColorSpace = swapchainFormat.colorSpace;
|
|
createInfo.imageExtent = swapChainExtent;
|
|
createInfo.imageArrayLayers = 1;
|
|
createInfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
|
|
createInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
|
|
createInfo.queueFamilyIndexCount = 0;
|
|
createInfo.pQueueFamilyIndices = nullptr;
|
|
createInfo.preTransform = surfaceTransform;
|
|
createInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
|
|
createInfo.presentMode = presentMode;
|
|
createInfo.clipped = VK_TRUE;
|
|
createInfo.oldSwapchain = VK_NULL_HANDLE;
|
|
|
|
if (vkCreateSwapchainKHR(device, &createInfo, nullptr, &swapChain) != VK_SUCCESS) {
|
|
std::cerr << "failed to create swap chain" << std::endl;
|
|
assert(0);
|
|
}
|
|
else {
|
|
std::cout << "created swap chain" << std::endl;
|
|
}
|
|
|
|
// Store the images used by the swap chain
|
|
// Note: these are the images that swap chain image indices refer to
|
|
// Note: actual number of images may differ from requested number, since it's a lower bound
|
|
uint32_t actualImageCount = 0;
|
|
if (vkGetSwapchainImagesKHR(device, swapChain, &actualImageCount, nullptr) != VK_SUCCESS || actualImageCount == 0) {
|
|
std::cerr << "failed to acquire number of swap chain images" << std::endl;
|
|
assert(0);
|
|
}
|
|
|
|
swapChainImages.resize(actualImageCount);
|
|
views.resize(actualImageCount);
|
|
|
|
if (vkGetSwapchainImagesKHR(device, swapChain, &actualImageCount, swapChainImages.data()) != VK_SUCCESS) {
|
|
std::cerr << "failed to acquire swap chain images" << std::endl;
|
|
assert(0);
|
|
}
|
|
|
|
std::cout << "acquired swap chain images" << std::endl;
|
|
}
|
|
|
|
VkSurfaceFormatKHR chooseSurfaceFormat(const std::vector<VkSurfaceFormatKHR>& availableFormats) {
|
|
// We can either choose any format
|
|
if (availableFormats.size() == 1 && availableFormats[0].format == VK_FORMAT_UNDEFINED) {
|
|
return { VK_FORMAT_R8G8B8A8_UNORM, VK_COLORSPACE_SRGB_NONLINEAR_KHR };
|
|
}
|
|
|
|
// Or go with the standard format - if available
|
|
for (const auto& availableSurfaceFormat : availableFormats) {
|
|
if (availableSurfaceFormat.format == VK_FORMAT_R8G8B8A8_UNORM) {
|
|
return availableSurfaceFormat;
|
|
}
|
|
}
|
|
|
|
// Or fall back to the first available one
|
|
return availableFormats[0];
|
|
}
|
|
|
|
VkExtent2D chooseSwapExtent(const VkSurfaceCapabilitiesKHR& surfaceCapabilities) {
|
|
if (surfaceCapabilities.currentExtent.width == -1) {
|
|
VkExtent2D swapChainExtent = {};
|
|
|
|
#define min(a, b) (a < b ? a : b)
|
|
#define max(a, b) (a > b ? a : b)
|
|
swapChainExtent.width = min(max(640, surfaceCapabilities.minImageExtent.width), surfaceCapabilities.maxImageExtent.width);
|
|
swapChainExtent.height = min(max(480, surfaceCapabilities.minImageExtent.height), surfaceCapabilities.maxImageExtent.height);
|
|
|
|
return swapChainExtent;
|
|
}
|
|
else {
|
|
return surfaceCapabilities.currentExtent;
|
|
}
|
|
}
|
|
|
|
VkPresentModeKHR choosePresentMode(const std::vector<VkPresentModeKHR> presentModes) {
|
|
for (const auto& presentMode : presentModes) {
|
|
if (presentMode == VK_PRESENT_MODE_MAILBOX_KHR) {
|
|
return presentMode;
|
|
}
|
|
}
|
|
|
|
// If mailbox is unavailable, fall back to FIFO (guaranteed to be available)
|
|
return VK_PRESENT_MODE_FIFO_KHR;
|
|
}
|
|
|
|
void createCommandQueues() {
|
|
// Create presentation command pool
|
|
// Note: only command buffers for a single queue family can be created from this pool
|
|
VkCommandPoolCreateInfo poolCreateInfo = {};
|
|
poolCreateInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
|
|
poolCreateInfo.queueFamilyIndex = presentQueueFamily;
|
|
|
|
if (vkCreateCommandPool(device, &poolCreateInfo, nullptr, &commandPool) != VK_SUCCESS) {
|
|
std::cerr << "failed to create command queue for presentation queue family" << std::endl;
|
|
assert(0);
|
|
}
|
|
else {
|
|
std::cout << "created command pool for presentation queue family" << std::endl;
