1
0
mirror of https://github.com/Yours3lf/rpi-vk-driver.git synced 2024-12-12 00:08:54 +01:00
rpi-vk-driver/test/clear/clear.cpp
Unknown a071ec3d77 added plane support to modeset
the validation layer doesn't like my direct to display implementation, but it might be buggy
2020-04-17 17:51:48 +01:00

779 lines
28 KiB
C++

#include <iostream>
#include <vector>
#include <algorithm>
#include <string.h>
#include "driver/CustomAssert.h"
#include <vulkan/vulkan.h>
#include "driver/vkExt.h"
//#define GLFW_INCLUDE_VULKAN
//#define VK_USE_PLATFORM_WIN32_KHR
//#include <GLFW/glfw3.h>
//#define GLFW_EXPOSE_NATIVE_WIN32
//#include <GLFW/glfw3native.h>
//GLFWwindow * window;
VkInstance instance;
VkSurfaceKHR windowSurface;
VkPhysicalDevice physicalDevice;
VkDevice device;
VkQueue graphicsQueue;
VkQueue presentQueue;
VkSemaphore imageAvailableSemaphore;
VkSemaphore renderingFinishedSemaphore;
VkSwapchainKHR swapChain;
std::vector<VkImage> swapChainImages;
VkCommandPool commandPool;
std::vector<VkCommandBuffer> presentCommandBuffers;
uint32_t graphicsQueueFamily;
uint32_t presentQueueFamily;
VkDebugUtilsMessengerEXT debugMessenger;
// Note: support swap chain recreation (not only required for resized windows!)
// Note: window resize may not result in Vulkan telling that the swap chain should be recreated, should be handled explicitly!
void run();
void setupVulkan();
void mainLoop();
void cleanup();
void createInstance();
void createWindowSurface();
void findPhysicalDevice();
void checkSwapChainSupport();
void findQueueFamilies();
void createLogicalDevice();
void createSemaphores();
void createSwapChain();
void createCommandQueues();
void draw();
VkSurfaceFormatKHR chooseSurfaceFormat(const std::vector<VkSurfaceFormatKHR>& availableFormats);
VkExtent2D chooseSwapExtent(const VkSurfaceCapabilitiesKHR& surfaceCapabilities);
VkPresentModeKHR choosePresentMode(const std::vector<VkPresentModeKHR> presentModes);
void run() {
// Note: dynamically loading loader may be a better idea to fail gracefully when Vulkan is not supported
// Create window for Vulkan
//glfwInit();
//glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);
//glfwWindowHint(GLFW_RESIZABLE, GLFW_FALSE);
//window = glfwCreateWindow(640, 480, "The 630 line cornflower blue window", nullptr, nullptr);
// Use Vulkan
setupVulkan();
mainLoop();
cleanup();
}
void setupVulkan() {
createInstance();
findPhysicalDevice();
createWindowSurface();
checkSwapChainSupport();
findQueueFamilies();
createLogicalDevice();
createSemaphores();
createSwapChain();
createCommandQueues();
}
void mainLoop() {
//while (!glfwWindowShouldClose(window)) {
for(int c = 0; c < 300; ++c){
//for(int c = 0; c < 1; ++c){
draw();
// glfwPollEvents();
}
}
void cleanup() {
vkDeviceWaitIdle(device);
// Note: this is done implicitly when the command pool is freed, but nice to know about
vkFreeCommandBuffers(device, commandPool, presentCommandBuffers.size(), presentCommandBuffers.data());
vkDestroyCommandPool(device, commandPool, nullptr);
vkDestroySemaphore(device, imageAvailableSemaphore, nullptr);
vkDestroySemaphore(device, renderingFinishedSemaphore, nullptr);
// Note: implicitly destroys images (in fact, we're not allowed to do that explicitly)
vkDestroySwapchainKHR(device, swapChain, nullptr);
vkDestroyDevice(device, nullptr);
vkDestroySurfaceKHR(instance, windowSurface, nullptr);
vkDestroyInstance(instance, nullptr);
}
static VKAPI_ATTR VkBool32 VKAPI_CALL debugCallback(
VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity,
VkDebugUtilsMessageTypeFlagsEXT messageType,
const VkDebugUtilsMessengerCallbackDataEXT* pCallbackData,
void* pUserData) {
std::cerr << "validation layer: " << pCallbackData->pMessage << std::endl;
return VK_FALSE;
}
void createInstance() {
VkApplicationInfo appInfo = {};
appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
