1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-02-13 03:54:14 +01:00
LibrePilot/ground/openpilotgcs/src/libs/utils/coordinateconversions.cpp

281 lines
9.1 KiB
C++
Raw Normal View History

/**
******************************************************************************
*
* @file coordinateconversions.cpp
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief General conversions with different coordinate systems.
* - all angles in deg
* - distances in meters
* - altitude above WGS-84 elipsoid
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "coordinateconversions.h"
#include <stdint.h>
#include <QDebug>
#include <math.h>
#define RAD2DEG (180.0 / M_PI)
#define DEG2RAD (M_PI / 180.0)
namespace Utils {
CoordinateConversions::CoordinateConversions()
{}
/**
* Get rotation matrix from ECEF to NED for that LLA
* @param[in] LLA Longitude latitude altitude for this location
* @param[out] Rne[3][3] Rotation matrix
*/
void CoordinateConversions::RneFromLLA(double LLA[3], double Rne[3][3])
{
float sinLat, sinLon, cosLat, cosLon;
sinLat = (float)sin(DEG2RAD * LLA[0]);
sinLon = (float)sin(DEG2RAD * LLA[1]);
cosLat = (float)cos(DEG2RAD * LLA[0]);
cosLon = (float)cos(DEG2RAD * LLA[1]);
Rne[0][0] = -sinLat * cosLon; Rne[0][1] = -sinLat * sinLon; Rne[0][2] = cosLat;
Rne[1][0] = -sinLon; Rne[1][1] = cosLon; Rne[1][2] = 0;
Rne[2][0] = -cosLat * cosLon; Rne[2][1] = -cosLat * sinLon; Rne[2][2] = -sinLat;
}
/**
* Convert from LLA coordinates to ECEF coordinates
* @param[in] LLA[3] latitude longitude alititude coordinates in
* @param[out] ECEF[3] location in ECEF coordinates
*/
void CoordinateConversions::LLA2ECEF(double LLA[3], double ECEF[3])
{
const double a = 6378137.0; // Equatorial Radius
const double e = 8.1819190842622e-2; // Eccentricity
double sinLat, sinLon, cosLat, cosLon;
double N;
sinLat = sin(DEG2RAD * LLA[0]);
sinLon = sin(DEG2RAD * LLA[1]);
cosLat = cos(DEG2RAD * LLA[0]);
cosLon = cos(DEG2RAD * LLA[1]);
N = a / sqrt(1.0 - e * e * sinLat * sinLat); // prime vertical radius of curvature
ECEF[0] = (N + LLA[2]) * cosLat * cosLon;
ECEF[1] = (N + LLA[2]) * cosLat * sinLon;
ECEF[2] = ((1 - e * e) * N + LLA[2]) * sinLat;
}
/**
* Convert from ECEF coordinates to LLA coordinates
* @param[in] ECEF[3] location in ECEF coordinates
* @param[out] LLA[3] latitude longitude alititude coordinates
*/
int CoordinateConversions::ECEF2LLA(double ECEF[3], double LLA[3])
{
const double a = 6378137.0; // Equatorial Radius
const double e = 8.1819190842622e-2; // Eccentricity
double x = ECEF[0], y = ECEF[1], z = ECEF[2];
double Lat, N, NplusH, delta, esLat;
uint16_t iter;
LLA[1] = RAD2DEG * atan2(y, x);
N = a;
NplusH = N;
delta = 1;
Lat = 1;
iter = 0;
while (((delta > 1.0e-14) || (delta < -1.0e-14)) && (iter < 100)) {
delta = Lat - atan(z / (sqrt(x * x + y * y) * (1 - (N * e * e / NplusH))));
Lat = Lat - delta;
esLat = e * sin(Lat);
N = a / sqrt(1 - esLat * esLat);
NplusH = sqrt(x * x + y * y) / cos(Lat);
iter += 1;
}
LLA[0] = RAD2DEG * Lat;
LLA[2] = NplusH - N;
if (iter == 500) {
return 0;
} else { return 1; }
}
/**
* Get the current location in Longitude, Latitude Altitude (above WSG-84 ellipsoid)
* @param[in] BaseECEF the ECEF of the home location (in m)
* @param[in] NED the offset from the home location (in m)
* @param[out] position three element double for position in decimal degrees and altitude in meters
* @returns
* @arg 0 success
* @arg -1 for failure
*/
int CoordinateConversions::NED2LLA_HomeECEF(double BaseECEFm[3], double NED[3], double position[3])
{
int i;
// stored value is in cm, convert to m
double BaseLLA[3];
double ECEF[3];
double Rne[3][3];
// Get LLA address to compute conversion matrix
ECEF2LLA(BaseECEFm, BaseLLA);
RneFromLLA(BaseLLA, Rne);
/* P = ECEF + Rne' * NED */
for (i = 0; i < 3; i++) {
ECEF[i] = BaseECEFm[i] + Rne[0][i] * NED[0] + Rne[1][i] * NED[1] + Rne[2][i] * NED[2];
}
ECEF2LLA(ECEF, position);
return 0;
}
/**
* Get the current location in Longitude, Latitude, Altitude (above WSG-84 ellipsoid)
