1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-01-10 20:52:11 +01:00

470 lines
14 KiB
C
Raw Normal View History

2011-11-01 01:09:55 -05:00
/**
******************************************************************************
* @addtogroup PIOS PIOS Core hardware abstraction layer
* @{
* @addtogroup PIOS_ADC ADC Functions
* @brief STM32F4xx ADC PIOS interface
* @{
*
* @file pios_adc.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012.
2011-11-01 01:09:55 -05:00
* @author Michael Smith Copyright (C) 2011.
* @brief Analog to Digital converstion routines
* @see The GNU Public License (GPL) Version 3
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
2011-11-01 01:09:55 -05:00
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
2011-11-01 01:09:55 -05:00
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
2011-11-01 01:09:55 -05:00
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
* @note This is a stripped-down ADC driver intended primarily for sampling
* voltage and current values. Samples are averaged over the period between
* fetches so that relatively accurate measurements can be obtained without
* forcing higher-level logic to poll aggressively.
*
* @todo This module needs more work to be more generally useful. It should
* almost certainly grow callback support so that e.g. voltage and current readings
* can be shipped out for coulomb counting purposes. The F1xx interface presumes
* use with analog sensors, but that implementation largely dominates the ADC
* resources. Rather than commit to a new API without a defined use case, we
* should stick to our lightweight subset until we have a better idea of what's needed.
*/
#include "pios.h"
2013-03-15 20:42:54 +02:00
#ifdef PIOS_INCLUDE_ADC
2011-11-01 01:09:55 -05:00
#include <pios_adc_priv.h>
#if !defined(PIOS_ADC_MAX_SAMPLES)
#define PIOS_ADC_MAX_SAMPLES 0
#endif
#if !defined(PIOS_ADC_MAX_OVERSAMPLING)
#define PIOS_ADC_MAX_OVERSAMPLING 0
#endif
#if !defined(PIOS_ADC_USE_ADC2)
#define PIOS_ADC_USE_ADC2 0
#endif
#if !defined(PIOS_ADC_NUM_CHANNELS)
#define PIOS_ADC_NUM_CHANNELS 0
#endif
// Private types
enum pios_adc_dev_magic {
PIOS_ADC_DEV_MAGIC = 0x58375124,
};
struct pios_adc_dev {
const struct pios_adc_cfg *cfg;
ADCCallback callback_function;
#if defined(PIOS_INCLUDE_FREERTOS)
xQueueHandle data_queue;
#endif
volatile int16_t *valid_data_buffer;
volatile uint8_t adc_oversample;
uint8_t dma_block_size;
uint16_t dma_half_buffer_size;
// int16_t fir_coeffs[PIOS_ADC_MAX_SAMPLES+1] __attribute__ ((aligned(4)));
// volatile int16_t raw_data_buffer[PIOS_ADC_MAX_SAMPLES] __attribute__ ((aligned(4)));
// float downsampled_buffer[PIOS_ADC_NUM_CHANNELS] __attribute__ ((aligned(4)));
enum pios_adc_dev_magic magic;
};
struct pios_adc_dev *pios_adc_dev;
// Private functions
void PIOS_ADC_downsample_data();
static struct pios_adc_dev *PIOS_ADC_Allocate();
static bool PIOS_ADC_validate(struct pios_adc_dev *);
2011-11-01 01:09:55 -05:00
#if defined(PIOS_INCLUDE_ADC)
2011-11-01 01:09:55 -05:00
static void init_pins(void);
static void init_dma(void);
static void init_adc(void);
#endif
2011-11-01 01:09:55 -05:00
struct pios_adc_pin_config {
GPIO_TypeDef *port;
uint32_t pin;
uint32_t channel;
bool initialize;
2011-11-01 01:09:55 -05:00
};
struct adc_accumulator {
uint32_t accumulator;
uint32_t count;
2011-11-01 01:09:55 -05:00
};