appInfo.pApplicationName = "VulkanClear";
appInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0);
appInfo.pEngineName = "ClearScreenEngine";
appInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0);
appInfo.apiVersion = VK_API_VERSION_1_0;
// Get instance extensions required by GLFW to draw to window
//unsigned int glfwExtensionCount;
//const char** glfwExtensions;
//glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount);
// Check for extensions
uint32_t extensionCount = 0;
vkEnumerateInstanceExtensionProperties(nullptr, &extensionCount, nullptr);
if (extensionCount == 0) {
std::cerr << "no extensions supported!" << std::endl;
assert(0);
}
std::vector<VkExtensionProperties> availableExtensions(extensionCount);
vkEnumerateInstanceExtensionProperties(nullptr, &extensionCount, availableExtensions.data());
std::cout << "supported extensions:" << std::endl;
for (const auto& extension : availableExtensions) {
std::cout << "\t" << extension.extensionName << std::endl;
}
uint32_t layerCount = 0;
vkEnumerateInstanceLayerProperties(&layerCount, 0);
if (layerCount == 0) {
std::cerr << "no layers supported!" << std::endl;
assert(0);
}
std::vector<VkLayerProperties> availableLayers(layerCount);
vkEnumerateInstanceLayerProperties(&layerCount, availableLayers.data());
std::cout << "supported layers:" << std::endl;
for (const auto& layer : availableLayers) {
std::cout << "\t" << layer.layerName << std::endl;
}
const char* enabledExtensions[] = {
"VK_KHR_surface",
"VK_KHR_display",
"VK_EXT_debug_utils"
};
char *instance_validation_layers[] = {
"VK_LAYER_KHRONOS_validation"
};
const VkApplicationInfo app = {
.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO,
.pNext = NULL,
.pApplicationName = "clear test",
.applicationVersion = 0,
.pEngineName = "test engine",
.engineVersion = 0,
.apiVersion = VK_API_VERSION_1_1,
};
VkInstanceCreateInfo createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
createInfo.pNext = 0;
createInfo.pApplicationInfo = &appInfo;
createInfo.enabledExtensionCount = sizeof(enabledExtensions) / sizeof(const char*);
createInfo.ppEnabledExtensionNames = enabledExtensions;
//createInfo.enabledLayerCount = 1;
//createInfo.ppEnabledLayerNames = (const char *const *)instance_validation_layers;
// Initialize Vulkan instance
VkResult res;
if ((res = vkCreateInstance(&createInfo, nullptr, &instance)) != VK_SUCCESS) {
std::cerr << "failed to create instance! " << res << std::endl;
assert(0);
}
else {
std::cout << "created vulkan instance" << std::endl;
}
VkDebugUtilsMessengerCreateInfoEXT debugMessengerCreateInfo = {};
debugMessengerCreateInfo.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT;
debugMessengerCreateInfo.messageSeverity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT;
debugMessengerCreateInfo.messageType = VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT;
debugMessengerCreateInfo.pfnUserCallback = debugCallback;
debugMessengerCreateInfo.pUserData = nullptr; // Optional
auto func = (PFN_vkCreateDebugUtilsMessengerEXT) vkGetInstanceProcAddr(instance, "vkCreateDebugUtilsMessengerEXT");
func(instance, &debugMessengerCreateInfo, 0, &debugMessenger);
}
void createWindowSurface() {
windowSurface = 0;
uint32_t displayCount;
vkGetPhysicalDeviceDisplayPropertiesKHR(physicalDevice, &displayCount, 0);
VkDisplayPropertiesKHR* displayProperties = (VkDisplayPropertiesKHR*)malloc(sizeof(VkDisplayPropertiesKHR)*displayCount);
vkGetPhysicalDeviceDisplayPropertiesKHR(physicalDevice, &displayCount, displayProperties);
printf("Enumerated displays\n");
for(uint32_t c = 0; c < displayCount; ++c)
{
printf("Display ID %i\n", displayProperties[c].display);
printf("Display name %s\n", displayProperties[c].displayName);
printf("Display width %i\n", displayProperties[c].physicalDimensions.width);
