1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-01-26 11:52:10 +01:00
LibrePilot/ground/openpilotgcs/src/plugins/config/calibration/sixpointcalibrationmodel.cpp

394 lines
16 KiB
C++
Raw Normal View History

/**
******************************************************************************
*
* @file sixpointcalibrationmodel.cpp
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2014.
*
* @brief Six point calibration for Magnetometer and Accelerometer
* @see The GNU Public License (GPL) Version 3
* @defgroup
* @{
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "sixpointcalibrationmodel.h"
#include <QThread>
#include "extensionsystem/pluginmanager.h"
#include <QMessageBox>
#include "math.h"
#define POINT_SAMPLE_SIZE 50
#define GRAVITY 9.81f
#define sign(x) ((x < 0) ? -1 : 1)
namespace OpenPilot {
SixPointCalibrationModel::SixPointCalibrationModel(QObject *parent) :
QObject(parent),
collectingData(false),
calibratingMag(false),
calibratingAccel(false),
position(-1)
{}
/********** Six point calibration **************/
void SixPointCalibrationModel::magStart()
{
start(false, true);
}
void SixPointCalibrationModel::accelStart()
{
start(true, false);
}
/**
* Called by the "Start" button. Sets up the meta data and enables the
* buttons to perform six point calibration of the magnetometer (optionally
* accel) to compute the scale and bias of this sensor based on the current
* home location magnetic strength.
*/
void SixPointCalibrationModel::start(bool calibrateAccel, bool calibrateMag)
{
calibratingAccel = calibrateAccel;
calibratingMag = calibrateMag;
// Store and reset board rotation before calibration starts
storeAndClearBoardRotation();
RevoCalibration *revoCalibration = RevoCalibration::GetInstance(getObjectManager());
HomeLocation *homeLocation = HomeLocation::GetInstance(getObjectManager());
AccelGyroSettings *accelGyroSettings = AccelGyroSettings::GetInstance(getObjectManager());
Q_ASSERT(revoCalibration);
Q_ASSERT(homeLocation);
RevoCalibration::DataFields revoCalibrationData = revoCalibration->getData();
savedSettings.revoCalibration = revoCalibration->getData();
HomeLocation::DataFields homeLocationData = homeLocation->getData();
AccelGyroSettings::DataFields accelGyroSettingsData = accelGyroSettings->getData();
savedSettings.accelGyroSettings = accelGyroSettings->getData();
// check if Homelocation is set
if (!homeLocationData.Set) {
QMessageBox msgBox;
msgBox.setInformativeText(tr("<p>HomeLocation not SET.</p><p>Please set your HomeLocation and try again. Aborting calibration!</p>"));
msgBox.setStandardButtons(QMessageBox::Ok);
msgBox.setDefaultButton(QMessageBox::Ok);
msgBox.setIcon(QMessageBox::Information);
msgBox.exec();
return;
}
// Calibration accel
accelGyroSettingsData.accel_scale[AccelGyroSettings::ACCEL_SCALE_X] = 1;
accelGyroSettingsData.accel_scale[AccelGyroSettings::ACCEL_SCALE_Y] = 1;
accelGyroSettingsData.accel_scale[AccelGyroSettings::ACCEL_SCALE_Z] = 1;
accelGyroSettingsData.accel_bias[AccelGyroSettings::ACCEL_BIAS_X] = 0;
accelGyroSettingsData.accel_bias[AccelGyroSettings::ACCEL_BIAS_Y] = 0;
accelGyroSettingsData.accel_bias[AccelGyroSettings::ACCEL_BIAS_Z] = 0;
accel_accum_x.clear();
accel_accum_y.clear();
accel_accum_z.clear();
// Calibration mag
// Reset the transformation matrix to identity
for (int i = 0; i < RevoCalibration::MAG_TRANSFORM_R2C2; i++) {
revoCalibrationData.mag_transform[i] = 0;
}
revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R0C0] = 1;
revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R1C1] = 1;
revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R2C2] = 1;
revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_X] = 0;
revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_Y] = 0;
revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_Z] = 0;
// Disable adaptive mag nulling
initialMagCorrectionRate = revoCalibrationData.MagBiasNullingRate;
revoCalibrationData.MagBiasNullingRate = 0;
revoCalibration->setData(revoCalibrationData);
accelGyroSettings->setData(accelGyroSettingsData);
QThread::usleep(100000);
mag_accum_x.clear();
mag_accum_y.clear();
mag_accum_z.clear();
UAVObject::Metadata mdata;
/* Need to get as many accel updates as possible */
AccelState *accelState = AccelState::GetInstance(getObjectManager());
Q_ASSERT(accelState);
initialAccelStateMdata = accelState->getMetadata();
mdata = initialAccelStateMdata;
UAVObject::SetFlightTelemetryUpdateMode(mdata, UAVObject::UPDATEMODE_PERIODIC);
mdata.flightTelemetryUpdatePeriod = 100;
accelState->setMetadata(mdata);
/* Need to get as many mag updates as possible */
MagState *mag = MagState::GetInstance(getObjectManager());
Q_ASSERT(mag);
initialMagStateMdata = mag->getMetadata();
mdata = initialMagStateMdata;
UAVObject::SetFlightTelemetryUpdateMode(mdata, UAVObject::UPDATEMODE_PERIODIC);
mdata.flightTelemetryUpdatePeriod = 100;
mag->setMetadata(mdata);
/* Show instructions and enable controls */
displayInstructions("Place horizontally and click save position...", true);
showHelp("horizontal");
disableAllCalibrations();
savePositionEnabledChanged(true);
position = 0;
}
/**
* Saves the data from the aircraft in one of six positions.