|
|
}
|
|
|
|
// Get number of swap chain images and create vector to hold command queue for each one
|
|
presentCommandBuffers.resize(swapChainImages.size());
|
|
|
|
// Allocate presentation command buffers
|
|
// Note: secondary command buffers are only for nesting in primary command buffers
|
|
VkCommandBufferAllocateInfo allocInfo = {};
|
|
allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
|
|
allocInfo.commandPool = commandPool;
|
|
allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
|
|
allocInfo.commandBufferCount = (uint32_t)swapChainImages.size();
|
|
|
|
if (vkAllocateCommandBuffers(device, &allocInfo, presentCommandBuffers.data()) != VK_SUCCESS) {
|
|
std::cerr << "failed to allocate presentation command buffers" << std::endl;
|
|
assert(0);
|
|
}
|
|
else {
|
|
std::cout << "allocated presentation command buffers" << std::endl;
|
|
}
|
|
}
|
|
|
|
void recordCommandBuffers()
|
|
{
|
|
// Prepare data for recording command buffers
|
|
VkCommandBufferBeginInfo beginInfo = {};
|
|
beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
|
|
beginInfo.flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT;
|
|
|
|
// Note: contains value for each subresource range
|
|
VkClearValue clearValues[2] = {};
|
|
clearValues[0].color = { 0.4f, 0.6f, 0.9f, 1.0f }; // R, G, B, A
|
|
|
|
VkImageSubresourceRange subResourceRange = {};
|
|
subResourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
subResourceRange.baseMipLevel = 0;
|
|
subResourceRange.levelCount = 1;
|
|
subResourceRange.baseArrayLayer = 0;
|
|
subResourceRange.layerCount = 1;
|
|
|
|
VkRenderPassBeginInfo renderPassInfo = {};
|
|
renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
|
|
renderPassInfo.renderPass = renderPass;
|
|
renderPassInfo.renderArea.offset.x = 0;
|
|
renderPassInfo.renderArea.offset.y = 0;
|
|
renderPassInfo.renderArea.extent.width = swapChainExtent.width;
|
|
renderPassInfo.renderArea.extent.height = swapChainExtent.height;
|
|
renderPassInfo.clearValueCount = 1;
|
|
renderPassInfo.pClearValues = clearValues;
|
|
|
|
VkViewport viewport = { 0 };
|
|
viewport.height = (float)swapChainExtent.width;
|
|
viewport.width = (float)swapChainExtent.height;
|
|
viewport.minDepth = (float)0.0f;
|
|
viewport.maxDepth = (float)1.0f;
|
|
|
|
VkRect2D scissor = { 0 };
|
|
scissor.extent.width = swapChainExtent.width;
|
|
scissor.extent.height = swapChainExtent.height;
|
|
scissor.offset.x = 0;
|
|
scissor.offset.y = 0;
|
|
|
|
// Record the command buffer for every swap chain image
|
|
for (uint32_t i = 0; i < swapChainImages.size(); i++) {
|
|
// Record command buffer
|
|
vkBeginCommandBuffer(presentCommandBuffers[i], &beginInfo);
|
|
|
|
renderPassInfo.framebuffer = fbs[i];
|
|
|
|
vkCmdBeginRenderPass(presentCommandBuffers[i], &renderPassInfo, VK_SUBPASS_CONTENTS_INLINE);
|
|
|
|
vkCmdBindPipeline(presentCommandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
|
|
|
|
float Wcoeff = 1.0f; //1.0f / Wc = 2.0 - Wcoeff
|
|
float viewportScaleX = (float)(swapChainExtent.width) * 0.5f * 16.0f;
|
|
float viewportScaleY = -1.0f * (float)(swapChainExtent.height) * 0.5f * 16.0f;
|
|
float Zs = 0.5f;
|
|
float Zo = 0.5f;
|
|
|
|
uint32_t pushConstants[5];
|
|
pushConstants[0] = *(uint32_t*)&Wcoeff;
|
|
pushConstants[1] = *(uint32_t*)&viewportScaleX;
|
|
pushConstants[2] = *(uint32_t*)&viewportScaleY;
|
|
pushConstants[3] = *(uint32_t*)&Zs;
|
|
pushConstants[4] = *(uint32_t*)&Zo;
|
|
|
|
vkCmdPushConstants(presentCommandBuffers[i], pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(pushConstants), &pushConstants);
|
|
|
|
//even thought yellow is rendered last, if depth buffering works we expect purple to be on top
|
|
|
|
uint32_t fragColor = 0xffa14ccc; //purple
|
|
vkCmdPushConstants(presentCommandBuffers[i], pipelineLayout, VK_SHADER_STAGE_FRAGMENT_BIT, 0, sizeof(fragColor), &fragColor);
|
|
|
|
VkDeviceSize offsets = 0;
|
|