printf("Display height %i\n", displayProperties[c].physicalDimensions.height);
printf("Display horizontal resolution %i\n", displayProperties[c].physicalResolution.width);
printf("Display vertical resolution %i\n", displayProperties[c].physicalResolution.height);
}
uint32_t modeCount;
vkGetDisplayModePropertiesKHR(physicalDevice, displayProperties[0].display, &modeCount, 0);
VkDisplayModePropertiesKHR* displayModeProperties = (VkDisplayModePropertiesKHR*)malloc(sizeof(VkDisplayModePropertiesKHR)*modeCount);
vkGetDisplayModePropertiesKHR(physicalDevice, displayProperties[0].display, &modeCount, displayModeProperties);
// printf("\nEnumerated modes\n");
// for(uint32_t c = 0; c < modeCount; ++c)
// {
// printf("Mode refresh rate %i\n", displayModeProperties[c].parameters.refreshRate);
// printf("Mode width %i\n", displayModeProperties[c].parameters.visibleRegion.width);
// printf("Mode height %i\n\n", displayModeProperties[c].parameters.visibleRegion.height);
// }
VkDisplaySurfaceCreateInfoKHR dsci = {};
dsci.sType = VK_STRUCTURE_TYPE_DISPLAY_SURFACE_CREATE_INFO_KHR;
dsci.displayMode = displayModeProperties[0].displayMode;
dsci.transform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
dsci.alphaMode = VK_DISPLAY_PLANE_ALPHA_OPAQUE_BIT_KHR;
dsci.imageExtent = displayModeProperties[0].parameters.visibleRegion;
vkCreateDisplayPlaneSurfaceKHR(instance, &dsci, 0, &windowSurface);
std::cout << "created window surface" << std::endl;
}
void findPhysicalDevice() {
// Try to find 1 Vulkan supported device
// Note: perhaps refactor to loop through devices and find first one that supports all required features and extensions
uint32_t deviceCount = 1;
VkResult res = vkEnumeratePhysicalDevices(instance, &deviceCount, &physicalDevice);
if (res != VK_SUCCESS && res != VK_INCOMPLETE) {
std::cerr << "enumerating physical devices failed!" << std::endl;
assert(0);
}
if (deviceCount == 0) {
std::cerr << "no physical devices that support vulkan!" << std::endl;
assert(0);
}
std::cout << "physical device with vulkan support found" << std::endl;
// Check device features
// Note: will apiVersion >= appInfo.apiVersion? Probably yes, but spec is unclear.
VkPhysicalDeviceProperties deviceProperties;
VkPhysicalDeviceFeatures deviceFeatures;
vkGetPhysicalDeviceProperties(physicalDevice, &deviceProperties);
vkGetPhysicalDeviceFeatures(physicalDevice, &deviceFeatures);
uint32_t supportedVersion[] = {
VK_VERSION_MAJOR(deviceProperties.apiVersion),
VK_VERSION_MINOR(deviceProperties.apiVersion),
VK_VERSION_PATCH(deviceProperties.apiVersion)
};
std::cout << "physical device supports version " << supportedVersion[0] << "." << supportedVersion[1] << "." << supportedVersion[2] << std::endl;
}
void checkSwapChainSupport() {
uint32_t extensionCount = 0;
vkEnumerateDeviceExtensionProperties(physicalDevice, nullptr, &extensionCount, nullptr);
if (extensionCount == 0) {
std::cerr << "physical device doesn't support any extensions" << std::endl;
assert(0);
}
std::vector<VkExtensionProperties> deviceExtensions(extensionCount);
vkEnumerateDeviceExtensionProperties(physicalDevice, nullptr, &extensionCount, deviceExtensions.data());
for (const auto& extension : deviceExtensions) {
if (strcmp(extension.extensionName, VK_KHR_SWAPCHAIN_EXTENSION_NAME) == 0) {
std::cout << "physical device supports swap chains" << std::endl;
return;
}
}
std::cerr << "physical device doesn't support swap chains" << std::endl;
assert(0);
}
void findQueueFamilies() {
// Check queue families
uint32_t queueFamilyCount = 0;
vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueFamilyCount, nullptr);
if (queueFamilyCount == 0) {
std::cout << "physical device has no queue families!" << std::endl;
assert(0);
}
// Find queue family with graphics support
// Note: is a transfer queue necessary to copy vertices to the gpu or can a graphics queue handle that?