* This is called when they click "save position" and starts
* averaging data for this position.
*/
void SixPointCalibrationModel::savePositionData()
{
QMutexLocker lock(&sensorsUpdateLock);
savePositionEnabledChanged(false);
accel_accum_x.clear();
accel_accum_y.clear();
accel_accum_z.clear();
mag_accum_x.clear();
mag_accum_y.clear();
mag_accum_z.clear();
collectingData = true;
AccelState *accelState = AccelState::GetInstance(getObjectManager());
Q_ASSERT(accelState);
MagState *mag = MagState::GetInstance(getObjectManager());
Q_ASSERT(mag);
connect(accelState, SIGNAL(objectUpdated(UAVObject *)), this, SLOT(getSample(UAVObject *)));
connect(mag, SIGNAL(objectUpdated(UAVObject *)), this, SLOT(getSample(UAVObject *)));
displayInstructions("Hold...", false);
}
/**
* Grab a sample of mag (optionally accel) data while in this position and
* store it for averaging. When sufficient points are collected advance
* to the next position (give message to user) or compute the scale and bias
*/
void SixPointCalibrationModel::getSample(UAVObject *obj)
{
QMutexLocker lock(&sensorsUpdateLock);
// This is necessary to prevent a race condition on disconnect signal and another update
if (collectingData == true) {
if (obj->getObjID() == AccelState::OBJID) {
AccelState *accelState = AccelState::GetInstance(getObjectManager());
Q_ASSERT(accelState);
AccelState::DataFields accelStateData = accelState->getData();
accel_accum_x.append(accelStateData.x);
accel_accum_y.append(accelStateData.y);
accel_accum_z.append(accelStateData.z);
} else if (obj->getObjID() == MagState::OBJID) {
MagState *mag = MagState::GetInstance(getObjectManager());
Q_ASSERT(mag);
MagState::DataFields magData = mag->getData();
mag_accum_x.append(magData.x);
mag_accum_y.append(magData.y);
mag_accum_z.append(magData.z);
} else {
Q_ASSERT(0);
}
}
if (accel_accum_x.size() >= POINT_SAMPLE_SIZE && mag_accum_x.size() >= POINT_SAMPLE_SIZE && collectingData == true) {
collectingData = false;
savePositionEnabledChanged(true);
// Store the mean for this position for the accel
AccelState *accelState = AccelState::GetInstance(getObjectManager());
Q_ASSERT(accelState);
disconnect(accelState, SIGNAL(objectUpdated(UAVObject *)), this, SLOT(getSample(UAVObject *)));
accel_data_x[position] = CalibrationUtils::listMean(accel_accum_x);
accel_data_y[position] = CalibrationUtils::listMean(accel_accum_y);
accel_data_z[position] = CalibrationUtils::listMean(accel_accum_z);
// Store the mean for this position for the mag
MagState *mag = MagState::GetInstance(getObjectManager());
Q_ASSERT(mag);
disconnect(mag, SIGNAL(objectUpdated(UAVObject *)), this, SLOT(getSample(UAVObject *)));
mag_data_x[position] = CalibrationUtils::listMean(mag_accum_x);
mag_data_y[position] = CalibrationUtils::listMean(mag_accum_y);
mag_data_z[position] = CalibrationUtils::listMean(mag_accum_z);
position = (position + 1) % 6;
if (position == 1) {
displayInstructions("Place with left side down and click save position...", false);
showHelp("left");
}
if (position == 2) {
displayInstructions("Place upside down and click save position...", false);
showHelp("flip");
}
if (position == 3) {
displayInstructions("Place with right side down and click save position...", false);
showHelp("right");
}
if (position == 4) {
displayInstructions("Place with nose up and click save position...", false);
showHelp("up");
}
if (position == 5) {
displayInstructions("Place with nose down and click save position...", false);
showHelp("down");
}
if (position == 0) {
compute(calibratingMag, calibratingAccel);
savePositionEnabledChanged(false);
enableAllCalibrations();
/* Cleanup original settings */
accelState->setMetadata(initialAccelStateMdata);
mag->setMetadata(initialMagStateMdata);
// Recall saved board rotation
recallBoardRotation();
}
}
}
/**
* Computes the scale and bias for the magnetomer and (compile option)
* for the accel once all the data has been collected in 6 positions.
