1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-12-10 18:24:11 +01:00
LibrePilot/flight/AHRS/MagOrAccelSensorCal.c

150 lines
4.7 KiB
C
Raw Normal View History

/**
******************************************************************************
*
* @file MagOrAccelSensorCal.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief 3 axis sensor cal from six measurements taken in a constant field.
* Call SixPointInConstFieldCal(FieldMagnitude, X, Y, Z, S, b)
* - FieldMagnitude is the constant field, e.g. 9.81 for accels
* - X, Y, Z are vectors of six measurements from different orientations
* - returns, S[3] and b[3], that are the scale and offsett for the axes
* - i.e. Measurementx = S[0]*Sensorx + b[0]
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <math.h>
#include "stdint.h"
//Function Prototypes
int16_t SixPointInConstFieldCal(double ConstMag, double x[6], double y[6],
double z[6], double S[3], double b[3]);
int16_t LinearEquationsSolving(int16_t nDim, double *pfMatr,
double *pfVect, double *pfSolution);
int16_t SixPointInConstFieldCal(double ConstMag, double x[6], double y[6],
double z[6], double S[3], double b[3])
{
int16_t i;
double A[5][5];
double f[5], c[5];
double xp, yp, zp, Sx;
// Fill in matrix A -
// write six difference-in-magnitude equations of the form
// Sx^2(x2^2-x1^2) + 2*Sx*bx*(x2-x1) + Sy^2(y2^2-y1^2) + 2*Sy*by*(y2-y1) + Sz^2(z2^2-z1^2) + 2*Sz*bz*(z2-z1) = 0
// or in other words
// 2*Sx*bx*(x2-x1)/Sx^2 + Sy^2(y2^2-y1^2)/Sx^2 + 2*Sy*by*(y2-y1)/Sx^2 + Sz^2(z2^2-z1^2)/Sx^2 + 2*Sz*bz*(z2-z1)/Sx^2 = (x1^2-x2^2)
for (i = 0; i < 5; i++) {
A[i][0] = 2.0 * (x[i + 1] - x[i]);
A[i][1] = y[i + 1] * y[i + 1] - y[i] * y[i];
A[i][2] = 2.0 * (y[i + 1] - y[i]);
A[i][3] = z[i + 1] * z[i + 1] - z[i] * z[i];
A[i][4] = 2.0 * (z[i + 1] - z[i]);
f[i] = x[i] * x[i] - x[i + 1] * x[i + 1];
}
// solve for c0=bx/Sx, c1=Sy^2/Sx^2; c2=Sy*by/Sx^2, c3=Sz^2/Sx^2, c4=Sz*bz/Sx^2
if (!LinearEquationsSolving(5, (double *)A, f, c))
return 0;
// use one magnitude equation and c's to find Sx - doesn't matter which - all give the same answer
xp = x[0];
yp = y[0];
zp = z[0];
Sx = sqrt(ConstMag * ConstMag /
(xp * xp + 2 * c[0] * xp + c[0] * c[0] + c[1] * yp * yp +
2 * c[2] * yp + c[2] * c[2] / c[1] + c[3] * zp * zp +
2 * c[4] * zp + c[4] * c[4] / c[3]));
S[0] = Sx;
b[0] = Sx * c[0];
S[1] = sqrt(c[1] * Sx * Sx);
b[1] = c[2] * Sx * Sx / S[1];
S[2] = sqrt(c[3] * Sx * Sx);
b[2] = c[4] * Sx * Sx / S[2];
return 1;
}
//*****************************************************************
int16_t LinearEquationsSolving(int16_t nDim, double *pfMatr,
double *pfVect, double *pfSolution)
{
double fMaxElem;
double fAcc;
int16_t i, j, k, m;
for (k = 0; k < (nDim - 1); k++) // base row of matrix
{
// search of line with max element
fMaxElem = fabs(pfMatr[k * nDim + k]);
m = k;
for (i = k + 1; i < nDim; i++) {
if (fMaxElem < fabs(pfMatr[i * nDim + k])) {
fMaxElem = pfMatr[i * nDim + k];
m = i;
}
}
// permutation of base line (index k) and max element line(index m)
if (m != k) {
for (i = k; i < nDim; i++) {
fAcc = pfMatr[k * nDim + i];
pfMatr[k * nDim + i] =
pfMatr[m * nDim + i];
pfMatr[m * nDim + i] = fAcc;
}
fAcc = pfVect[k];
pfVect[k] = pfVect[m];
pfVect[m] = fAcc;
}
if (pfMatr[k * nDim + k] == 0.)
return 0; // needs improvement !!!
// triangulation of matrix with coefficients
for (j = (k + 1); j < nDim; j++) // current row of matrix
{
fAcc =
-pfMatr[j * nDim + k] / pfMatr[k * nDim + k];
for (i = k; i < nDim; i++) {
pfMatr[j * nDim + i] =
pfMatr[j * nDim + i] +
fAcc * pfMatr[k * nDim + i];
}
pfVect[j] = pfVect[j] + fAcc * pfVect[k]; // free member recalculation
}
}
for (k = (nDim - 1); k >= 0; k--) {
pfSolution[k] = pfVect[k];
for (i = (k + 1); i < nDim; i++) {
pfSolution[k] -=
(pfMatr[k * nDim + i] * pfSolution[i]);
}
pfSolution[k] = pfSolution[k] / pfMatr[k * nDim + k];
}
return 1;
}