vkCmdBindVertexBuffers(presentCommandBuffers[i], 0, 1, &vertexBuffer1, &offsets );
|
|
vkCmdDraw(presentCommandBuffers[i], 3, 1, 0, 0);
|
|
|
|
fragColor = 0xffafcd02; //yellow
|
|
vkCmdPushConstants(presentCommandBuffers[i], pipelineLayout, VK_SHADER_STAGE_FRAGMENT_BIT, 0, sizeof(fragColor), &fragColor);
|
|
|
|
vkCmdBindVertexBuffers(presentCommandBuffers[i], 0, 1, &vertexBuffer2, &offsets );
|
|
vkCmdDraw(presentCommandBuffers[i], 3, 1, 0, 0);
|
|
|
|
vkCmdEndRenderPass(presentCommandBuffers[i]);
|
|
|
|
if (vkEndCommandBuffer(presentCommandBuffers[i]) != VK_SUCCESS) {
|
|
std::cerr << "failed to record command buffer" << std::endl;
|
|
assert(0);
|
|
}
|
|
else {
|
|
std::cout << "recorded command buffer for image " << i << std::endl;
|
|
}
|
|
}
|
|
}
|
|
|
|
void draw() {
|
|
// Acquire image
|
|
uint32_t imageIndex;
|
|
VkResult res = vkAcquireNextImageKHR(device, swapChain, UINT64_MAX, imageAvailableSemaphore, VK_NULL_HANDLE, &imageIndex);
|
|
|
|
if (res != VK_SUCCESS && res != VK_SUBOPTIMAL_KHR) {
|
|
std::cerr << "failed to acquire image" << std::endl;
|
|
assert(0);
|
|
}
|
|
|
|
std::cout << "acquired image" << std::endl;
|
|
|
|
// Wait for image to be available and draw
|
|
VkSubmitInfo submitInfo = {};
|
|
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
|
|
|
|
submitInfo.waitSemaphoreCount = 1;
|
|
submitInfo.pWaitSemaphores = &imageAvailableSemaphore;
|
|
|
|
submitInfo.signalSemaphoreCount = 1;
|
|
submitInfo.pSignalSemaphores = &renderingFinishedSemaphore;
|
|
|
|
submitInfo.commandBufferCount = 1;
|
|
submitInfo.pCommandBuffers = &presentCommandBuffers[imageIndex];
|
|
|
|
if (vkQueueSubmit(presentQueue, 1, &submitInfo, VK_NULL_HANDLE) != VK_SUCCESS) {
|
|
std::cerr << "failed to submit draw command buffer" << std::endl;
|
|
assert(0);
|
|
}
|
|
|
|
std::cout << "submitted draw command buffer" << std::endl;
|
|
|
|
// Present drawn image
|
|
// Note: semaphore here is not strictly necessary, because commands are processed in submission order within a single queue
|
|
VkPresentInfoKHR presentInfo = {};
|
|
presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
|
|
presentInfo.waitSemaphoreCount = 1;
|
|
presentInfo.pWaitSemaphores = &renderingFinishedSemaphore;
|
|
|
|
presentInfo.swapchainCount = 1;
|
|
presentInfo.pSwapchains = &swapChain;
|
|
presentInfo.pImageIndices = &imageIndex;
|
|
|
|
res = vkQueuePresentKHR(presentQueue, &presentInfo);
|
|
|
|
if (res != VK_SUCCESS) {
|
|
std::cerr << "failed to submit present command buffer" << std::endl;
|
|
assert(0);
|
|
}
|
|
|
|
std::cout << "submitted presentation command buffer" << std::endl;
|
|
}
|
|
|
|
void CreateRenderPass()
|
|
{
|
|
VkAttachmentReference attachRef = {};
|
|
attachRef.attachment = 0;
|
|
attachRef.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
|
|
|
|
VkAttachmentReference depthAttachmentRef = {};
|
|
depthAttachmentRef.attachment = 1;
|
|
depthAttachmentRef.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
|
|
|
|
VkSubpassDescription subpassDesc = {};
|
|
subpassDesc.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
|
|
subpassDesc.colorAttachmentCount = 1;
|
|
subpassDesc.pColorAttachments = &attachRef;
|
|
//subpassDesc.pDepthStencilAttachment = &depthAttachmentRef;
|
|
|
|
VkAttachmentDescription attachDesc[2];
|
|
attachDesc[0] = {};
|
|
attachDesc[0].format = swapchainFormat.format; //Todo
|
|
attachDesc[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
|
|
attachDesc[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
|
|
attachDesc[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
|
|
attachDesc[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
|
|
attachDesc[0].initialLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
|
|
attachDesc[0].finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
|
|
attachDesc[0].samples = VK_SAMPLE_COUNT_1_BIT;
|
|
|
|
VkRenderPassCreateInfo renderPassCreateInfo = {};
|
|
renderPassCreateInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
|
|
renderPassCreateInfo.attachmentCount = 1;
|
|
renderPassCreateInfo.pAttachments = attachDesc;
|
|
renderPassCreateInfo.subpassCount = 1;
|
|
renderPassCreateInfo.pSubpasses = &subpassDesc;
|
|
|
|
VkResult res = vkCreateRenderPass(device, &renderPassCreateInfo, NULL, &renderPass);
|
|
|
|
printf("Created a render pass\n");
|
|
}
|
|
|
|
|
|
void CreateFramebuffer()
|
|
{
|
|
fbs.resize(swapChainImages.size());
|
|
|
|
VkResult res;
|
|
|
|
for (uint32_t i = 0; i < swapChainImages.size(); i++) {
|
|
VkImageViewCreateInfo ViewCreateInfo = {};
|
|
ViewCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
|
|
ViewCreateInfo.image = swapChainImages[i];
|
|
ViewCreateInfo.format = swapchainFormat.format; //Todo
|
|
ViewCreateInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
|
|
ViewCreateInfo.components.r = VK_COMPONENT_SWIZZLE_IDENTITY;
|
|
ViewCreateInfo.components.g = VK_COMPONENT_SWIZZLE_IDENTITY;
|
|
ViewCreateInfo.components.b = VK_COMPONENT_SWIZZLE_IDENTITY;
|
|
ViewCreateInfo.components.a = VK_COMPONENT_SWIZZLE_IDENTITY;
|
|
ViewCreateInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
ViewCreateInfo.subresourceRange.baseMipLevel = 0;
|
|
ViewCreateInfo.subresourceRange.levelCount = 1;
|
|
ViewCreateInfo.subresourceRange.baseArrayLayer = 0;
|
|
ViewCreateInfo.subresourceRange.layerCount = 1;
|
|
|
|
res = vkCreateImageView(device, &ViewCreateInfo, NULL, &views[i]);
|
|
|
|
VkImageView attachments[] =
|
|
{
|
|
views[i]
|
|
};
|
|
|
|
VkFramebufferCreateInfo fbCreateInfo = {};
|
|
fbCreateInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
|
|
fbCreateInfo.renderPass = renderPass;
|
|
fbCreateInfo.attachmentCount = 1;
|
|
fbCreateInfo.pAttachments = attachments;
|
|
fbCreateInfo.width = swapChainExtent.width;
|
|
fbCreateInfo.height = swapChainExtent.height;
|
|
fbCreateInfo.layers = 1;
|
|
|
|
res = vkCreateFramebuffer(device, &fbCreateInfo, NULL, &fbs[i]);
|
|
}
|
|
|
|
printf("Frame buffers created\n");
|
|
}
|
|
|
|
void CreateShaders()
|
|
{
|
|
char vs_asm_code[] =
|
|
///0x40000000 = 2.0
|
|
///uni = 1.0
|
|
///rb0 = 2 - 1 = 1
|
|
"sig_small_imm ; rx0 = fsub.ws.always(b, a, uni, 0x40000000) ; nop = nop(r0, r0) ;\n"
|
|
///set up VPM read for subsequent reads
|
|
///0x00201a00: 0000 0000 0010 0000 0001 1010 0000 0000
|
|
///addr: 0
|
|
///size: 32bit
|
|
///packed
|
|
///horizontal
|
|
///stride=1
|
|
///vectors to read = 3 (how many components)
|
|
"sig_load_imm ; vr_setup = load32.always(0x00301a00) ; nop = load32.always() ;\n"
|
|
///uni = viewportXScale
|
|
///r0 = vpm * uni
|
|
"sig_none ; nop = nop(r0, r0, vpm_read, uni) ; r0 = fmul.always(a, b) ;\n"
|
|
///r1 = r0 * rb0 (1)
|
|
"sig_none ; nop = nop(r0, r0, nop, rb0) ; r1 = fmul.always(r0, b) ;\n"
|
|
///uni = viewportYScale
|
|
///ra0.16a = int(r1), r2 = vpm * uni
|
|
"sig_none ; rx0.16a = ftoi.always(r1, r1, vpm_read, uni) ; r2 = fmul.always(a, b) ;\n"
|
|
///r3 = r2 * rb0
|
|
///r0 = vpm
|
|
"sig_none ; r0 = or.always(a, a, vpm_read, rb0) ; r3 = fmul.always(r2, b) ;\n"
|
|
///ra0.16b = int(r3)
|
|
///r0 = r0 * 0.5
|
|
"sig_none ; rx0.16b = ftoi.always(r3, r3, uni, nop) ; r0 = fmul.always(r0, a) ;\n"
|
|
///set up VPM write for subsequent writes
|
|
///0x00001a00: 0000 0000 0000 0000 0001 1010 0000 0000
|
|
///addr: 0
|
|
///size: 32bit
|
|
///horizontal
|
|
///stride = 1
|
|
"sig_load_imm ; vw_setup = load32.always.ws(0x00001a00) ; nop = load32.always() ;\n"
|
|
///shaded vertex format for PSE
|
|
/// Ys and Xs
|
|
///vpm = ra0
|
|
"sig_none ; vpm = or.always(a, a, ra0, nop) ; nop = nop(r0, r0);\n"
|
|
/// Zs
|
|
///uni = 0.5
|
|
///vpm = uni
|
|
"sig_none ; vpm = fadd.always(r0, a, uni, nop) ; nop = nop(r0, r0);\n"
|
|
/// 1.0 / Wc
|
|
///vpm = rb0 (1)
|
|
"sig_none ; vpm = or.always(b, b, nop, rb0) ; nop = nop(r0, r0);\n"
|
|
///END
|
|
"sig_end ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;\n"
