1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-12-11 19:24:10 +01:00
LibrePilot/flight/modules/AutoTune/autotune.c

1106 lines
40 KiB
C
Raw Normal View History

/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup StabilizationModule Stabilization Module
* @brief Stabilization PID loops in an airframe type independent manner
* @note This object updates the @ref ActuatorDesired "Actuator Desired" based on the
* PID loops on the @ref AttitudeDesired "Attitude Desired" and @ref AttitudeState "Attitude State"
* @{
*
* @file AutoTune/autotune.c
* @author The LibrePilot Project, http://www.librepilot.org Copyright (C) 2016.
* dRonin, http://dRonin.org/, Copyright (C) 2015-2016
* Tau Labs, http://taulabs.org, Copyright (C) 2013-2014
* The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012.
* @brief Automatic PID tuning module.
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "openpilot.h"
#include "pios.h"
//#include "physical_constants.h"
#include "flightstatus.h"
//#include "modulesettings.h"
#include "manualcontrolcommand.h"
#include "manualcontrolsettings.h"
//#include "gyros.h"
#include "gyrosensor.h"
#include "actuatordesired.h"
#include "stabilizationdesired.h"
#include "stabilizationsettings.h"
#include "systemident.h"
#include <pios_board_info.h>
//#include "pios_thread.h"
#include "systemsettings.h"
#include "taskinfo.h"
#include "stabilization.h"
#include "hwsettings.h"
#include "stabilizationsettingsbank1.h"
#include "stabilizationsettingsbank2.h"
#include "stabilizationsettingsbank3.h"
//#include "circqueue.h"
//#include "misc_math.h"
#define PIOS_malloc pios_malloc
#if defined(PIOS_EXCLUDE_ADVANCED_FEATURES)
#define powapprox fastpow
#define expapprox fastexp
#else
#define powapprox powf
#define expapprox expf
#endif /* defined(PIOS_EXCLUDE_ADVANCED_FEATURES) */
/**
******************************************************************************
* @file circqueue.h
* @author dRonin, http://dRonin.org/, Copyright (C) 2015
* @brief Public header for 1 reader, 1 writer circular queue
*****************************************************************************/
typedef struct circ_queue *circ_queue_t;
circ_queue_t circ_queue_new(uint16_t elem_size, uint16_t num_elem);
void *circ_queue_cur_write_pos(circ_queue_t q);
int circ_queue_advance_write(circ_queue_t q);
void *circ_queue_read_pos(circ_queue_t q);
void circ_queue_read_completed(circ_queue_t q);
/**
******************************************************************************
* @file circqueue.c
* @author dRonin, http://dRonin.org/, Copyright (C) 2015
* @brief Implements a 1 reader, 1 writer nonblocking circular queue
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
//#include <circqueue.h>
struct circ_queue {
uint16_t elem_size; /**< Element size in octets */
uint16_t num_elem; /**< Number of elements in circqueue (capacity+1) */
volatile uint16_t write_head; /**< Element position writer is at */
volatile uint16_t read_tail; /**< Element position reader is at */
/* head == tail: empty.
* head == tail-1: full.
*/
/* This is declared as a uint32_t for alignment reasons. */
uint32_t contents[]; /**< Contents of the circular queue */
};
/** Allocate a new circular queue.
* @param[in] elem_size The size of each element, as obtained from sizeof().
* @param[in] num_elem The number of elements in the queue. The capacity is
* one less than this (it may not be completely filled).
* @returns The handle to the circular queue.
*/
circ_queue_t circ_queue_new(uint16_t elem_size, uint16_t num_elem) {
PIOS_Assert(elem_size > 0);
PIOS_Assert(num_elem > 2);
uint32_t size = elem_size * num_elem;
/* PIOS_malloc_no_dma may not be safe for some later uses.. hmmm */
struct circ_queue *ret = PIOS_malloc(sizeof(*ret) + size);
memset(ret, 0, sizeof(*ret) + size);
ret->elem_size = elem_size;
ret->num_elem = num_elem;
return ret;
}
/** Get a pointer to the current queue write position.
* This position is unavailable to any present readers and may be filled in
* with the desired data without respect to any synchronization.
*
* @param[in] q Handle to circular queue.
* @returns The position for new data to be written to (of size elem_size).
*/
void *circ_queue_cur_write_pos(circ_queue_t q) {
void *contents = q->contents;
return contents + q->write_head * q->elem_size;
}
static inline uint16_t next_pos(uint16_t num_pos, uint16_t current_pos) {
PIOS_Assert(current_pos < num_pos);
current_pos++;
/* Also save on uint16_t wrap */
if (current_pos >= num_pos) {
current_pos = 0;
}
return current_pos;
}
/** Makes the current block of data available to readers and advances write pos.
* This may fail if the queue contain num_elems -1 elements, in which case the
* advance may be retried in the future. In this case, data already written to
* write_pos is preserved and the advance may be retried (or overwritten with
* new data).
*
* @param[in] q Handle to circular queue.
* @returns 0 if the write succeeded, nonzero on error.
*/
int circ_queue_advance_write(circ_queue_t q) {
uint16_t new_write_head = next_pos(q->num_elem, q->write_head);
/* the head is not allowed to advance to meet the tail */
if (new_write_head == q->read_tail) {
return -1; /* Full */
/* Caller can either let the data go away, or try again to
* advance later */
}
q->write_head = new_write_head;
return 0;
}
/** Returns a block of data to the reader.
* The block is "claimed" until released with circ_queue_read_completed.
* No new data is available until that call is made (instead the same
* block-in-progress will be returned).
*
* @param[in] q Handle to circular queue.
* @returns pointer to the data, or NULL if the queue is empty.