std::vector<VkQueueFamilyProperties> queueFamilies(queueFamilyCount);
vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueFamilyCount, queueFamilies.data());
std::cout << "physical device has " << queueFamilyCount << " queue families" << std::endl;
bool foundGraphicsQueueFamily = false;
bool foundPresentQueueFamily = false;
for (uint32_t i = 0; i < queueFamilyCount; i++) {
VkBool32 presentSupport = false;
vkGetPhysicalDeviceSurfaceSupportKHR(physicalDevice, i, windowSurface, &presentSupport);
if (queueFamilies[i].queueCount > 0 && queueFamilies[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) {
graphicsQueueFamily = i;
foundGraphicsQueueFamily = true;
if (presentSupport) {
presentQueueFamily = i;
foundPresentQueueFamily = true;
break;
}
}
if (!foundPresentQueueFamily && presentSupport) {
presentQueueFamily = i;
foundPresentQueueFamily = true;
}
}
if (foundGraphicsQueueFamily) {
std::cout << "queue family #" << graphicsQueueFamily << " supports graphics" << std::endl;
if (foundPresentQueueFamily) {
std::cout << "queue family #" << presentQueueFamily << " supports presentation" << std::endl;
}
else {
std::cerr << "could not find a valid queue family with present support" << std::endl;
assert(0);
}
}
else {
std::cerr << "could not find a valid queue family with graphics support" << std::endl;
assert(0);
}
}
void createLogicalDevice() {
// Greate one graphics queue and optionally a separate presentation queue
float queuePriority = 1.0f;
VkDeviceQueueCreateInfo queueCreateInfo[2] = {};
queueCreateInfo[0].sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queueCreateInfo[0].queueFamilyIndex = graphicsQueueFamily;
queueCreateInfo[0].queueCount = 1;
queueCreateInfo[0].pQueuePriorities = &queuePriority;
queueCreateInfo[0].sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queueCreateInfo[0].queueFamilyIndex = presentQueueFamily;
queueCreateInfo[0].queueCount = 1;
queueCreateInfo[0].pQueuePriorities = &queuePriority;
// Create logical device from physical device
// Note: there are separate instance and device extensions!
VkDeviceCreateInfo deviceCreateInfo = {};
deviceCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
deviceCreateInfo.pQueueCreateInfos = queueCreateInfo;
if (graphicsQueueFamily == presentQueueFamily) {
deviceCreateInfo.queueCreateInfoCount = 1;
}
else {
deviceCreateInfo.queueCreateInfoCount = 2;
}
const char* deviceExtensions = VK_KHR_SWAPCHAIN_EXTENSION_NAME;
deviceCreateInfo.enabledExtensionCount = 1;
deviceCreateInfo.ppEnabledExtensionNames = &deviceExtensions;
if (vkCreateDevice(physicalDevice, &deviceCreateInfo, nullptr, &device) != VK_SUCCESS) {
std::cerr << "failed to create logical device" << std::endl;
assert(0);
}
std::cout << "created logical device" << std::endl;
// Get graphics and presentation queues (which may be the same)
vkGetDeviceQueue(device, graphicsQueueFamily, 0, &graphicsQueue);
vkGetDeviceQueue(device, presentQueueFamily, 0, &presentQueue);
std::cout << "acquired graphics and presentation queues" << std::endl;
}
void createSemaphores() {
VkSemaphoreCreateInfo createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
if (vkCreateSemaphore(device, &createInfo, nullptr, &imageAvailableSemaphore) != VK_SUCCESS ||
vkCreateSemaphore(device, &createInfo, nullptr, &renderingFinishedSemaphore) != VK_SUCCESS) {
std::cerr << "failed to create semaphores" << std::endl;
assert(0);
}
else {
std::cout << "created semaphores" << std::endl;
}
}
void createSwapChain() {
// Find surface capabilities
VkSurfaceCapabilitiesKHR surfaceCapabilities;
if (vkGetPhysicalDeviceSurfaceCapabilitiesKHR(physicalDevice, windowSurface, &surfaceCapabilities) != VK_SUCCESS) {
std::cerr << "failed to acquire presentation surface capabilities" << std::endl;
assert(0);
}
// Find supported surface formats
uint32_t formatCount;
if (vkGetPhysicalDeviceSurfaceFormatsKHR(physicalDevice, windowSurface, &formatCount, nullptr) != VK_SUCCESS || formatCount == 0) {
std::cerr << "failed to get number of supported surface formats" << std::endl;