|
|
"sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;\n"
|
|
"sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;\n"
|
|
"\0";
|
|
|
|
char cs_asm_code[] =
|
|
///uni = 1.0
|
|
///r3 = 2.0 - uni
|
|
"sig_small_imm ; r3 = fsub.always(b, a, uni, 0x40000000) ; nop = nop(r0, r0);\n"
|
|
"sig_load_imm ; vr_setup = load32.always(0x00301a00) ; nop = load32.always() ;\n"
|
|
///r2 = vpm
|
|
"sig_none ; r2 = or.always(a, a, vpm_read, nop) ; nop = nop(r0, r0);\n"
|
|
"sig_load_imm ; vw_setup = load32.always.ws(0x00001a00) ; nop = load32.always() ;\n"
|
|
///shaded coordinates format for PTB
|
|
/// write Xc
|
|
///r1 = vpm, vpm = r2
|
|
"sig_none ; r1 = or.always(a, a, vpm_read, nop) ; vpm = v8min.always(r2, r2);\n"
|
|
/// write Yc
|
|
///uni = viewportXscale
|
|
///vpm = r1, r2 = r2 * uni
|
|
"sig_none ; vpm = or.always(r1, r1, uni, nop) ; r2 = fmul.always(r2, a);\n"
|
|
///uni = viewportYscale
|
|
///r1 = r1 * uni
|
|
"sig_none ; nop = nop(r0, r0, uni, nop) ; r1 = fmul.always(r1, a);\n"
|
|
///r0 = r2 * r3
|
|
///r2 = vpm
|
|
"sig_none ; r2 = or.always(a, a, vpm_read, nop) ; r0 = fmul.always(r2, r3);\n"
|
|
///ra0.16a = r0, r1 = r1 * r3
|
|
"sig_none ; rx0.16a = ftoi.always(r0, r0) ; r1 = fmul.always(r1, r3) ;\n"
|
|
///ra0.16b = r1
|
|
///write Zc
|
|
"sig_none ; rx0.16b = ftoi.always(r1, r1) ; vpm = v8min.always(r2, r2) ;\n"
|
|
///write Wc
|
|
///vpm = 1.0
|
|
///r2 = r2 * uni (0.5)
|
|
"sig_small_imm ; vpm = or.always(b, b, uni, 0x3f800000) ; r2 = fmul.always(r2, a) ;\n"
|
|
///write Ys and Xs
|
|
///vpm = ra0
|
|
"sig_none ; vpm = or.always(a, a, ra0, nop) ; nop = nop(r0, r0) ;\n"
|
|
///write Zs
|
|
///uni = 0.5
|
|
///vpm = r2
|
|
"sig_none ; vpm = fadd.always(r2, a, uni, nop) ; nop = nop(r0, r0) ;\n"
|
|
///write 1/Wc
|
|
///vpm = r3
|
|
"sig_none ; vpm = or.always(r3, r3) ; nop = nop(r0, r0) ;\n"
|
|
///END
|
|
"sig_end ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;\n"
|
|
"sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;\n"
|
|
"sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;\n"
|
|
"\0";
|
|
|
|
//clever: use small immedate -1 interpreted as 0xffffffff (white) to set color to white
|
|
//"sig_small_imm ; tlb_color_all = or.always(b, b, nop, -1) ; nop = nop(r0, r0) ;"
|
|
|
|
//8bit access
|
|
//abcd
|
|
//BGRA
|
|
|
|
/**
|
|
//rainbow colors
|
|
char fs_asm_code[] =
|
|
"sig_none ; r1 = itof.always(a, a, x_pix, uni) ; r3 = v8min.always(b, b) ;" //can't use mul pipeline for conversion :(
|
|
"sig_load_imm ; r2 = load32.always(0x3a088888) ; nop = load32() ;" //1/1920
|
|
"sig_none ; nop = nop(r0, r0) ; r2 = fmul.always(r2, r3);\n"
|
|
"sig_none ; r1 = itof.pm.always(b, b, x_pix, y_pix) ; r0.8c = fmul.always(r1, r2) ;"
|
|
"sig_load_imm ; r2 = load32.always(0x3a72b9d6) ; nop = load32() ;" //1/1080
|
|
"sig_none ; nop = nop(r0, r0) ; r2 = fmul.always(r2, r3);\n"
|
|
"sig_none ; nop = nop.pm(r0, r0) ; r0.8b = fmul.always(r1, r2) ;"
|
|
"sig_small_imm ; nop = nop.pm(r0, r0, nop, 0) ; r0.8a = v8min.always(b, b) ;"
|
|
"sig_small_imm ; nop = nop.pm(r0, r0, nop, 1) ; r0.8d = v8min.always(b, b) ;"
|
|
"sig_none ; tlb_color_all = or.always(r0, r0) ; nop = nop(r0, r0) ;"
|
|
"sig_end ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;"
|
|
"sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;"
|
|
"sig_unlock_score ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;"
|
|
"\0";
|
|
/**/
|
|
|
|
/**/
|
|
//display a color
|
|
char fs_asm_code[] =
|
|
/// instead of outputting the final color
|
|
/// we patch the shader (eventually in the driver)
|
|
/// so that it performs the desired blending mode
|
|
///"sig_none ; tlb_color_all = or.always(a, a, uni, nop) ; nop = nop(r0, r0) ;"
|
|
///"sig_end ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;"
|
|
///"sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;"
|
|
///"sig_unlock_score ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;"
|
|
///
|
|