*/
void *circ_queue_read_pos(circ_queue_t q) {
uint16_t read_tail = q->read_tail;
void *contents = q->contents;
if (q->write_head == read_tail) {
/* There is nothing new to read. */
return NULL;
}
return contents + q->read_tail * q->elem_size;
}
/** Releases a block of read data obtained by circ_queue_read_pos.
* Behavior is undefined if circ_queue_read_pos did not previously return
* a block of data.
*
* @param[in] q Handle to the circular queue.
*/
void circ_queue_read_completed(circ_queue_t q) {
/* Avoid multiple accesses to a volatile */
uint16_t read_tail = q->read_tail;
/* If this is being called, the queue had better not be empty--
* we're supposed to finish consuming this element after a prior call
* to circ_queue_read_pos.
*/
PIOS_Assert(read_tail != q->write_head);
q->read_tail = next_pos(q->num_elem, read_tail);
}
// Private constants
#undef STACK_SIZE_BYTES
// Nano locks up it seems in UAVObjSav() with 1340
// why did it lock up? 1540 now works (after a long initial delay) with 360 bytes left
#define STACK_SIZE_BYTES 1340
//#define TASK_PRIORITY PIOS_THREAD_PRIO_NORMAL
#define TASK_PRIORITY (tskIDLE_PRIORITY + 1)
#define AF_NUMX 13
#define AF_NUMP 43
// Private types <access gcs="readwrite" flight="readwrite"/>
enum AUTOTUNE_STATE { AT_INIT, AT_START, AT_RUN, AT_FINISHED, AT_WAITING };
struct at_queued_data {
float y[3]; /* Gyro measurements */
float u[3]; /* Actuator desired */
float throttle; /* Throttle desired */
uint32_t raw_time; /* From PIOS_DELAY_GetRaw() */
};
// Private variables
//static struct pios_thread *taskHandle;
static xTaskHandle taskHandle;
static bool module_enabled;
static circ_queue_t at_queue;
static volatile uint32_t at_points_spilled;
static uint32_t throttle_accumulator;
static uint8_t rollMax, pitchMax;
static StabilizationBankMaximumRateData maximumRate;
static SystemSettingsAirframeTypeOptions airframe_type;
static float gX[AF_NUMX] = {0};
static float gP[AF_NUMP] = {0};
SystemIdentData systemIdentData;
// Private functions
static void AutotuneTask(void *parameters);
static void af_predict(float X[AF_NUMX], float P[AF_NUMP], const float u_in[3], const float gyro[3], const float dT_s, const float t_in);
static void af_init(float X[AF_NUMX], float P[AF_NUMP]);
#ifndef AT_QUEUE_NUMELEM
#define AT_QUEUE_NUMELEM 18
#endif
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
int32_t AutotuneInitialize(void)
{
// Create a queue, connect to manual control command and flightstatus
#ifdef MODULE_AutoTune_BUILTIN
module_enabled = true;
#else
HwSettingsOptionalModulesData optionalModules;
HwSettingsOptionalModulesGet(&optionalModules);
if (optionalModules.AutoTune == HWSETTINGS_OPTIONALMODULES_ENABLED) {
module_enabled = true;
} else {
module_enabled = false;
}
#endif
if (module_enabled) {
SystemIdentInitialize();
at_queue = circ_queue_new(sizeof(struct at_queued_data),
AT_QUEUE_NUMELEM);
if (!at_queue) {
module_enabled = false;
}
}
return 0;
}
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
int32_t AutotuneStart(void)
{
// Start main task if it is enabled
if (module_enabled) {
//taskHandle = PIOS_Thread_Create(AutotuneTask, "Autotune", STACK_SIZE_BYTES, NULL, TASK_PRIORITY);
//TaskMonitorAdd(TASKINFO_RUNNING_AUTOTUNE, taskHandle);
//PIOS_WDG_RegisterFlag(PIOS_WDG_AUTOTUNE);
xTaskCreate(AutotuneTask, "AutoTune", STACK_SIZE_BYTES / 4, NULL, TASK_PRIORITY, &taskHandle);
PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_AUTOTUNE, taskHandle);
}
return 0;
}
MODULE_INITCALL(AutotuneInitialize, AutotuneStart);
#if 0
static void at_new_gyro_data(UAVObjEvent * ev, void *ctx, void *obj, int len) {
(void) ev; (void) ctx;
#else
static void at_new_gyro_data(UAVObjEvent * ev) {
#endif
#if 0
typedef struct {
UAVObjHandle obj;
uint16_t instId;
UAVObjEventType event;
bool lowPriority; /* if true prevents raising warnings */
} UAVObjEvent;
#endif
static bool last_sample_unpushed = 0;
GyroSensorData gyro;
ActuatorDesiredData actuators;
if (!ev || !ev->obj || ev->instId!=0 || ev->event!=EV_UPDATED) {
return;
}
// object can and possibly will at times change asynchronously so must copy data here, with locking
// and do it as soon as possible
GyroSensorGet(&gyro);
ActuatorDesiredGet(&actuators);
// GyroSensorData *g = ev->obj;
// PIOS_Assert(len == sizeof(*g));
if (last_sample_unpushed) {
/* Last time we were unable to advance the write pointer.