#if defined(PIOS_INCLUDE_ADC)
static const struct pios_adc_pin_config config[] = PIOS_DMA_PIN_CONFIG;
#define PIOS_ADC_NUM_PINS (sizeof(config) / sizeof(config[0]))
2011-11-01 01:09:55 -05:00
static struct adc_accumulator accumulator[PIOS_ADC_NUM_PINS];
// Two buffers here for double buffering
2011-11-01 01:09:55 -05:00
static uint16_t adc_raw_buffer[2][PIOS_ADC_MAX_SAMPLES][PIOS_ADC_NUM_PINS];
#endif
2011-11-01 01:09:55 -05:00
#if defined(PIOS_INCLUDE_ADC)
static void init_pins(void)
2011-11-01 01:09:55 -05:00
{
for (uint32_t i = 0; i < PIOS_ADC_NUM_PINS; ++i) {
if (!config[i].initialize) {
continue;
}
PIOS_ADC_PinSetup(i);
}
2011-11-01 01:09:55 -05:00
}
static void init_dma(void)
2011-11-01 01:09:55 -05:00
{
/* Disable interrupts */
DMA_ITConfig(pios_adc_dev->cfg->dma.rx.channel, pios_adc_dev->cfg->dma.irq.flags, DISABLE);
/* Configure DMA channel */
DMA_DeInit(pios_adc_dev->cfg->dma.rx.channel);
DMA_InitTypeDef DMAInit = pios_adc_dev->cfg->dma.rx.init;
DMAInit.DMA_Memory0BaseAddr = (uint32_t)&adc_raw_buffer[0];
DMAInit.DMA_BufferSize = sizeof(adc_raw_buffer[0]) / sizeof(uint16_t);
DMAInit.DMA_DIR = DMA_DIR_PeripheralToMemory;
DMAInit.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMAInit.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMAInit.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
DMAInit.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
DMAInit.DMA_Mode = DMA_Mode_Circular;
DMAInit.DMA_Priority = DMA_Priority_Low;
DMAInit.DMA_FIFOMode = DMA_FIFOMode_Disable;
DMAInit.DMA_FIFOThreshold = DMA_FIFOThreshold_HalfFull;
DMAInit.DMA_MemoryBurst = DMA_MemoryBurst_Single;
DMAInit.DMA_PeripheralBurst = DMA_PeripheralBurst_Single;
DMA_Init(pios_adc_dev->cfg->dma.rx.channel, &DMAInit); /* channel is actually stream ... */
/* configure for double-buffered mode and interrupt on every buffer flip */
DMA_DoubleBufferModeConfig(pios_adc_dev->cfg->dma.rx.channel, (uint32_t)&adc_raw_buffer[1], DMA_Memory_0);
DMA_DoubleBufferModeCmd(pios_adc_dev->cfg->dma.rx.channel, ENABLE);
DMA_ITConfig(pios_adc_dev->cfg->dma.rx.channel, DMA_IT_TC, ENABLE);
// DMA_ITConfig(pios_adc_dev->cfg->dma.rx.channel, DMA_IT_HT, ENABLE);
/* enable DMA */
DMA_Cmd(pios_adc_dev->cfg->dma.rx.channel, ENABLE);
/* Configure DMA interrupt */
NVIC_InitTypeDef NVICInit = pios_adc_dev->cfg->dma.irq.init;
NVIC_Init(&NVICInit);
2011-11-01 01:09:55 -05:00
}
static void init_adc(void)
2011-11-01 01:09:55 -05:00
{
RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);
ADC_DeInit();
/* turn on VREFInt in case we need it */
ADC_TempSensorVrefintCmd(ENABLE);
/* Do common ADC init */
ADC_CommonInitTypeDef ADC_CommonInitStructure;
ADC_CommonStructInit(&ADC_CommonInitStructure);
ADC_CommonInitStructure.ADC_Mode = ADC_Mode_Independent;
ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div8;
ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled;
ADC_CommonInitStructure.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_5Cycles;
ADC_CommonInit(&ADC_CommonInitStructure);
ADC_InitTypeDef ADC_InitStructure;
ADC_StructInit(&ADC_InitStructure);
ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b;
ADC_InitStructure.ADC_ScanConvMode = ENABLE;
ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure.ADC_NbrOfConversion = ((PIOS_ADC_NUM_PINS) /* >> 1*/);
ADC_Init(pios_adc_dev->cfg->adc_dev, &ADC_InitStructure);