* @param[in] homeLLA the latitude, longitude, and altitude of the home location (in [m])
* @param[in] NED the offset from the home location (in [m])
* @param[out] position three element double for position in decimal degrees and altitude in meters
* @returns
* @arg 0 success
* @arg -1 for failure
*/
int CoordinateConversions::NED2LLA_HomeLLA(double homeLLA[3], double NED[3], double position[3])
{
double T[3];
T[0] = homeLLA[2] + 6.378137E6f * M_PI / 180.0;
T[1] = cosf(homeLLA[0] * M_PI / 180.0) * (homeLLA[2] + 6.378137E6f) * M_PI / 180.0;
T[2] = -1.0f;
position[0] = homeLLA[0] + NED[0] / T[0];
position[1] = homeLLA[1] + NED[1] / T[1];
position[2] = homeLLA[2] + NED[2] / T[2];
return 0;
}
void CoordinateConversions::LLA2Base(double LLA[3], double BaseECEF[3], float Rne[3][3], float NED[3])
{
double ECEF[3];
float diff[3];
LLA2ECEF(LLA, ECEF);
diff[0] = (float)(ECEF[0] - BaseECEF[0]);
diff[1] = (float)(ECEF[1] - BaseECEF[1]);
diff[2] = (float)(ECEF[2] - BaseECEF[2]);
NED[0] = Rne[0][0] * diff[0] + Rne[0][1] * diff[1] + Rne[0][2] * diff[2];
NED[1] = Rne[1][0] * diff[0] + Rne[1][1] * diff[1] + Rne[1][2] * diff[2];
NED[2] = Rne[2][0] * diff[0] + Rne[2][1] * diff[1] + Rne[2][2] * diff[2];
}
// ****** find roll, pitch, yaw from quaternion ********
void CoordinateConversions::Quaternion2RPY(const float q[4], float rpy[3])
{
float R13, R11, R12, R23, R33;
float q0s = q[0] * q[0];
float q1s = q[1] * q[1];
float q2s = q[2] * q[2];
float q3s = q[3] * q[3];
R13 = 2 * (q[1] * q[3] - q[0] * q[2]);
R11 = q0s + q1s - q2s - q3s;
R12 = 2 * (q[1] * q[2] + q[0] * q[3]);
R23 = 2 * (q[2] * q[3] + q[0] * q[1]);
R33 = q0s - q1s - q2s + q3s;
rpy[1] = RAD2DEG * asinf(-R13); // pitch always between -pi/2 to pi/2
rpy[2] = RAD2DEG * atan2f(R12, R11);
rpy[0] = RAD2DEG * atan2f(R23, R33);
// TODO: consider the cases where |R13| ~= 1, |pitch| ~= pi/2
}
// ****** find quaternion from roll, pitch, yaw ********
void CoordinateConversions::RPY2Quaternion(const float rpy[3], float q[4])
{
float phi, theta, psi;
float cphi, sphi, ctheta, stheta, cpsi, spsi;
phi = DEG2RAD * rpy[0] / 2;
theta = DEG2RAD * rpy[1] / 2;
psi = DEG2RAD * rpy[2] / 2;
cphi = cosf(phi);
sphi = sinf(phi);
ctheta = cosf(theta);
stheta = sinf(theta);
cpsi = cosf(psi);
spsi = sinf(psi);
q[0] = cphi * ctheta * cpsi + sphi * stheta * spsi;
q[1] = sphi * ctheta * cpsi - cphi * stheta * spsi;
q[2] = cphi * stheta * cpsi + sphi * ctheta * spsi;
q[3] = cphi * ctheta * spsi - sphi * stheta * cpsi;
if (q[0] < 0) { // q0 always positive for uniqueness
q[0] = -q[0];
q[1] = -q[1];
q[2] = -q[2];
q[3] = -q[3];
}
}
// ** Find Rbe, that rotates a vector from earth fixed to body frame, from quaternion **
void CoordinateConversions::Quaternion2R(const float q[4], float Rbe[3][3])
{
float q0s = q[0] * q[0], q1s = q[1] * q[1], q2s = q[2] * q[2], q3s = q[3] * q[3];
Rbe[0][0] = q0s + q1s - q2s - q3s;
Rbe[0][1] = 2 * (q[1] * q[2] + q[0] * q[3]);
Rbe[0][2] = 2 * (q[1] * q[3] - q[0] * q[2]);
Rbe[1][0] = 2 * (q[1] * q[2] - q[0] * q[3]);
Rbe[1][1] = q0s - q1s + q2s - q3s;
Rbe[1][2] = 2 * (q[2] * q[3] + q[0] * q[1]);
Rbe[2][0] = 2 * (q[1] * q[3] + q[0] * q[2]);
Rbe[2][1] = 2 * (q[2] * q[3] - q[0] * q[1]);
Rbe[2][2] = q0s - q1s - q2s + q3s;
}
// ** Find quaternion vector from a rotation matrix, Rbe, a matrix which rotates a vector from earth frame to body frame **
void CoordinateConversions::R2Quaternion(float const Rbe[3][3], float q[4])
{
qreal w, x, y, z;
// w always >= 0
w = sqrt(std::max(0.0, 1.0 + Rbe[0][0] + Rbe[1][1] + Rbe[2][2])) / 2.0;
x = sqrt(std::max(0.0, 1.0 + Rbe[0][0] - Rbe[1][1] - Rbe[2][2])) / 2.0;
y = sqrt(std::max(0.0, 1.0 - Rbe[0][0] + Rbe[1][1] - Rbe[2][2])) / 2.0;
z = sqrt(std::max(0.0, 1.0 - Rbe[0][0] - Rbe[1][1] + Rbe[2][2])) / 2.0;
x = copysign(x, (Rbe[1][2] - Rbe[2][1]));
y = copysign(y, (Rbe[2][0] - Rbe[0][2]));
z = copysign(z, (Rbe[0][1] - Rbe[1][0]));
q[0] = w;
q[1] = x;
q[2] = y;
q[3] = z;
}
}