* Try again, last chance! */
if (circ_queue_advance_write(at_queue)) {
at_points_spilled++;
}
}
struct at_queued_data *q_item = circ_queue_cur_write_pos(at_queue);
q_item->raw_time = PIOS_DELAY_GetRaw();
q_item->y[0] = gyro.x;
q_item->y[1] = gyro.y;
q_item->y[2] = gyro.z;
q_item->u[0] = actuators.Roll;
q_item->u[1] = actuators.Pitch;
q_item->u[2] = actuators.Yaw;
q_item->throttle = actuators.Thrust;
if (circ_queue_advance_write(at_queue) != 0) {
last_sample_unpushed = true;
} else {
last_sample_unpushed = false;
}
}
static void UpdateSystemIdent(const float *X, const float *noise,
float dT_s, uint32_t predicts, uint32_t spills, float hover_throttle) {
memset(&systemIdentData, 0, sizeof(systemIdentData));
systemIdentData.Beta.Roll = X[6];
systemIdentData.Beta.Pitch = X[7];
systemIdentData.Beta.Yaw = X[8];
systemIdentData.Bias.Roll = X[10];
systemIdentData.Bias.Pitch = X[11];
systemIdentData.Bias.Yaw = X[12];
systemIdentData.Tau = X[9];
if (noise) {
systemIdentData.Noise.Roll = noise[0];
systemIdentData.Noise.Pitch = noise[1];
systemIdentData.Noise.Yaw = noise[2];
}
systemIdentData.Period = dT_s * 1000.0f;
systemIdentData.NumAfPredicts = predicts;
systemIdentData.NumSpilledPts = spills;
systemIdentData.HoverThrottle = hover_throttle;
SystemIdentSet(&systemIdentData);
}
static void UpdateStabilizationDesired(bool doingIdent) {
StabilizationDesiredData stabDesired;
StabilizationDesiredGet(&stabDesired);
ManualControlCommandData manual_control_command;
ManualControlCommandGet(&manual_control_command);
stabDesired.Roll = manual_control_command.Roll * rollMax;
stabDesired.Pitch = manual_control_command.Pitch * pitchMax;
stabDesired.Yaw = manual_control_command.Yaw * maximumRate.Yaw;
if (doingIdent) {
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_SYSTEMIDENT;
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_SYSTEMIDENT;
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_SYSTEMIDENT;
} else {
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_RATE;
}
stabDesired.Thrust = (airframe_type == SYSTEMSETTINGS_AIRFRAMETYPE_HELICP) ? manual_control_command.Collective : manual_control_command.Throttle;
// is this a race
// control feels very sluggish too
StabilizationDesiredSet(&stabDesired);
}
#if 0
void ComputeStabilization()
{
StabilizationSettingsBank1Data stabSettingsBank;
switch (systemIdentData.DestinationPidBank) {
case 1:
StabilizationSettingsBank1Get((void *)&stabSettingsBank);
break;
case 2:
StabilizationSettingsBank2Get((void *)&stabSettingsBank);
break;
case 3:
StabilizationSettingsBank3Get((void *)&stabSettingsBank);
break;
}
// These three parameters define the desired response properties
// - rate scale in the fraction of the natural speed of the system
// to strive for.
// - damp is the amount of damping in the system. higher values
// make oscillations less likely
// - ghf is the amount of high frequency gain and limits the influence
// of noise
const double ghf = systemIdentData.RateNoise / 1000.0f;
const double damp = systemIdentData.RateDamp / 100.0f;
double tau = exp(systemIdentData.Tau);
double beta_roll = systemIdentData.Beta.Roll;
double beta_pitch = systemIdentData.Beta.Pitch;
double wn = 1.0f/tau;
double tau_d = 0.0f;
for (int i = 0; i < 30; i++) {
double tau_d_roll = (2.0f*damp*tau*wn - 1.0f)/(4.0f*tau*damp*damp*wn*wn - 2.0f*damp*wn - tau*wn*wn + exp(beta_roll)*ghf);
double tau_d_pitch = (2.0f*damp*tau*wn - 1.0f)/(4.0f*tau*damp*damp*wn*wn - 2.0f*damp*wn - tau*wn*wn + exp(beta_pitch)*ghf);
// Select the slowest filter property
tau_d = (tau_d_roll > tau_d_pitch) ? tau_d_roll : tau_d_pitch;
wn = (tau + tau_d) / (tau*tau_d) / (2.0f * damp + 2.0f);
}
// Set the real pole position. The first pole is quite slow, which
// prevents the integral being too snappy and driving too much
// overshoot.
const double a = ((tau+tau_d) / tau / tau_d - 2.0f * damp * wn) / 20.0f;
const double b = ((tau+tau_d) / tau / tau_d - 2.0f * damp * wn - a);
// Calculate the gain for the outer loop by approximating the
// inner loop as a single order lpf. Set the outer loop to be
// critically damped;
const double zeta_o = 1.3;
const double kp_o = 1.0f / 4.0f / (zeta_o * zeta_o) / (1.0f/wn);
// For now just run over roll and pitch
int axes = ((systemIdentData.CalculateYaw) : 3 : 2);
for (int i = 0; i < axes; i++) {
double beta = exp(SystemIdentBetaToArray(systemIdentData.Beta)[i]);
double ki = a * b * wn * wn * tau * tau_d / beta;
double kp = tau * tau_d * ((a+b)*wn*wn + 2.0f*a*b*damp*wn) / beta - ki*tau_d;
double kd = (tau * tau_d * (a*b + wn*wn + (a+b)*2.0f*damp*wn) - 1.0f) / beta - kp * tau_d;
switch(i) {
case 0: // Roll
stabSettingsBank.RollRatePID.Kp = kp;
stabSettingsBank.RollRatePID.Ki = ki;
stabSettingsBank.RollRatePID.Kd = kd;
stabSettingsBank.RollPI.Kp = kp_o;
stabSettingsBank.RollPI.Ki = 0;
break;
case 1: // Pitch
stabSettingsBank.PitchRatePID.Kp = kp;
stabSettingsBank.PitchRatePID.Ki = ki;
stabSettingsBank.PitchRatePID.Kd = kd;
stabSettingsBank.PitchPI.Kp = kp_o;
stabSettingsBank.PitchPI.Ki = 0;
break;
case 2: // optional Yaw
stabSettingsBank.YawRatePID.Kp = kp;
stabSettingsBank.YawRatePID.Ki = ki;
stabSettingsBank.YawRatePID.Kd = kd;
stabSettingsBank.YawPI.Kp = kp_o;
stabSettingsBank.YawPI.Ki = 0;
break;
}
}
//stabSettingsBank.DerivativeCutoff = 1.0f / (2.0f*M_PI*tau_d);
}
#else
void ComputeStabilizationAndSetPids()
{
StabilizationSettingsBank1Data stabSettingsBank;
switch (systemIdentData.DestinationPidBank) {
case 1:
StabilizationSettingsBank1Get((void *)&stabSettingsBank);
break;
case 2:
StabilizationSettingsBank2Get((void *)&stabSettingsBank);
break;
case 3:
StabilizationSettingsBank3Get((void *)&stabSettingsBank);
break;
}
// These three parameters define the desired response properties
// - rate scale in the fraction of the natural speed of the system
// to strive for.
