1
0
mirror of https://github.com/arduino/Arduino.git synced 2024-12-04 15:24:12 +01:00
Arduino/hardware/arduino/sam/system/libsam/source/uotghs.c

357 lines
9.2 KiB
C

/*
Copyright (c) 2012 Arduino. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "chip.h"
#include <stdio.h>
#if SAM3XA_SERIES
static void (*gpf_isr)(void) = (0UL);
static volatile uint32_t ul_ep = (0UL);
static volatile uint32_t ul_send_index = (0UL);
static volatile uint32_t ul_recv_index = (0UL);
void UDD_SetStack(void (*pf_isr)(void))
{
gpf_isr = pf_isr;
}
void UOTGHS_Handler( void )
{
if (gpf_isr)
gpf_isr();
}
uint32_t UDD_Init(void)
{
uint32_t ul ;
// Enables the USB Clock
pmc_enable_periph_clk(ID_UOTGHS);
pmc_enable_upll_clock();
pmc_switch_udpck_to_upllck(0); // div=0+1
pmc_enable_udpck();
// Configure interrupts
NVIC_SetPriority((IRQn_Type) ID_UOTGHS, 0UL);
NVIC_EnableIRQ((IRQn_Type) ID_UOTGHS);
// Always authorize asynchrone USB interrupts to exit from sleep mode
// for SAM3 USB wake up device except BACKUP mode
//pmc_set_fast_startup_input(PMC_FSMR_USBAL);
// ID pin not used then force device mode
otg_disable_id_pin();
otg_force_device_mode();
// Enable USB hardware
otg_disable_pad();
otg_enable_pad();
otg_enable();
otg_unfreeze_clock();
// Check USB clock
while (!Is_otg_clock_usable())
;
udd_low_speed_disable();
udd_high_speed_disable();
//otg_ack_vbus_transition();
// Force Vbus interrupt in case of Vbus always with a high level
// This is possible with a short timing between a Host mode stop/start.
/*if (Is_otg_vbus_high()) {
otg_raise_vbus_transition();
}
otg_enable_vbus_interrupt();*/
otg_freeze_clock();
return 0UL ;
}
void UDD_Attach(void)
{
//USBCON = ((1<<USBE)|(1<<OTGPADE)); // start USB clock
//UDIEN = (1<<EORSTE)|(1<<SOFE); // Enable interrupts for EOR (End of Reset) and SOF (start of frame)
//UDCON = 0; // enable attach resistor
irqflags_t flags = cpu_irq_save();
//printf("=> UDD_Attach\r\n");
otg_unfreeze_clock();
// This section of clock check can be improved with a chek of
// USB clock source via sysclk()
// Check USB clock because the source can be a PLL
while (!Is_otg_clock_usable());
// Authorize attach if Vbus is present
udd_attach_device();
// Enable USB line events
udd_enable_reset_interrupt();
//udd_enable_suspend_interrupt();
//udd_enable_wake_up_interrupt();
//////////////udd_enable_sof_interrupt();
// Reset following interupts flag
//udd_ack_reset();
//udd_ack_sof();
// The first suspend interrupt must be forced
// The first suspend interrupt is not detected else raise it
//udd_raise_suspend();
//udd_ack_wake_up();
//otg_freeze_clock();
cpu_irq_restore(flags);
}
void UDD_Detach(void)
{
//printf("=> UDD_Detach\r\n");
UOTGHS->UOTGHS_DEVCTRL |= UOTGHS_DEVCTRL_DETACH;
}
void UDD_InitEP( uint32_t ul_ep_nb, uint32_t ul_ep_cfg )
{
ul_ep_nb = ul_ep_nb & 0xF; // EP range is 0..9, hence mask is 0xF.