/// r0 contains sRGBA
|
|
"sig_none ; r0 = or.always(a, a, uni, nop) ; nop = nop(r0, r0) ;"
|
|
/// prepare sAAAA to r1
|
|
/// load tbl color dRGBA to r4
|
|
"sig_color_load ; r1.8888 = or.always.8d(r0, r0) ; nop = nop(r0, r0) ;"
|
|
/// prepare 1 - sAAAA to r2
|
|
/// prepare sRGBA * sAAAA to r0
|
|
"sig_none ; r2 = not.always(r1, r1) ; r0 = v8muld.always(r0, r1) ;"
|
|
/// prepare (1 - sAAAA) * dRGBA
|
|
"sig_none ; nop = nop(r0, r0) ; r2 = v8muld.always(r2, r4) ;"
|
|
/// output sRGBA * sAAAA + dRGBA * (1 - sAAAA)
|
|
"sig_none ; nop = nop(r0, r0) ; tlb_color_all = v8adds.always(r2, r0) ;"
|
|
"sig_end ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;"
|
|
"sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;"
|
|
"sig_unlock_score ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;"
|
|
"\0";
|
|
/**/
|
|
|
|
char* asm_strings[] =
|
|
{
|
|
(char*)cs_asm_code, (char*)vs_asm_code, (char*)fs_asm_code, 0
|
|
};
|
|
|
|
VkRpiAssemblyMappingEXT mappings[] = {
|
|
//vertex shader uniforms
|
|
{
|
|
VK_RPI_ASSEMBLY_MAPPING_TYPE_PUSH_CONSTANT,
|
|
VK_DESCRIPTOR_TYPE_MAX_ENUM, //descriptor type
|
|
0, //descriptor set #
|
|
0, //descriptor binding #
|
|
0, //descriptor array element #
|
|
0, //resource offset
|
|
VK_SHADER_STAGE_VERTEX_BIT
|
|
},
|
|
{
|
|
VK_RPI_ASSEMBLY_MAPPING_TYPE_PUSH_CONSTANT,
|
|
VK_DESCRIPTOR_TYPE_MAX_ENUM, //descriptor type
|
|
0, //descriptor set #
|
|
0, //descriptor binding #
|
|
0, //descriptor array element #
|
|
4, //resource offset
|
|
VK_SHADER_STAGE_VERTEX_BIT
|
|
},
|
|
{
|
|
VK_RPI_ASSEMBLY_MAPPING_TYPE_PUSH_CONSTANT,
|
|
VK_DESCRIPTOR_TYPE_MAX_ENUM, //descriptor type
|
|
0, //descriptor set #
|
|
0, //descriptor binding #
|
|
0, //descriptor array element #
|
|
8, //resource offset
|
|
VK_SHADER_STAGE_VERTEX_BIT
|
|
},
|
|
{
|
|
VK_RPI_ASSEMBLY_MAPPING_TYPE_PUSH_CONSTANT,
|
|
VK_DESCRIPTOR_TYPE_MAX_ENUM, //descriptor type
|
|
0, //descriptor set #
|
|
0, //descriptor binding #
|
|
0, //descriptor array element #
|
|
12, //resource offset
|
|
VK_SHADER_STAGE_VERTEX_BIT
|
|
},
|
|
{
|
|
VK_RPI_ASSEMBLY_MAPPING_TYPE_PUSH_CONSTANT,
|
|
VK_DESCRIPTOR_TYPE_MAX_ENUM, //descriptor type
|
|
0, //descriptor set #
|
|
0, //descriptor binding #
|
|
0, //descriptor array element #
|
|
16, //resource offset
|
|
VK_SHADER_STAGE_VERTEX_BIT
|
|
},
|
|
{
|
|
VK_RPI_ASSEMBLY_MAPPING_TYPE_PUSH_CONSTANT,
|
|
VK_DESCRIPTOR_TYPE_MAX_ENUM, //descriptor type
|
|
0, //descriptor set #
|
|
0, //descriptor binding #
|
|
0, //descriptor array element #
|
|
0, //resource offset
|
|
VK_SHADER_STAGE_FRAGMENT_BIT
|
|
}
|
|
};
|
|
|
|
VkRpiShaderModuleAssemblyCreateInfoEXT shaderModuleCreateInfo = {};
|
|
shaderModuleCreateInfo.asmStrings = asm_strings;
|
|
shaderModuleCreateInfo.mappings = mappings;
|
|
shaderModuleCreateInfo.numMappings = sizeof(mappings) / sizeof(VkRpiAssemblyMappingEXT);
|
|
shaderModuleCreateInfo.pShaderModule = &shaderModule;
|
|
|
|
LoaderTrampoline* trampoline = (LoaderTrampoline*)physicalDevice;
|
|
VkRpiPhysicalDevice* realPhysicalDevice = trampoline->loaderTerminator->physicalDevice;
|
|
|
|
realPhysicalDevice->customData = (uintptr_t)&shaderModuleCreateInfo;
|
|
|
|
PFN_vkCreateShaderModuleFromRpiAssemblyEXT vkCreateShaderModuleFromRpiAssemblyEXT = (PFN_vkCreateShaderModuleFromRpiAssemblyEXT)vkGetInstanceProcAddr(instance, "vkCreateShaderModuleFromRpiAssemblyEXT");
|
|
|
|
VkResult res = vkCreateShaderModuleFromRpiAssemblyEXT(physicalDevice);
|
|
assert(shaderModule);
|
|
}
|
|
|
|
|
|
#define VERTEX_BUFFER_BIND_ID 0
|
|
|
|
void CreatePipeline()
|
|
{
|
|
VkPushConstantRange pushConstantRanges[2];
|
|
pushConstantRanges[0].offset = 0;
|
|
pushConstantRanges[0].size = 5 * 4; //5 * 32bits
|
|
pushConstantRanges[0].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
|
|
|
|
pushConstantRanges[1].offset = 0;
|
|
pushConstantRanges[1].size = 1 * 4; //1 * 32bits
|
|
pushConstantRanges[1].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