// - damp is the amount of damping in the system. higher values
// make oscillations less likely
// - ghf is the amount of high frequency gain and limits the influence
// of noise
const double ghf = systemIdentData.RateNoise / 1000.0d;
const double damp = systemIdentData.RateDamp / 100.0d;
double tau = exp(systemIdentData.Tau);
double beta_roll = systemIdentData.Beta.Roll;
double beta_pitch = systemIdentData.Beta.Pitch;
double wn = 1.0d/tau;
double tau_d = 0.0d;
for (int i = 0; i < 30; i++) {
double tau_d_roll = (2.0d*damp*tau*wn - 1.0d)/(4.0d*tau*damp*damp*wn*wn - 2.0d*damp*wn - tau*wn*wn + exp(beta_roll)*ghf);
double tau_d_pitch = (2.0d*damp*tau*wn - 1.0d)/(4.0d*tau*damp*damp*wn*wn - 2.0d*damp*wn - tau*wn*wn + exp(beta_pitch)*ghf);
// Select the slowest filter property
tau_d = (tau_d_roll > tau_d_pitch) ? tau_d_roll : tau_d_pitch;
wn = (tau + tau_d) / (tau*tau_d) / (2.0d * damp + 2.0d);
}
// Set the real pole position. The first pole is quite slow, which
// prevents the integral being too snappy and driving too much
// overshoot.
const double a = ((tau+tau_d) / tau / tau_d - 2.0d * damp * wn) / 20.0d;
const double b = ((tau+tau_d) / tau / tau_d - 2.0d * damp * wn - a);
// Calculate the gain for the outer loop by approximating the
// inner loop as a single order lpf. Set the outer loop to be
// critically damped;
const double zeta_o = 1.3d;
const double kp_o = 1.0d / 4.0d / (zeta_o * zeta_o) / (1.0d/wn);
// For now just run over roll and pitch
int axes = ((systemIdentData.CalculateYaw) ? 3 : 2);
for (int i = 0; i < axes; i++) {
double beta = exp(SystemIdentBetaToArray(systemIdentData.Beta)[i]);
double ki = a * b * wn * wn * tau * tau_d / beta;
double kp = tau * tau_d * ((a+b)*wn*wn + 2.0d*a*b*damp*wn) / beta - ki*tau_d;
double kd = (tau * tau_d * (a*b + wn*wn + (a+b)*2.0d*damp*wn) - 1.0d) / beta - kp * tau_d;
switch(i) {
case 0: // Roll
stabSettingsBank.RollRatePID.Kp = kp;
stabSettingsBank.RollRatePID.Ki = ki;
stabSettingsBank.RollRatePID.Kd = kd;
stabSettingsBank.RollPI.Kp = kp_o;
stabSettingsBank.RollPI.Ki = 0;
break;
case 1: // Pitch
stabSettingsBank.PitchRatePID.Kp = kp;
stabSettingsBank.PitchRatePID.Ki = ki;
stabSettingsBank.PitchRatePID.Kd = kd;
stabSettingsBank.PitchPI.Kp = kp_o;
stabSettingsBank.PitchPI.Ki = 0;
break;
case 2: // optional Yaw
stabSettingsBank.YawRatePID.Kp = kp;
stabSettingsBank.YawRatePID.Ki = ki;
stabSettingsBank.YawRatePID.Kd = kd;
stabSettingsBank.YawPI.Kp = kp_o;
stabSettingsBank.YawPI.Ki = 0;
break;
}
}
//stabSettingsBank.DerivativeCutoff = 1.0d / (2.0d*M_PI*tau_d);
switch (systemIdentData.DestinationPidBank) {
case 1:
StabilizationSettingsBank1Set((void *)&stabSettingsBank);
break;
case 2:
StabilizationSettingsBank2Set((void *)&stabSettingsBank);
break;
case 3:
StabilizationSettingsBank3Set((void *)&stabSettingsBank);
break;
}
}
#endif
#define MAX_PTS_PER_CYCLE 4
/**
* Module thread, should not return.
*/
static void AutotuneTask(__attribute__((unused)) void *parameters)
{
enum AUTOTUNE_STATE state = AT_INIT;
uint32_t last_update_time = xTaskGetTickCount();
float noise[3] = {0};
af_init(gX,gP);
uint32_t last_time = 0.0f;
const uint32_t YIELD_MS = 2;
GyroSensorConnectCallback(at_new_gyro_data);
bool save_needed = false;
while(1) {
//PIOS_WDG_UpdateFlag(PIOS_WDG_AUTOTUNE);
uint32_t diff_time;
const uint32_t PREPARE_TIME = 2000;
const uint32_t MEASURE_TIME = 60000;
static uint32_t update_counter = 0;
bool doing_ident = false;
bool can_sleep = true;
FlightStatusData flightStatus;
FlightStatusGet(&flightStatus);
//this seems to lock up on Nano
if (save_needed) {
if (flightStatus.Armed == FLIGHTSTATUS_ARMED_DISARMED) {
// Save the settings locally.