assert(0);
}
std::vector<VkSurfaceFormatKHR> surfaceFormats(formatCount);
if (vkGetPhysicalDeviceSurfaceFormatsKHR(physicalDevice, windowSurface, &formatCount, surfaceFormats.data()) != VK_SUCCESS) {
std::cerr << "failed to get supported surface formats" << std::endl;
assert(0);
}
// Find supported present modes
uint32_t presentModeCount;
if (vkGetPhysicalDeviceSurfacePresentModesKHR(physicalDevice, windowSurface, &presentModeCount, nullptr) != VK_SUCCESS || presentModeCount == 0) {
std::cerr << "failed to get number of supported presentation modes" << std::endl;
assert(0);
}
std::vector<VkPresentModeKHR> presentModes(presentModeCount);
if (vkGetPhysicalDeviceSurfacePresentModesKHR(physicalDevice, windowSurface, &presentModeCount, presentModes.data()) != VK_SUCCESS) {
std::cerr << "failed to get supported presentation modes" << std::endl;
assert(0);
}
// Determine number of images for swap chain
uint32_t imageCount = surfaceCapabilities.minImageCount + 1;
if (surfaceCapabilities.maxImageCount != 0 && imageCount > surfaceCapabilities.maxImageCount) {
imageCount = surfaceCapabilities.maxImageCount;
}
std::cout << "using " << imageCount << " images for swap chain" << std::endl;
// Select a surface format
VkSurfaceFormatKHR surfaceFormat = chooseSurfaceFormat(surfaceFormats);
// Select swap chain size
VkExtent2D swapChainExtent = chooseSwapExtent(surfaceCapabilities);
// Check if swap chain supports being the destination of an image transfer
// Note: AMD driver bug, though it would be nice to implement a workaround that doesn't use transfering
//if (!(surfaceCapabilities.supportedUsageFlags & VK_IMAGE_USAGE_TRANSFER_DST_BIT)) {
// std::cerr << "swap chain image does not support VK_IMAGE_TRANSFER_DST usage" << std::endl;
//assert(0);
//}
// Determine transformation to use (preferring no transform)
VkSurfaceTransformFlagBitsKHR surfaceTransform;
if (surfaceCapabilities.supportedTransforms & VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR) {
surfaceTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
}
else {
surfaceTransform = surfaceCapabilities.currentTransform;
}
// Choose presentation mode (preferring MAILBOX ~= triple buffering)
VkPresentModeKHR presentMode = choosePresentMode(presentModes);
// Finally, create the swap chain
VkSwapchainCreateInfoKHR createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
createInfo.surface = windowSurface;
createInfo.minImageCount = imageCount;
createInfo.imageFormat = surfaceFormat.format;
createInfo.imageColorSpace = surfaceFormat.colorSpace;
createInfo.imageExtent = swapChainExtent;
createInfo.imageArrayLayers = 1;
createInfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
createInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
createInfo.queueFamilyIndexCount = 0;
createInfo.pQueueFamilyIndices = nullptr;
createInfo.preTransform = surfaceTransform;
createInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
createInfo.presentMode = presentMode;
createInfo.clipped = VK_TRUE;
createInfo.oldSwapchain = VK_NULL_HANDLE;
if (vkCreateSwapchainKHR(device, &createInfo, nullptr, &swapChain) != VK_SUCCESS) {
std::cerr << "failed to create swap chain" << std::endl;
assert(0);
}
else {
std::cout << "created swap chain" << std::endl;
}
// Store the images used by the swap chain
// Note: these are the images that swap chain image indices refer to
// Note: actual number of images may differ from requested number, since it's a lower bound
uint32_t actualImageCount = 0;
if (vkGetSwapchainImagesKHR(device, swapChain, &actualImageCount, nullptr) != VK_SUCCESS || actualImageCount == 0) {
std::cerr << "failed to acquire number of swap chain images" << std::endl;
assert(0);
}
swapChainImages.resize(actualImageCount);
if (vkGetSwapchainImagesKHR(device, swapChain, &actualImageCount, swapChainImages.data()) != VK_SUCCESS) {
std::cerr << "failed to acquire swap chain images" << std::endl;
assert(0);
}
std::cout << "acquired swap chain images" << std::endl;
}