/* Enable DMA request */
ADC_DMACmd(pios_adc_dev->cfg->adc_dev, ENABLE);
/* Configure input scan */
for (uint32_t i = 0; i < PIOS_ADC_NUM_PINS; i++) {
ADC_RegularChannelConfig(pios_adc_dev->cfg->adc_dev,
config[i].channel,
i + 1,
ADC_SampleTime_56Cycles); /* XXX this is totally arbitrary... */
}
ADC_DMARequestAfterLastTransferCmd(pios_adc_dev->cfg->adc_dev, ENABLE);
/* Finally start initial conversion */
ADC_Cmd(pios_adc_dev->cfg->adc_dev, ENABLE);
ADC_ContinuousModeCmd(pios_adc_dev->cfg->adc_dev, ENABLE);
ADC_SoftwareStartConv(pios_adc_dev->cfg->adc_dev);
2011-11-01 01:09:55 -05:00
}
#endif /* if defined(PIOS_INCLUDE_ADC) */
2011-11-01 01:09:55 -05:00
static bool PIOS_ADC_validate(struct pios_adc_dev *dev)
{
if (dev == NULL) {
return false;
}
return dev->magic == PIOS_ADC_DEV_MAGIC;
}
#if defined(PIOS_INCLUDE_FREERTOS)
static struct pios_adc_dev *PIOS_ADC_Allocate()
{
struct pios_adc_dev *adc_dev;
adc_dev = (struct pios_adc_dev *)pios_malloc(sizeof(*adc_dev));
if (!adc_dev) {
return NULL;
}
adc_dev->magic = PIOS_ADC_DEV_MAGIC;
return adc_dev;
}
#else
#if defined(PIOS_INCLUDE_ADC)
#error Not implemented
#endif
static struct pios_adc_dev *PIOS_ADC_Allocate()
{
return (struct pios_adc_dev *)NULL;
}
#endif
2011-11-01 01:09:55 -05:00
/**
* @brief Init the ADC.
*/
int32_t PIOS_ADC_Init(const struct pios_adc_cfg *cfg)
2011-11-01 01:09:55 -05:00
{
pios_adc_dev = PIOS_ADC_Allocate();
if (pios_adc_dev == NULL) {
return -1;
}
pios_adc_dev->cfg = cfg;
pios_adc_dev->callback_function = NULL;
#if defined(PIOS_INCLUDE_FREERTOS)
pios_adc_dev->data_queue = NULL;
#endif
#if defined(PIOS_INCLUDE_ADC)
init_pins();
init_dma();
init_adc();
#endif
return 0;
2011-11-01 01:09:55 -05:00
}
/**
* @brief Configure the ADC to run at a fixed oversampling
* @param[in] oversampling the amount of oversampling to run at
*/
void PIOS_ADC_Config(__attribute__((unused)) uint32_t oversampling)
2011-11-01 01:09:55 -05:00
{
/* we ignore this */
2011-11-01 01:09:55 -05:00
}
/**
* Returns value of an ADC Pin
* @param[in] pin number
* @return ADC pin value averaged over the set of samples since the last reading.
* @return -1 if pin doesn't exist
* @return -2 if no data acquired since last read
2011-11-01 01:09:55 -05:00
*/
int32_t last_conv_value;
2011-11-01 01:09:55 -05:00
int32_t PIOS_ADC_PinGet(uint32_t pin)
{
#if defined(PIOS_INCLUDE_ADC)
int32_t result;
/* Check if pin exists */
if (pin >= PIOS_ADC_NUM_PINS) {
return -1;
}
if (accumulator[pin].accumulator <= 0) {
return -2;
}
/* return accumulated result and clear accumulator */
result = accumulator[pin].accumulator / (accumulator[pin].count ? : 1);
accumulator[pin].accumulator = result;
accumulator[pin].count = 1;
return result;
#endif
return -1;
2011-11-01 01:09:55 -05:00
}
float PIOS_ADC_PinGetVolt(uint32_t pin)
{
return ((float)PIOS_ADC_PinGet(pin)) * PIOS_ADC_VOLTAGE_SCALE;
}
2011-11-01 01:09:55 -05:00
/**
* @brief Set a callback function that is executed whenever
* the ADC double buffer swaps
2011-11-01 01:09:55 -05:00
* @note Not currently supported.
*/
void PIOS_ADC_SetCallback(ADCCallback new_function)
2011-11-01 01:09:55 -05:00
{
pios_adc_dev->callback_function = new_function;
2011-11-01 01:09:55 -05:00
}
#if defined(PIOS_INCLUDE_FREERTOS)
/**
* @brief Register a queue to add data to when downsampled
2011-11-01 01:09:55 -05:00
* @note Not currently supported.