UAVObjSave(SystemIdentHandle(), 0);
state = AT_INIT;
save_needed = false;
}
}
// can't restart till after you save that's OK I guess
// but you should be able to stop in mid tune and restart from beginning
// maybe reset state in that fn that gets called on mode change
// Only allow this module to run when autotuning
if (flightStatus.FlightMode != FLIGHTSTATUS_FLIGHTMODE_AUTOTUNE) {
state = AT_INIT;
vTaskDelay(50 / portTICK_RATE_MS);
continue;
}
switch(state) {
case AT_INIT:
// moved from UpdateStabilizationDesired()
StabilizationBankRollMaxGet(&rollMax);
StabilizationBankPitchMaxGet(&pitchMax);
StabilizationBankMaximumRateGet(&maximumRate);
SystemSettingsAirframeTypeGet(&airframe_type);
// Reset save status; only save if this tune
// completes.
save_needed = false;
last_update_time = xTaskGetTickCount();
// Only start when armed and flying
if (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMED) {
// remove this one and let the other one init it
// should wait on the other one if that is the case
af_init(gX, gP);
UpdateSystemIdent(gX, NULL, 0.0f, 0, 0, 0.0f);
state = AT_START;
}
break;
case AT_START:
diff_time = xTaskGetTickCount() - last_update_time;
// Spend the first block of time in normal rate mode to get stabilized
if (diff_time > PREPARE_TIME) {
last_time = PIOS_DELAY_GetRaw();
/* Drain the queue of all current data */
while (circ_queue_read_pos(at_queue)) {
circ_queue_read_completed(at_queue);
}
/* And reset the point spill counter */
update_counter = 0;
at_points_spilled = 0;
throttle_accumulator = 0;
state = AT_RUN;
last_update_time = xTaskGetTickCount();
}
break;
case AT_RUN:
diff_time = xTaskGetTickCount() - last_update_time;
doing_ident = true;
can_sleep = false;
for (int i=0; i<MAX_PTS_PER_CYCLE; i++) {
struct at_queued_data *pt;
/* Grab an autotune point */
pt = circ_queue_read_pos(at_queue);
if (!pt) {
/* We've drained the buffer
* fully. Yay! */
can_sleep = true;
break;
}
/* calculate time between successive
* points */
float dT_s = PIOS_DELAY_DiffuS2(last_time,
pt->raw_time) * 1.0e-6f;
/* This is for the first point, but
* also if we have extended drops */
if (dT_s > 0.010f) {
dT_s = 0.010f;
}
last_time = pt->raw_time;
af_predict(gX, gP, pt->u, pt->y, dT_s, pt->throttle);
for (int j=0; j<3; ++j) {
const float NOISE_ALPHA = 0.9997f; // 10 second time constant at 300 Hz
noise[j] = NOISE_ALPHA * noise[j] + (1-NOISE_ALPHA) * (pt->y[j] - gX[j]) * (pt->y[j] - gX[j]);
}
//This will work up to 8kHz with an 89% throttle position before overflow
throttle_accumulator += 10000 * pt->throttle;
// Update uavo every 256 cycles to avoid
// telemetry spam
if (!((update_counter++) & 0xff)) {
float hover_throttle = ((float)(throttle_accumulator/update_counter))/10000.0f;
UpdateSystemIdent(gX, noise, dT_s, update_counter, at_points_spilled, hover_throttle);
}
/* Free the buffer containing an AT point */
circ_queue_read_completed(at_queue);
}
if (diff_time > MEASURE_TIME) { // Move on to next state
state = AT_FINISHED;
last_update_time = xTaskGetTickCount();
}
break;
case AT_FINISHED: ;
// Wait until disarmed and landed before saving the settings
float hover_throttle = ((float)(throttle_accumulator/update_counter))/10000.0f;
UpdateSystemIdent(gX, noise, 0, update_counter, at_points_spilled, hover_throttle);
save_needed = true;
state = AT_WAITING;
break;
case AT_WAITING:
default:
// Set an alarm or some shit like that
break;
}
// Update based on manual controls
UpdateStabilizationDesired(doing_ident);
if (can_sleep) {
vTaskDelay(YIELD_MS / portTICK_RATE_MS);
}
}
}
/**
* Prediction step for EKF on control inputs to quad that