//printf("=> UDD_InitEP : init EP %d\r\n", ul_ep_nb);
// Reset EP
//UOTGHS->UOTGHS_DEVEPT = (UOTGHS_DEVEPT_EPRST0 << ul_ep_nb);
// Configure EP
UOTGHS->UOTGHS_DEVEPTCFG[ul_ep_nb] = ul_ep_cfg;
// Allocate memory
//udd_allocate_memory(ul_ep_nb);
// Enable EP
// UOTGHS->UOTGHS_DEVEPT |= (UOTGHS_DEVEPT_EPEN0 << ul_ep_nb);
udd_enable_endpoint(ul_ep_nb);
if (!Is_udd_endpoint_configured(ul_ep_nb)) {
//printf("=> UDD_InitEP : ############################## ERROR FAILED TO INIT EP %d\r\n", ul_ep_nb);
}
}
void UDD_InitEndpoints(const uint32_t* eps_table, const uint32_t ul_eps_table_size)
{
uint32_t ul_ep_nb ;
for (ul_ep_nb = 1; ul_ep_nb < ul_eps_table_size; ul_ep_nb++)
/*void UDD_InitEndpoints(const uint32_t eps_table[])
{
uint32_t ul_ep_nb ;
//printf("=> UDD_InitEndpoints : Taille tableau %d %d\r\n", sizeof(eps_table), (sizeof(eps_table) / sizeof(eps_table[0])));
for (ul_ep_nb = 1; ul_ep_nb < sizeof(eps_table) / sizeof(eps_table[0]); ul_ep_nb++)*/
{
// Reset Endpoint Fifos
/* UOTGHS->UOTGHS_DEVEPTISR[ul_EP].UDPHS_EPTCLRSTA = UDPHS_EPTCLRSTA_TOGGLESQ | UDPHS_EPTCLRSTA_FRCESTALL;
UOTGHS->UOTGHS_DEVEPT = 1<<ul_EP;
//UECONX = 1;
//UECFG0X = pgm_read_byte(_initEndpoints+ul_EP);
UOTGHS->UDPHS_EPT[ul_EP].UDPHS_EPTCFG = _initEndpoints[ul_EP];
while( (signed int)UDPHS_EPTCFG_EPT_MAPD != (signed int)((UOTGHS->UDPHS_EPT[ul_EP].UDPHS_EPTCFG) & (unsigned int)UDPHS_EPTCFG_EPT_MAPD) )
;
UOTGHS->UDPHS_EPT[ul_EP].UDPHS_EPTCTLENB = UDPHS_EPTCTLENB_EPT_ENABL;
// UECFG1X = EP_DOUBLE_64;
}*/
//printf("=> UDD_InitEndpoints : init EP %d\r\n", ul_ep_nb);
// Reset EP
//UOTGHS->UOTGHS_DEVEPT = (UOTGHS_DEVEPT_EPRST0 << ul_ep_nb);
// Configure EP
UOTGHS->UOTGHS_DEVEPTCFG[ul_ep_nb] = eps_table[ul_ep_nb];
// Allocate memory
//udd_allocate_memory(ul_ep_nb);
// Enable EP
//UOTGHS->UOTGHS_DEVEPT |= (UOTGHS_DEVEPT_EPEN0 << ul_ep_nb);
udd_enable_endpoint(ul_ep_nb);
if (!Is_udd_endpoint_configured(ul_ep_nb)) {
//printf("=> UDD_InitEP : ############################## ERROR FAILED TO INIT EP %d\r\n", ul_ep_nb);
}
}
}
void UDD_SetEP( uint32_t ep )
{
ul_ep = ep & 0xF; // EP range is 0..9, hence mask is 0xF.
}
// Wait until ready to accept IN packet.
void UDD_WaitIN(void)
{
//while (!(UEINTX & (1<<TXINI)));
while (!(UOTGHS->UOTGHS_DEVEPTISR[ul_ep] & UOTGHS_DEVEPTISR_TXINI))
;
}
void UDD_WaitOUT(void)
{
//while (!(UEINTX & (1<<RXOUTI)));
while (!(UOTGHS->UOTGHS_DEVEPTISR[ul_ep] & UOTGHS_DEVEPTISR_RXOUTI))
;
}
// Send packet.
void UDD_ClearIN(void)
{
//printf("=> UDD_ClearIN: sent %d bytes\r\n", ul_send_index);
// UEINTX = ~(1<<TXINI);
UOTGHS->UOTGHS_DEVEPTICR[ul_ep] = UOTGHS_DEVEPTICR_TXINIC;
ul_send_index = 0;
}
void UDD_ClearOUT(void)
{
// UEINTX = ~(1<<RXOUTI);
UOTGHS->UOTGHS_DEVEPTICR[ul_ep] = UOTGHS_DEVEPTICR_RXOUTIC;
ul_recv_index = 0;
}
// Wait for IN FIFO to be ready to accept data or OUT FIFO to receive data.