|
|
|
|
VkPipelineLayoutCreateInfo pipelineLayoutCI = {};
|
|
pipelineLayoutCI.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
|
|
pipelineLayoutCI.setLayoutCount = 0;
|
|
pipelineLayoutCI.pushConstantRangeCount = 2;
|
|
pipelineLayoutCI.pPushConstantRanges = &pushConstantRanges[0];
|
|
vkCreatePipelineLayout(device, &pipelineLayoutCI, 0, &pipelineLayout);
|
|
|
|
|
|
VkPipelineShaderStageCreateInfo shaderStageCreateInfo[2] = {};
|
|
|
|
shaderStageCreateInfo[0].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
|
|
shaderStageCreateInfo[0].stage = VK_SHADER_STAGE_VERTEX_BIT;
|
|
shaderStageCreateInfo[0].module = shaderModule;
|
|
shaderStageCreateInfo[0].pName = "main";
|
|
shaderStageCreateInfo[1].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
|
|
shaderStageCreateInfo[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT;
|
|
shaderStageCreateInfo[1].module = shaderModule;
|
|
shaderStageCreateInfo[1].pName = "main";
|
|
|
|
VkVertexInputBindingDescription vertexInputBindingDescription =
|
|
{
|
|
0,
|
|
sizeof(float) * 3,
|
|
VK_VERTEX_INPUT_RATE_VERTEX
|
|
};
|
|
|
|
VkVertexInputAttributeDescription vertexInputAttributeDescription =
|
|
{
|
|
0,
|
|
0,
|
|
VK_FORMAT_R32G32B32_SFLOAT,
|
|
0
|
|
};
|
|
|
|
VkPipelineVertexInputStateCreateInfo vertexInputInfo = {};
|
|
vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
|
|
vertexInputInfo.vertexAttributeDescriptionCount = 1;
|
|
vertexInputInfo.pVertexAttributeDescriptions = &vertexInputAttributeDescription;
|
|
vertexInputInfo.vertexBindingDescriptionCount = 1;
|
|
vertexInputInfo.pVertexBindingDescriptions = &vertexInputBindingDescription;
|
|
|
|
VkPipelineInputAssemblyStateCreateInfo pipelineIACreateInfo = {};
|
|
pipelineIACreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
|
|
pipelineIACreateInfo.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
|
|
|
|
VkViewport vp = {};
|
|
vp.x = 0.0f;
|
|
vp.y = 0.0f;
|
|
vp.width = (float)swapChainExtent.width;
|
|
vp.height = (float)swapChainExtent.height;
|
|
vp.minDepth = 0.0f;
|
|
vp.maxDepth = 1.0f;
|
|
|
|
VkPipelineViewportStateCreateInfo vpCreateInfo = {};
|
|
vpCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
|
|
vpCreateInfo.viewportCount = 1;
|
|
vpCreateInfo.pViewports = &vp;
|
|
|
|
VkPipelineRasterizationStateCreateInfo rastCreateInfo = {};
|
|
rastCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
|
|
rastCreateInfo.polygonMode = VK_POLYGON_MODE_FILL;
|
|
rastCreateInfo.cullMode = VK_CULL_MODE_NONE;
|
|
rastCreateInfo.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
|
|
rastCreateInfo.lineWidth = 1.0f;
|
|
|
|
VkPipelineMultisampleStateCreateInfo pipelineMSCreateInfo = {};
|
|
pipelineMSCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
|
|
|
|
VkPipelineColorBlendAttachmentState blendAttachState = {};
|
|
blendAttachState.colorWriteMask = 0xf; //RGBA
|
|
blendAttachState.blendEnable = true;
|
|
blendAttachState.srcColorBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA;
|
|
blendAttachState.srcAlphaBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA;
|
|
blendAttachState.dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
|
|
blendAttachState.dstAlphaBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
|
|
blendAttachState.colorBlendOp = VK_BLEND_OP_ADD;
|
|
blendAttachState.alphaBlendOp = VK_BLEND_OP_ADD;
|
|
|
|
VkPipelineColorBlendStateCreateInfo blendCreateInfo = {};
|
|
blendCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
|
|
blendCreateInfo.attachmentCount = 1;
|
|
blendCreateInfo.pAttachments = &blendAttachState;
|
|
|
|
VkPipelineDepthStencilStateCreateInfo depthStencilState = {};
|
|
depthStencilState.depthTestEnable = false;
|
|
depthStencilState.depthCompareOp = VK_COMPARE_OP_ALWAYS;
|
|
depthStencilState.depthWriteEnable = false;
|
|
depthStencilState.stencilTestEnable = false;
|
|
|
|
VkGraphicsPipelineCreateInfo pipelineInfo = {};