* learns the system properties
* @param X the current state estimate which is updated in place
* @param P the current covariance matrix, updated in place
* @param[in] the current control inputs (roll, pitch, yaw)
* @param[in] the gyro measurements
*/
__attribute__((always_inline)) static inline void af_predict(float X[AF_NUMX], float P[AF_NUMP], const float u_in[3], const float gyro[3], const float dT_s, const float t_in)
{
const float Ts = dT_s;
const float Tsq = Ts * Ts;
const float Tsq3 = Tsq * Ts;
const float Tsq4 = Tsq * Tsq;
// for convenience and clarity code below uses the named versions of
// the state variables
float w1 = X[0]; // roll rate estimate
float w2 = X[1]; // pitch rate estimate
float w3 = X[2]; // yaw rate estimate
float u1 = X[3]; // scaled roll torque
float u2 = X[4]; // scaled pitch torque
float u3 = X[5]; // scaled yaw torque
const float e_b1 = expapprox(X[6]); // roll torque scale
const float b1 = X[6];
const float e_b2 = expapprox(X[7]); // pitch torque scale
const float b2 = X[7];
const float e_b3 = expapprox(X[8]); // yaw torque scale
const float b3 = X[8];
const float e_tau = expapprox(X[9]); // time response of the motors
const float tau = X[9];
const float bias1 = X[10]; // bias in the roll torque
const float bias2 = X[11]; // bias in the pitch torque
const float bias3 = X[12]; // bias in the yaw torque
// inputs to the system (roll, pitch, yaw)
const float u1_in = 4*t_in*u_in[0];
const float u2_in = 4*t_in*u_in[1];
const float u3_in = 4*t_in*u_in[2];
// measurements from gyro
const float gyro_x = gyro[0];
const float gyro_y = gyro[1];
const float gyro_z = gyro[2];
// update named variables because we want to use predicted
// values below
w1 = X[0] = w1 - Ts*bias1*e_b1 + Ts*u1*e_b1;
w2 = X[1] = w2 - Ts*bias2*e_b2 + Ts*u2*e_b2;
w3 = X[2] = w3 - Ts*bias3*e_b3 + Ts*u3*e_b3;
u1 = X[3] = (Ts*u1_in)/(Ts + e_tau) + (u1*e_tau)/(Ts + e_tau);
u2 = X[4] = (Ts*u2_in)/(Ts + e_tau) + (u2*e_tau)/(Ts + e_tau);
u3 = X[5] = (Ts*u3_in)/(Ts + e_tau) + (u3*e_tau)/(Ts + e_tau);
// X[6] to X[12] unchanged
/**** filter parameters ****/
const float q_w = 1e-3f;
const float q_ud = 1e-3f;
const float q_B = 1e-6f;
const float q_tau = 1e-6f;
const float q_bias = 1e-19f;
const float s_a = 150.0f; // expected gyro measurment noise
const float Q[AF_NUMX] = {q_w, q_w, q_w, q_ud, q_ud, q_ud, q_B, q_B, q_B, q_tau, q_bias, q_bias, q_bias};
float D[AF_NUMP];
for (uint32_t i = 0; i < AF_NUMP; i++)
D[i] = P[i];
const float e_tau2 = e_tau * e_tau;
const float e_tau3 = e_tau * e_tau2;
const float e_tau4 = e_tau2 * e_tau2;
const float Ts_e_tau2 = (Ts + e_tau) * (Ts + e_tau);
const float Ts_e_tau4 = Ts_e_tau2 * Ts_e_tau2;
// covariance propagation - D is stored copy of covariance
P[0] = D[0] + Q[0] + 2*Ts*e_b1*(D[3] - D[28] - D[9]*bias1 + D[9]*u1) + Tsq*(e_b1*e_b1)*(D[4] - 2*D[29] + D[32] - 2*D[10]*bias1 + 2*D[30]*bias1 + 2*D[10]*u1 - 2*D[30]*u1 + D[11]*(bias1*bias1) + D[11]*(u1*u1) - 2*D[11]*bias1*u1);
P[1] = D[1] + Q[1] + 2*Ts*e_b2*(D[5] - D[33] - D[12]*bias2 + D[12]*u2) + Tsq*(e_b2*e_b2)*(D[6] - 2*D[34] + D[37] - 2*D[13]*bias2 + 2*D[35]*bias2 + 2*D[13]*u2 - 2*D[35]*u2 + D[14]*(bias2*bias2) + D[14]*(u2*u2) - 2*D[14]*bias2*u2);
P[2] = D[2] + Q[2] + 2*Ts*e_b3*(D[7] - D[38] - D[15]*bias3 + D[15]*u3) + Tsq*(e_b3*e_b3)*(D[8] - 2*D[39] + D[42] - 2*D[16]*bias3 + 2*D[40]*bias3 + 2*D[16]*u3 - 2*D[40]*u3 + D[17]*(bias3*bias3) + D[17]*(u3*u3) - 2*D[17]*bias3*u3);