VkSurfaceFormatKHR chooseSurfaceFormat(const std::vector<VkSurfaceFormatKHR>& availableFormats) {
// We can either choose any format
if (availableFormats.size() == 1 && availableFormats[0].format == VK_FORMAT_UNDEFINED) {
return { VK_FORMAT_R8G8B8A8_UNORM, VK_COLORSPACE_SRGB_NONLINEAR_KHR };
}
// Or go with the standard format - if available
for (const auto& availableSurfaceFormat : availableFormats) {
if (availableSurfaceFormat.format == VK_FORMAT_R8G8B8A8_UNORM) {
return availableSurfaceFormat;
}
}
// Or fall back to the first available one
return availableFormats[0];
}
VkExtent2D chooseSwapExtent(const VkSurfaceCapabilitiesKHR& surfaceCapabilities) {
if (surfaceCapabilities.currentExtent.width == -1) {
VkExtent2D swapChainExtent = {};
#define min(a, b) (a < b ? a : b)
#define max(a, b) (a > b ? a : b)
swapChainExtent.width = min(max(640, surfaceCapabilities.minImageExtent.width), surfaceCapabilities.maxImageExtent.width);
swapChainExtent.height = min(max(480, surfaceCapabilities.minImageExtent.height), surfaceCapabilities.maxImageExtent.height);
return swapChainExtent;
}
else {
return surfaceCapabilities.currentExtent;
}
}
VkPresentModeKHR choosePresentMode(const std::vector<VkPresentModeKHR> presentModes) {
for (const auto& presentMode : presentModes) {
if (presentMode == VK_PRESENT_MODE_MAILBOX_KHR) {
return presentMode;
}
}
// If mailbox is unavailable, fall back to FIFO (guaranteed to be available)
return VK_PRESENT_MODE_FIFO_KHR;
}
void createCommandQueues() {
// Create presentation command pool
// Note: only command buffers for a single queue family can be created from this pool
VkCommandPoolCreateInfo poolCreateInfo = {};
poolCreateInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
poolCreateInfo.queueFamilyIndex = presentQueueFamily;
if (vkCreateCommandPool(device, &poolCreateInfo, nullptr, &commandPool) != VK_SUCCESS) {
std::cerr << "failed to create command queue for presentation queue family" << std::endl;
assert(0);
}
else {
std::cout << "created command pool for presentation queue family" << std::endl;
}
// Get number of swap chain images and create vector to hold command queue for each one
presentCommandBuffers.resize(swapChainImages.size());
// Allocate presentation command buffers
// Note: secondary command buffers are only for nesting in primary command buffers
VkCommandBufferAllocateInfo allocInfo = {};
allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
allocInfo.commandPool = commandPool;
allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
allocInfo.commandBufferCount = (uint32_t)swapChainImages.size();
if (vkAllocateCommandBuffers(device, &allocInfo, presentCommandBuffers.data()) != VK_SUCCESS) {
std::cerr << "failed to allocate presentation command buffers" << std::endl;
assert(0);
}
else {
std::cout << "allocated presentation command buffers" << std::endl;
}
// Prepare data for recording command buffers
VkCommandBufferBeginInfo beginInfo = {};
beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
beginInfo.flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT;
// Note: contains value for each subresource range
VkClearColorValue clearColor = {
{ 0.8f, 0.2f, 0.5f, 1.0f } // R, G, B, A
};
VkImageSubresourceRange subResourceRange = {};
subResourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subResourceRange.baseMipLevel = 0;
subResourceRange.levelCount = 1;
subResourceRange.baseArrayLayer = 0;
subResourceRange.layerCount = 1;
// Record the command buffer for every swap chain image
for (uint32_t i = 0; i < swapChainImages.size(); i++) {
// Change layout of image to be optimal for clearing
// Note: previous layout doesn't matter, which will likely cause contents to be discarded
VkImageMemoryBarrier presentToClearBarrier = {};
presentToClearBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
presentToClearBarrier.srcAccessMask = VK_ACCESS_MEMORY_READ_BIT;
presentToClearBarrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
presentToClearBarrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
presentToClearBarrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