*/
void SixPointCalibrationModel::compute(bool mag, bool accel)
{
double S[3], b[3];
double Be_length;
AccelGyroSettings *accelGyroSettings = AccelGyroSettings::GetInstance(getObjectManager());
RevoCalibration *revoCalibration = RevoCalibration::GetInstance(getObjectManager());
HomeLocation *homeLocation = HomeLocation::GetInstance(getObjectManager());
Q_ASSERT(revoCalibration);
Q_ASSERT(homeLocation);
AccelGyroSettings::DataFields accelGyroSettingsData = accelGyroSettings->getData();
RevoCalibration::DataFields revoCalibrationData = revoCalibration->getData();
HomeLocation::DataFields homeLocationData = homeLocation->getData();
// Calibration accel
if (accel) {
OpenPilot::CalibrationUtils::SixPointInConstFieldCal(homeLocationData.g_e, accel_data_x, accel_data_y, accel_data_z, S, b);
accelGyroSettingsData.accel_scale[AccelGyroSettings::ACCEL_SCALE_X] = fabs(S[0]);
accelGyroSettingsData.accel_scale[AccelGyroSettings::ACCEL_SCALE_Y] = fabs(S[1]);
accelGyroSettingsData.accel_scale[AccelGyroSettings::ACCEL_SCALE_Z] = fabs(S[2]);
accelGyroSettingsData.accel_bias[AccelGyroSettings::ACCEL_BIAS_X] = -sign(S[0]) * b[0];
accelGyroSettingsData.accel_bias[AccelGyroSettings::ACCEL_BIAS_Y] = -sign(S[1]) * b[1];
accelGyroSettingsData.accel_bias[AccelGyroSettings::ACCEL_BIAS_Z] = -sign(S[2]) * b[2];
}
// Calibration mag
if (mag) {
Be_length = sqrt(pow(homeLocationData.Be[0], 2) + pow(homeLocationData.Be[1], 2) + pow(homeLocationData.Be[2], 2));
OpenPilot::CalibrationUtils::SixPointInConstFieldCal(Be_length, mag_data_x, mag_data_y, mag_data_z, S, b);
revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R0C0] = fabs(S[0]);
revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R1C1] = fabs(S[1]);
revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R2C2] = fabs(S[2]);
revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_X] = -sign(S[0]) * b[0];
revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_Y] = -sign(S[1]) * b[1];
revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_Z] = -sign(S[2]) * b[2];
}
// Restore the previous setting
revoCalibrationData.MagBiasNullingRate = initialMagCorrectionRate;
bool good_calibration = true;
// Check the mag calibration is good
if (mag) {
good_calibration &= revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R0C0] ==
revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R0C0];
good_calibration &= revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R1C1] ==
revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R1C1];
good_calibration &= revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R2C2] ==
revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R2C2];
good_calibration &= revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_X] ==
revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_X];
good_calibration &= revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_Y] ==
revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_Y];
good_calibration &= revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_Z] ==
revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_Z];
}
// Check the accel calibration is good
if (accel) {
good_calibration &= accelGyroSettingsData.accel_scale[AccelGyroSettings::ACCEL_SCALE_X] ==
accelGyroSettingsData.accel_scale[AccelGyroSettings::ACCEL_SCALE_X];
good_calibration &= accelGyroSettingsData.accel_scale[AccelGyroSettings::ACCEL_SCALE_Y] ==
accelGyroSettingsData.accel_scale[AccelGyroSettings::ACCEL_SCALE_Y];
good_calibration &= accelGyroSettingsData.accel_scale[AccelGyroSettings::ACCEL_SCALE_Z] ==
accelGyroSettingsData.accel_scale[AccelGyroSettings::ACCEL_SCALE_Z];
good_calibration &= accelGyroSettingsData.accel_bias[AccelGyroSettings::ACCEL_BIAS_X] ==
accelGyroSettingsData.accel_bias[AccelGyroSettings::ACCEL_BIAS_X];
good_calibration &= accelGyroSettingsData.accel_bias[AccelGyroSettings::ACCEL_BIAS_Y] ==
accelGyroSettingsData.accel_bias[AccelGyroSettings::ACCEL_BIAS_Y];
good_calibration &= accelGyroSettingsData.accel_bias[AccelGyroSettings::ACCEL_BIAS_Z] ==
accelGyroSettingsData.accel_bias[AccelGyroSettings::ACCEL_BIAS_Z];
}
if (good_calibration) {
if (mag) {
revoCalibration->setData(revoCalibrationData);
} else {
revoCalibration->setData(savedSettings.revoCalibration);
}
if (accel) {
accelGyroSettings->setData(accelGyroSettingsData);
} else {
accelGyroSettings->setData(savedSettings.accelGyroSettings);
}
displayInstructions("Computed sensor scale and bias...", true);
} else {
displayInstructions("Bad calibration. Please repeat.", true);
}
position = -1; // set to run again
}
UAVObjectManager *SixPointCalibrationModel::getObjectManager()
{
ExtensionSystem::PluginManager *pm = ExtensionSystem::PluginManager::instance();
UAVObjectManager *objMngr = pm->getObject<UAVObjectManager>();
Q_ASSERT(objMngr);
return objMngr;
}
void SixPointCalibrationModel::showHelp(QString image){
if(calibratingAccel){
displayVisualHelp("revo-" + image);
}else {
displayVisualHelp("plane-" + image);
}
}
}