P[3] = (D[3]*(e_tau2 + Ts*e_tau) + Ts*e_b1*e_tau2*(D[4] - D[29]) + Tsq*e_b1*e_tau*(D[4] - D[29]) + D[18]*Ts*e_tau*(u1 - u1_in) + D[10]*e_b1*(u1*(Ts*e_tau2 + Tsq*e_tau) - bias1*(Ts*e_tau2 + Tsq*e_tau)) + D[21]*Tsq*e_b1*e_tau*(u1 - u1_in) + D[31]*Tsq*e_b1*e_tau*(u1_in - u1) + D[24]*Tsq*e_b1*e_tau*(u1*(u1 - bias1) + u1_in*(bias1 - u1)))/Ts_e_tau2;
P[4] = (Q[3]*Tsq4 + e_tau4*(D[4] + Q[3]) + 2*Ts*e_tau3*(D[4] + 2*Q[3]) + 4*Q[3]*Tsq3*e_tau + Tsq*e_tau2*(D[4] + 6*Q[3] + u1*(D[27]*u1 + 2*D[21]) + u1_in*(D[27]*u1_in - 2*D[21])) + 2*D[21]*Ts*e_tau3*(u1 - u1_in) - 2*D[27]*Tsq*u1*u1_in*e_tau2)/Ts_e_tau4;
P[5] = (D[5]*(e_tau2 + Ts*e_tau) + Ts*e_b2*e_tau2*(D[6] - D[34]) + Tsq*e_b2*e_tau*(D[6] - D[34]) + D[19]*Ts*e_tau*(u2 - u2_in) + D[13]*e_b2*(u2*(Ts*e_tau2 + Tsq*e_tau) - bias2*(Ts*e_tau2 + Tsq*e_tau)) + D[22]*Tsq*e_b2*e_tau*(u2 - u2_in) + D[36]*Tsq*e_b2*e_tau*(u2_in - u2) + D[25]*Tsq*e_b2*e_tau*(u2*(u2 - bias2) + u2_in*(bias2 - u2)))/Ts_e_tau2;
P[6] = (Q[4]*Tsq4 + e_tau4*(D[6] + Q[4]) + 2*Ts*e_tau3*(D[6] + 2*Q[4]) + 4*Q[4]*Tsq3*e_tau + Tsq*e_tau2*(D[6] + 6*Q[4] + u2*(D[27]*u2 + 2*D[22]) + u2_in*(D[27]*u2_in - 2*D[22])) + 2*D[22]*Ts*e_tau3*(u2 - u2_in) - 2*D[27]*Tsq*u2*u2_in*e_tau2)/Ts_e_tau4;
P[7] = (D[7]*(e_tau2 + Ts*e_tau) + Ts*e_b3*e_tau2*(D[8] - D[39]) + Tsq*e_b3*e_tau*(D[8] - D[39]) + D[20]*Ts*e_tau*(u3 - u3_in) + D[16]*e_b3*(u3*(Ts*e_tau2 + Tsq*e_tau) - bias3*(Ts*e_tau2 + Tsq*e_tau)) + D[23]*Tsq*e_b3*e_tau*(u3 - u3_in) + D[41]*Tsq*e_b3*e_tau*(u3_in - u3) + D[26]*Tsq*e_b3*e_tau*(u3*(u3 - bias3) + u3_in*(bias3 - u3)))/Ts_e_tau2;
P[8] = (Q[5]*Tsq4 + e_tau4*(D[8] + Q[5]) + 2*Ts*e_tau3*(D[8] + 2*Q[5]) + 4*Q[5]*Tsq3*e_tau + Tsq*e_tau2*(D[8] + 6*Q[5] + u3*(D[27]*u3 + 2*D[23]) + u3_in*(D[27]*u3_in - 2*D[23])) + 2*D[23]*Ts*e_tau3*(u3 - u3_in) - 2*D[27]*Tsq*u3*u3_in*e_tau2)/Ts_e_tau4;
P[9] = D[9] - Ts*e_b1*(D[30] - D[10] + D[11]*(bias1 - u1));
P[10] = (D[10]*(Ts + e_tau) + D[24]*Ts*(u1 - u1_in))*(e_tau/Ts_e_tau2);
P[11] = D[11] + Q[6];
P[12] = D[12] - Ts*e_b2*(D[35] - D[13] + D[14]*(bias2 - u2));
P[13] = (D[13]*(Ts + e_tau) + D[25]*Ts*(u2 - u2_in))*(e_tau/Ts_e_tau2);
P[14] = D[14] + Q[7];
P[15] = D[15] - Ts*e_b3*(D[40] - D[16] + D[17]*(bias3 - u3));
P[16] = (D[16]*(Ts + e_tau) + D[26]*Ts*(u3 - u3_in))*(e_tau/Ts_e_tau2);
P[17] = D[17] + Q[8];
P[18] = D[18] - Ts*e_b1*(D[31] - D[21] + D[24]*(bias1 - u1));
P[19] = D[19] - Ts*e_b2*(D[36] - D[22] + D[25]*(bias2 - u2));
P[20] = D[20] - Ts*e_b3*(D[41] - D[23] + D[26]*(bias3 - u3));
P[21] = (D[21]*(Ts + e_tau) + D[27]*Ts*(u1 - u1_in))*(e_tau/Ts_e_tau2);
P[22] = (D[22]*(Ts + e_tau) + D[27]*Ts*(u2 - u2_in))*(e_tau/Ts_e_tau2);
P[23] = (D[23]*(Ts + e_tau) + D[27]*Ts*(u3 - u3_in))*(e_tau/Ts_e_tau2);
P[24] = D[24];
P[25] = D[25];
P[26] = D[26];
P[27] = D[27] + Q[9];
P[28] = D[28] - Ts*e_b1*(D[32] - D[29] + D[30]*(bias1 - u1));
P[29] = (D[29]*(Ts + e_tau) + D[31]*Ts*(u1 - u1_in))*(e_tau/Ts_e_tau2);
P[30] = D[30];
P[31] = D[31];
P[32] = D[32] + Q[10];
P[33] = D[33] - Ts*e_b2*(D[37] - D[34] + D[35]*(bias2 - u2));
P[34] = (D[34]*(Ts + e_tau) + D[36]*Ts*(u2 - u2_in))*(e_tau/Ts_e_tau2);
P[35] = D[35];
P[36] = D[36];
P[37] = D[37] + Q[11];
P[38] = D[38] - Ts*e_b3*(D[42] - D[39] + D[40]*(bias3 - u3));
P[39] = (D[39]*(Ts + e_tau) + D[41]*Ts*(u3 - u3_in))*(e_tau/Ts_e_tau2);
P[40] = D[40];
P[41] = D[41];
P[42] = D[42] + Q[12];
/********* this is the update part of the equation ***********/
float S[3] = {P[0] + s_a, P[1] + s_a, P[2] + s_a};
X[0] = w1 + P[0]*((gyro_x - w1)/S[0]);
X[1] = w2 + P[1]*((gyro_y - w2)/S[1]);
X[2] = w3 + P[2]*((gyro_z - w3)/S[2]);
X[3] = u1 + P[3]*((gyro_x - w1)/S[0]);
X[4] = u2 + P[5]*((gyro_y - w2)/S[1]);
X[5] = u3 + P[7]*((gyro_z - w3)/S[2]);
X[6] = b1 + P[9]*((gyro_x - w1)/S[0]);
X[7] = b2 + P[12]*((gyro_y - w2)/S[1]);