presentToClearBarrier.srcQueueFamilyIndex = presentQueueFamily;
presentToClearBarrier.dstQueueFamilyIndex = presentQueueFamily;
presentToClearBarrier.image = swapChainImages[i];
presentToClearBarrier.subresourceRange = subResourceRange;
// Change layout of image to be optimal for presenting
VkImageMemoryBarrier clearToPresentBarrier = {};
clearToPresentBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
clearToPresentBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
clearToPresentBarrier.dstAccessMask = VK_ACCESS_MEMORY_READ_BIT;
clearToPresentBarrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
clearToPresentBarrier.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
clearToPresentBarrier.srcQueueFamilyIndex = presentQueueFamily;
clearToPresentBarrier.dstQueueFamilyIndex = presentQueueFamily;
clearToPresentBarrier.image = swapChainImages[i];
clearToPresentBarrier.subresourceRange = subResourceRange;
// Record command buffer
vkBeginCommandBuffer(presentCommandBuffers[i], &beginInfo);
vkCmdPipelineBarrier(presentCommandBuffers[i], VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0, nullptr, 1, &presentToClearBarrier);
vkCmdClearColorImage(presentCommandBuffers[i], swapChainImages[i], VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, &clearColor, 1, &subResourceRange);
vkCmdPipelineBarrier(presentCommandBuffers[i], VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, 0, 0, nullptr, 0, nullptr, 1, &clearToPresentBarrier);
if (vkEndCommandBuffer(presentCommandBuffers[i]) != VK_SUCCESS) {
std::cerr << "failed to record command buffer" << std::endl;
assert(0);
}
else {
std::cout << "recorded command buffer for image " << i << std::endl;
}
}
}
void draw() {
// Acquire image
uint32_t imageIndex;
VkResult res = vkAcquireNextImageKHR(device, swapChain, UINT64_MAX, imageAvailableSemaphore, VK_NULL_HANDLE, &imageIndex);
if (res != VK_SUCCESS && res != VK_SUBOPTIMAL_KHR) {
std::cerr << "failed to acquire image" << std::endl;
assert(0);
}
std::cout << "acquired image" << std::endl;
// Wait for image to be available and draw
VkSubmitInfo submitInfo = {};
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.waitSemaphoreCount = 1;
submitInfo.pWaitSemaphores = &imageAvailableSemaphore;
submitInfo.signalSemaphoreCount = 1;
submitInfo.pSignalSemaphores = &renderingFinishedSemaphore;
// This is the stage where the queue should wait on the semaphore (it doesn't have to wait with drawing, for example)
VkPipelineStageFlags waitDstStageMask = VK_PIPELINE_STAGE_TRANSFER_BIT;
submitInfo.pWaitDstStageMask = &waitDstStageMask;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &presentCommandBuffers[imageIndex];
if (vkQueueSubmit(presentQueue, 1, &submitInfo, VK_NULL_HANDLE) != VK_SUCCESS) {
std::cerr << "failed to submit draw command buffer" << std::endl;
assert(0);
}
std::cout << "submitted draw command buffer" << std::endl;
// Present drawn image
// Note: semaphore here is not strictly necessary, because commands are processed in submission order within a single queue
VkPresentInfoKHR presentInfo = {};
presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
presentInfo.waitSemaphoreCount = 1;
presentInfo.pWaitSemaphores = &renderingFinishedSemaphore;
presentInfo.swapchainCount = 1;
presentInfo.pSwapchains = &swapChain;
presentInfo.pImageIndices = &imageIndex;
res = vkQueuePresentKHR(presentQueue, &presentInfo);
if (res != VK_SUCCESS) {
std::cerr << "failed to submit present command buffer" << std::endl;
assert(0);
}
std::cout << "submitted presentation command buffer" << std::endl;
}
int main() {
// Note: dynamically loading loader may be a better idea to fail gracefully when Vulkan is not supported
// Create window for Vulkan
//glfwInit();
//glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);
//glfwWindowHint(GLFW_RESIZABLE, GLFW_FALSE);
//window = glfwCreateWindow(640, 480, "The 630 line cornflower blue window", nullptr, nullptr);
// Use Vulkan
setupVulkan();
mainLoop();
cleanup();
return 0;
}