// Return true if new IN FIFO buffer available.
uint32_t UDD_WaitForINOrOUT(void)
{
//while (!(UEINTX & ((1<<TXINI)|(1<<RXOUTI))));
//return (UEINTX & (1<<RXOUTI)) == 0;
while (!(UOTGHS->UOTGHS_DEVEPTISR[ul_ep] & (UOTGHS_DEVEPTISR_TXINI | UOTGHS_DEVEPTISR_RXOUTI)))
;
return ((UOTGHS->UOTGHS_DEVEPTISR[ul_ep] & UOTGHS_DEVEPTISR_RXOUTI) == 0);
}
uint32_t UDD_ReceivedSetupInt(void)
{
return UOTGHS->UOTGHS_DEVEPTISR[ul_ep] & UOTGHS_DEVEPTISR_RXSTPI;
}
void UDD_ClearSetupInt(void)
{
//UEINTX = ~((1<<RXSTPI) | (1<<RXOUTI) | (1<<TXINI));
//UOTGHS->UOTGHS_DEVEPTICR[ul_ep] = (UOTGHS_DEVEPTICR_RXSTPIC | UOTGHS_DEVEPTICR_RXOUTIC | UOTGHS_DEVEPTICR_TXINIC);
UOTGHS->UOTGHS_DEVEPTICR[ul_ep] = (UOTGHS_DEVEPTICR_RXSTPIC);
}
void UDD_Send8( uint8_t data )
{
uint8_t *ptr_dest = (uint8_t *) &udd_get_endpoint_fifo_access8(ul_ep);
printf("=> UDD_Send8 : ul_send_index=%d data=0x%x\r\n", ul_send_index, data);
ptr_dest[ul_send_index++] = data;
}
uint8_t UDD_Recv8(void)
{
uint8_t *ptr_dest = (uint8_t *) &udd_get_endpoint_fifo_access8(ul_ep);
////printf("=> UDD_Recv8 : ul_recv_index=%d\r\n", ul_recv_index);
return ptr_dest[ul_recv_index++];
}
void UDD_Recv(volatile uint8_t* data, uint32_t count)
{
uint8_t *ptr_dest = (uint8_t *) &udd_get_endpoint_fifo_access8(ul_ep);
while (count--)
*data++ = ptr_dest[ul_recv_index++];
}
void UDD_Stall(void)
{
//UECONX = (1<<STALLRQ) | (1<<EPEN);
UOTGHS->UOTGHS_DEVEPT = (UOTGHS_DEVEPT_EPEN0 << ul_ep);
UOTGHS->UOTGHS_DEVEPTIER[ul_ep] = UOTGHS_DEVEPTIER_STALLRQS;
}
uint32_t UDD_FifoByteCount(void)
{
return ((UOTGHS->UOTGHS_DEVEPTISR[ul_ep] & UOTGHS_DEVEPTISR_BYCT_Msk) >> UOTGHS_DEVEPTISR_BYCT_Pos);
}
void UDD_ReleaseRX(void)
{
/* UEINTX = 0x6B; // FIFOCON=0 NAKINI=1 RWAL=1 NAKOUTI=0 RXSTPI=1 RXOUTI=0 STALLEDI=1 TXINI=1
clear fifocon = send and switch bank
nakouti a clearer
rxouti/killbank a clearer*/
//puts("=> UDD_ReleaseRX\r\n");
UOTGHS->UOTGHS_DEVEPTICR[ul_ep] = (UOTGHS_DEVEPTICR_NAKOUTIC | UOTGHS_DEVEPTICR_RXOUTIC);
UOTGHS->UOTGHS_DEVEPTIDR[ul_ep] = UOTGHS_DEVEPTIDR_FIFOCONC;
ul_recv_index = 0;
}
void UDD_ReleaseTX(void)
{
/* UEINTX = 0x3A; // FIFOCON=0 NAKINI=0 RWAL=1 NAKOUTI=1 RXSTPI=1 RXOUTI=0 STALLEDI=1 TXINI=0
clear fifocon = send and switch bank
nakini a clearer
rxouti/killbank a clearer
txini a clearer*/
//puts("=> UDD_ReleaseTX\r\n");
UOTGHS->UOTGHS_DEVEPTICR[ul_ep] = (UOTGHS_DEVEPTICR_NAKINIC | UOTGHS_DEVEPTICR_RXOUTIC | UOTGHS_DEVEPTICR_TXINIC);
UOTGHS->UOTGHS_DEVEPTIDR[ul_ep] = UOTGHS_DEVEPTIDR_FIFOCONC;
ul_send_index = 0;
}
// Return true if the current bank is not full.
uint32_t UDD_ReadWriteAllowed(void)
{
return (UOTGHS->UOTGHS_DEVEPTISR[ul_ep] & UOTGHS_DEVEPTISR_RWALL);
}
void UDD_SetAddress(uint32_t addr)
{
//printf("=> UDD_SetAddress : setting address to %d\r\n", addr);
udd_configure_address(addr);
udd_enable_address();
}
uint32_t UDD_GetFrameNumber(void)
{
return udd_frame_number();
}
#endif /* SAM3XA_SERIES */