X[8] = b3 + P[15]*((gyro_z - w3)/S[2]);
X[9] = tau + P[18]*((gyro_x - w1)/S[0]) + P[19]*((gyro_y - w2)/S[1]) + P[20]*((gyro_z - w3)/S[2]);
X[10] = bias1 + P[28]*((gyro_x - w1)/S[0]);
X[11] = bias2 + P[33]*((gyro_y - w2)/S[1]);
X[12] = bias3 + P[38]*((gyro_z - w3)/S[2]);
// update the duplicate cache
for (uint32_t i = 0; i < AF_NUMP; i++)
D[i] = P[i];
// This is an approximation that removes some cross axis uncertainty but
// substantially reduces the number of calculations
P[0] = -D[0]*(D[0]/S[0] - 1);
P[1] = -D[1]*(D[1]/S[1] - 1);
P[2] = -D[2]*(D[2]/S[2] - 1);
P[3] = -D[3]*(D[0]/S[0] - 1);
P[4] = D[4] - D[3]*D[3]/S[0];
P[5] = -D[5]*(D[1]/S[1] - 1);
P[6] = D[6] - D[5]*D[5]/S[1];
P[7] = -D[7]*(D[2]/S[2] - 1);
P[8] = D[8] - D[7]*D[7]/S[2];
P[9] = -D[9]*(D[0]/S[0] - 1);
P[10] = D[10] - D[3]*(D[9]/S[0]);
P[11] = D[11] - D[9]*(D[9]/S[0]);
P[12] = -D[12]*(D[1]/S[1] - 1);
P[13] = D[13] - D[5]*(D[12]/S[1]);
P[14] = D[14] - D[12]*(D[12]/S[1]);
P[15] = -D[15]*(D[2]/S[2] - 1);
P[16] = D[16] - D[7]*(D[15]/S[2]);
P[17] = D[17] - D[15]*(D[15]/S[2]);
P[18] = -D[18]*(D[0]/S[0] - 1);
P[19] = -D[19]*(D[1]/S[1] - 1);
P[20] = -D[20]*(D[2]/S[2] - 1);
P[21] = D[21] - D[3]*(D[18]/S[0]);
P[22] = D[22] - D[5]*(D[19]/S[1]);
P[23] = D[23] - D[7]*(D[20]/S[2]);
P[24] = D[24] - D[9]*(D[18]/S[0]);
P[25] = D[25] - D[12]*(D[19]/S[1]);
P[26] = D[26] - D[15]*(D[20]/S[2]);
P[27] = D[27] - D[18]*(D[18]/S[0]) - D[19]*(D[19]/S[1]) - D[20]*(D[20]/S[2]);
P[28] = -D[28]*(D[0]/S[0] - 1);
P[29] = D[29] - D[3]*(D[28]/S[0]);
P[30] = D[30] - D[9]*(D[28]/S[0]);
P[31] = D[31] - D[18]*(D[28]/S[0]);
P[32] = D[32] - D[28]*(D[28]/S[0]);
P[33] = -D[33]*(D[1]/S[1] - 1);
P[34] = D[34] - D[5]*(D[33]/S[1]);
P[35] = D[35] - D[12]*(D[33]/S[1]);
P[36] = D[36] - D[19]*(D[33]/S[1]);
P[37] = D[37] - D[33]*(D[33]/S[1]);
P[38] = -D[38]*(D[2]/S[2] - 1);
P[39] = D[39] - D[7]*(D[38]/S[2]);
P[40] = D[40] - D[15]*(D[38]/S[2]);
P[41] = D[41] - D[20]*(D[38]/S[2]);
P[42] = D[42] - D[38]*(D[38]/S[2]);
// apply limits to some of the state variables
if (X[9] > -1.5f)
X[9] = -1.5f;
else if (X[9] < -5.5f) /* 4ms */
X[9] = -5.5f;
if (X[10] > 0.5f)
X[10] = 0.5f;
else if (X[10] < -0.5f)
X[10] = -0.5f;
if (X[11] > 0.5f)
X[11] = 0.5f;
else if (X[11] < -0.5f)
X[11] = -0.5f;
if (X[12] > 0.5f)
X[12] = 0.5f;
else if (X[12] < -0.5f)
X[12] = -0.5f;
}
/**
* Initialize the state variable and covariance matrix
* for the system identification EKF
*/
static void af_init(float X[AF_NUMX], float P[AF_NUMP])
{
static const float q_init[AF_NUMX] = {
1.0f, 1.0f, 1.0f,
1.0f, 1.0f, 1.0f,
0.05f, 0.05f, 0.005f,
0.05f,
0.05f, 0.05f, 0.05f
};
// X[0] = X[1] = X[2] = 0.0f; // assume no rotation
// X[3] = X[4] = X[5] = 0.0f; // and no net torque
// X[6] = X[7] = 10.0f; // medium amount of strength
// X[8] = 7.0f; // yaw
// X[9] = -4.0f; // and 50 (18?) ms time scale
// X[10] = X[11] = X[12] = 0.0f; // zero bias
// get these 10.0 10.0 7.0 -4.0 from default values of SystemIdent (.Beta and .Tau)
// so that if they are changed there (mainly for future code changes), they will be changed here too
memset(X, 0, AF_NUMX*sizeof(X[0]));
SystemIdentSetDefaults(SystemIdentHandle(), 0);
SystemIdentBetaArrayGet(&X[6]);
SystemIdentTauGet(&X[9]);
// P initialization
// Could zero this like: *P = *((float [AF_NUMP]){});
memset(P, 0, AF_NUMP*sizeof(P[0]));
P[0] = q_init[0];
P[1] = q_init[1];
P[2] = q_init[2];
P[4] = q_init[3];
P[6] = q_init[4];
P[8] = q_init[5];
P[11] = q_init[6];
P[14] = q_init[7];
P[17] = q_init[8];
P[27] = q_init[9];
P[32] = q_init[10];
P[37] = q_init[11];
P[42] = q_init[12];
}
/**
* @}
* @}
*/