*/
void PIOS_ADC_SetQueue(xQueueHandle data_queue)
2011-11-01 01:09:55 -05:00
{
pios_adc_dev->data_queue = data_queue;
2011-11-01 01:09:55 -05:00
}
#endif
/**
* @brief Return the address of the downsampled data buffer
* @note Not currently supported.
*/
float *PIOS_ADC_GetBuffer(void)
2011-11-01 01:09:55 -05:00
{
return NULL;
2011-11-01 01:09:55 -05:00
}
/**
* @brief Return the address of the raw data data buffer
2011-11-01 01:09:55 -05:00
* @note Not currently supported.
*/
int16_t *PIOS_ADC_GetRawBuffer(void)
2011-11-01 01:09:55 -05:00
{
return NULL;
2011-11-01 01:09:55 -05:00
}
/**
* @brief Return the amount of over sampling
* @note Not currently supported (always returns 1)
*/
uint8_t PIOS_ADC_GetOverSampling(void)
{
return 1;
2011-11-01 01:09:55 -05:00
}
/**
* @brief Set the fir coefficients. Takes as many samples as the
2011-11-01 01:09:55 -05:00
* current filter order plus one (normalization)
*
* @param new_filter Array of adc_oversampling floats plus one for the
* filter coefficients
* @note Not currently supported.
*/
void PIOS_ADC_SetFIRCoefficients(__attribute__((unused)) float *new_filter)
2011-11-01 01:09:55 -05:00
{
// not implemented
2011-11-01 01:09:55 -05:00
}
/**
* @brief accumulate the data for each of the channels.
*/
void accumulate(uint16_t *buffer, uint32_t count)
{
#if defined(PIOS_INCLUDE_ADC)
uint16_t *sp = buffer;
/*
* Accumulate sampled values.
*/
while (count--) {
for (uint32_t i = 0; i < PIOS_ADC_NUM_PINS; ++i) {
accumulator[i].accumulator += *sp++;
accumulator[i].count++;
/*
* If the accumulator reaches half-full, rescale in order to
* make more space.
*/
if (accumulator[i].accumulator >= (((uint32_t)1) << 31)) {
accumulator[i].accumulator /= 2;
accumulator[i].count /= 2;
}
}
}
2011-11-01 01:09:55 -05:00
#if defined(PIOS_INCLUDE_FREERTOS)
// XXX should do something with this
if (pios_adc_dev->data_queue) {
static portBASE_TYPE xHigherPriorityTaskWoken;
// xQueueSendFromISR(pios_adc_dev->data_queue, pios_adc_dev->downsampled_buffer, &xHigherPriorityTaskWoken);
portEND_SWITCHING_ISR(xHigherPriorityTaskWoken);
}
2011-11-01 01:09:55 -05:00
#endif
#endif /* if defined(PIOS_INCLUDE_ADC) */
// if(pios_adc_dev->callback_function)
// pios_adc_dev->callback_function(pios_adc_dev->downsampled_buffer);
2011-11-01 01:09:55 -05:00
}
/**
* @brief Interrupt on buffer flip.
*
* The hardware is done with the 'other' buffer, so we can pass it to the accumulator.
*/
void PIOS_ADC_DMA_Handler(void)
{
if (!PIOS_ADC_validate(pios_adc_dev)) {
return;
}
#if defined(PIOS_INCLUDE_ADC)
/* terminal count, buffer has flipped */
if (DMA_GetITStatus(pios_adc_dev->cfg->dma.rx.channel, pios_adc_dev->cfg->full_flag)) {
DMA_ClearITPendingBit(pios_adc_dev->cfg->dma.rx.channel, pios_adc_dev->cfg->full_flag);
/* accumulate results from the buffer that was just completed */
accumulate(&adc_raw_buffer[DMA_GetCurrentMemoryTarget(pios_adc_dev->cfg->dma.rx.channel) ? 0 : 1][0][0],
PIOS_ADC_MAX_SAMPLES);
}
#endif
2011-11-01 01:09:55 -05:00
}
void PIOS_ADC_PinSetup(uint32_t pin)
{
if (config[pin].port != NULL && pin < PIOS_ADC_NUM_PINS) {
/* Setup analog pin */
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_StructInit(&GPIO_InitStructure);
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN;
GPIO_InitStructure.GPIO_Pin = config[pin].pin;
GPIO_Init(config[pin].port, &GPIO_InitStructure);
}
}
#endif /* PIOS_INCLUDE_ADC */
/**
2011-11-01 01:09:55 -05:00
* @}
* @}
*/