|
|
pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
|
|
pipelineInfo.stageCount = 2;
|
|
pipelineInfo.pStages = &shaderStageCreateInfo[0];
|
|
pipelineInfo.pVertexInputState = &vertexInputInfo;
|
|
pipelineInfo.pInputAssemblyState = &pipelineIACreateInfo;
|
|
pipelineInfo.pViewportState = &vpCreateInfo;
|
|
pipelineInfo.pRasterizationState = &rastCreateInfo;
|
|
pipelineInfo.pMultisampleState = &pipelineMSCreateInfo;
|
|
pipelineInfo.pColorBlendState = &blendCreateInfo;
|
|
pipelineInfo.renderPass = renderPass;
|
|
pipelineInfo.basePipelineIndex = -1;
|
|
pipelineInfo.pDepthStencilState = &depthStencilState;
|
|
pipelineInfo.layout = pipelineLayout;
|
|
|
|
VkResult res = vkCreateGraphicsPipelines(device, VK_NULL_HANDLE, 1, &pipelineInfo, NULL, &pipeline);
|
|
|
|
printf("Graphics pipeline created\n");
|
|
}
|
|
|
|
uint32_t getMemoryTypeIndex(VkPhysicalDeviceMemoryProperties deviceMemoryProperties, uint32_t typeBits, VkMemoryPropertyFlags properties)
|
|
{
|
|
// Iterate over all memory types available for the device used in this example
|
|
for (uint32_t i = 0; i < deviceMemoryProperties.memoryTypeCount; i++)
|
|
{
|
|
if ((typeBits & 1) == 1)
|
|
{
|
|
if ((deviceMemoryProperties.memoryTypes[i].propertyFlags & properties) == properties)
|
|
{
|
|
return i;
|
|
}
|
|
}
|
|
typeBits >>= 1;
|
|
}
|
|
|
|
assert(0);
|
|
}
|
|
|
|
void CreateVertexBuffer()
|
|
{
|
|
unsigned vboSize = sizeof(float) * 3 * 3; //3 x vec3
|
|
|
|
VkBufferCreateInfo ci = {};
|
|
ci.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
|
|
ci.size = vboSize;
|
|
ci.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT;
|
|
|
|
VkMemoryRequirements mr;
|
|
|
|
{ //create staging buffer
|
|
VkResult res = vkCreateBuffer(device, &ci, 0, &vertexBuffer1);
|
|
|
|
vkGetBufferMemoryRequirements(device, vertexBuffer1, &mr);
|
|
|
|
VkMemoryAllocateInfo mai = {};
|
|
mai.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
|
|
mai.allocationSize = mr.size;
|
|
mai.memoryTypeIndex = getMemoryTypeIndex(pdmp, mr.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
|
|
|
|
res = vkAllocateMemory(device, &mai, 0, &vertexBufferMemory1);
|
|
|
|
float vertices[] =
|
|
{
|
|
-1, -1, 0.2,
|
|
1, -1, 0.2,
|
|
0, 1, 0.2
|
|
};
|
|
|
|
void* data;
|
|
res = vkMapMemory(device, vertexBufferMemory1, 0, mr.size, 0, &data);
|
|
memcpy(data, vertices, vboSize);
|
|
vkUnmapMemory(device, vertexBufferMemory1);
|
|
|
|
res = vkBindBufferMemory(device, vertexBuffer1, vertexBufferMemory1, 0);
|
|
}
|
|
|
|
{ //create staging buffer
|
|
VkResult res = vkCreateBuffer(device, &ci, 0, &vertexBuffer2);
|
|
|
|
vkGetBufferMemoryRequirements(device, vertexBuffer2, &mr);
|
|
|
|
VkMemoryAllocateInfo mai = {};
|
|
mai.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
|
|
mai.allocationSize = mr.size;
|
|
mai.memoryTypeIndex = getMemoryTypeIndex(pdmp, mr.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
|
|
|
|
res = vkAllocateMemory(device, &mai, 0, &vertexBufferMemory2);
|
|
|
|
float vertices[] =
|
|
{
|
|
-0.5, -1, 0.5,
|
|
1.5, -1, 0.5,
|
|
0.5, 1, 0.5
|
|
};
|
|
|
|
void* data;
|
|
res = vkMapMemory(device, vertexBufferMemory2, 0, mr.size, 0, &data);
|
|
memcpy(data, vertices, vboSize);
|
|
vkUnmapMemory(device, vertexBufferMemory2);
|
|
|
|
res = vkBindBufferMemory(device, vertexBuffer2, vertexBufferMemory2, 0);
|
|
}
|
|
|
|
printf("Vertex buffer created\n");
|
|
}
|
|
|
|
int main() {
|
|
// Note: dynamically loading loader may be a better idea to fail gracefully when Vulkan is not supported
|
|
|
|
// Create window for Vulkan
|
|
//glfwInit();
|
|
|
|
//glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);
|
|
//glfwWindowHint(GLFW_RESIZABLE, GLFW_FALSE);
|
|
|
|
//window = glfwCreateWindow(WINDOW_WIDTH, WINDOW_HEIGHT, "The 630 line cornflower blue window", nullptr, nullptr);
|
|
|
|
// Use Vulkan
|
|
setupVulkan();
|
|
|
|
mainLoop();
|
|
|
|
cleanup();
|
|
|
|
|
|
return 0;
|
|
}
|