1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-01-09 20:46:07 +01:00
LibrePilot/ground/src/plugins/config/configahrswidget.cpp

735 lines
27 KiB
C++
Raw Normal View History

/**
******************************************************************************
*
* @file configahrswidget.h
* @author E. Lafargue & The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @addtogroup GCSPlugins GCS Plugins
* @{
* @addtogroup ConfigPlugin Config Plugin
* @{
* @brief The Configuration Gadget used to update settings in the firmware
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "configahrswidget.h"
#include "math.h"
#include <QDebug>
#include <QTimer>
#include <QStringList>
#include <QtGui/QWidget>
#include <QtGui/QTextEdit>
#include <QtGui/QVBoxLayout>
#include <QtGui/QPushButton>
#define sign(x) ((x < 0) ? -1 : 1)
const double ConfigAHRSWidget::maxVarValue = 0.1;
const int ConfigAHRSWidget::calibrationDelay = 7; // Time to wait for the AHRS to do its calibration
ConfigAHRSWidget::ConfigAHRSWidget(QWidget *parent) : ConfigTaskWidget(parent)
{
m_ahrs = new Ui_AHRSWidget();
m_ahrs->setupUi(this);
// Initialization of the Paper plane widget
m_ahrs->sixPointsHelp->setScene(new QGraphicsScene(this));
paperplane = new QGraphicsSvgItem();
paperplane->setSharedRenderer(new QSvgRenderer());
paperplane->renderer()->load(QString(":/configgadget/images/paper-plane.svg"));
paperplane->setElementId("plane-horizontal");
m_ahrs->sixPointsHelp->scene()->addItem(paperplane);
m_ahrs->sixPointsHelp->setSceneRect(paperplane->boundingRect());
// Initialization of the AHRS bargraph graph
m_ahrs->ahrsBargraph->setScene(new QGraphicsScene(this));
QSvgRenderer *renderer = new QSvgRenderer();
ahrsbargraph = new QGraphicsSvgItem();
renderer->load(QString(":/configgadget/images/ahrs-calib.svg"));
ahrsbargraph->setSharedRenderer(renderer);
ahrsbargraph->setElementId("background");
ahrsbargraph->setObjectName("background");
m_ahrs->ahrsBargraph->scene()->addItem(ahrsbargraph);
m_ahrs->ahrsBargraph->setSceneRect(ahrsbargraph->boundingRect());
// Initialize the 9 bargraph values:
QMatrix lineMatrix = renderer->matrixForElement("accel_x");
QRectF rect = lineMatrix.mapRect(renderer->boundsOnElement("accel_x"));
qreal startX = rect.x();
qreal startY = rect.y()+ rect.height();
// maxBarHeight will be used for scaling it later.
maxBarHeight = rect.height();
// Then once we have the initial location, we can put it
// into a QGraphicsSvgItem which we will display at the same
// place: we do this so that the heading scale can be clipped to
// the compass dial region.
accel_x = new QGraphicsSvgItem();
accel_x->setSharedRenderer(renderer);
accel_x->setElementId("accel_x");
m_ahrs->ahrsBargraph->scene()->addItem(accel_x);
accel_x->setPos(startX, startY);
accel_x->setTransform(QTransform::fromScale(1,0),true);
lineMatrix = renderer->matrixForElement("accel_y");
rect = lineMatrix.mapRect(renderer->boundsOnElement("accel_y"));
startX = rect.x();
startY = rect.y()+ rect.height();
accel_y = new QGraphicsSvgItem();
accel_y->setSharedRenderer(renderer);
accel_y->setElementId("accel_y");
m_ahrs->ahrsBargraph->scene()->addItem(accel_y);
accel_y->setPos(startX,startY);
accel_y->setTransform(QTransform::fromScale(1,0),true);
lineMatrix = renderer->matrixForElement("accel_z");
rect = lineMatrix.mapRect(renderer->boundsOnElement("accel_z"));
startX = rect.x();
startY = rect.y()+ rect.height();
accel_z = new QGraphicsSvgItem();
accel_z->setSharedRenderer(renderer);
accel_z->setElementId("accel_z");
m_ahrs->ahrsBargraph->scene()->addItem(accel_z);
accel_z->setPos(startX,startY);
accel_z->setTransform(QTransform::fromScale(1,0),true);
lineMatrix = renderer->matrixForElement("gyro_x");
rect = lineMatrix.mapRect(renderer->boundsOnElement("gyro_x"));
startX = rect.x();
startY = rect.y()+ rect.height();
gyro_x = new QGraphicsSvgItem();
gyro_x->setSharedRenderer(renderer);
gyro_x->setElementId("gyro_x");
m_ahrs->ahrsBargraph->scene()->addItem(gyro_x);
gyro_x->setPos(startX,startY);
gyro_x->setTransform(QTransform::fromScale(1,0),true);
lineMatrix = renderer->matrixForElement("gyro_y");
rect = lineMatrix.mapRect(renderer->boundsOnElement("gyro_y"));
startX = rect.x();
startY = rect.y()+ rect.height();
gyro_y = new QGraphicsSvgItem();
gyro_y->setSharedRenderer(renderer);
gyro_y->setElementId("gyro_y");
m_ahrs->ahrsBargraph->scene()->addItem(gyro_y);
gyro_y->setPos(startX,startY);
gyro_y->setTransform(QTransform::fromScale(1,0),true);
lineMatrix = renderer->matrixForElement("gyro_z");
rect = lineMatrix.mapRect(renderer->boundsOnElement("gyro_z"));
startX = rect.x();
startY = rect.y()+ rect.height();
gyro_z = new QGraphicsSvgItem();
gyro_z->setSharedRenderer(renderer);
gyro_z->setElementId("gyro_z");
m_ahrs->ahrsBargraph->scene()->addItem(gyro_z);
gyro_z->setPos(startX,startY);
gyro_z->setTransform(QTransform::fromScale(1,0),true);
lineMatrix = renderer->matrixForElement("mag_x");
rect = lineMatrix.mapRect(renderer->boundsOnElement("mag_x"));
startX = rect.x();
startY = rect.y()+ rect.height();
mag_x = new QGraphicsSvgItem();
mag_x->setSharedRenderer(renderer);
mag_x->setElementId("mag_x");
m_ahrs->ahrsBargraph->scene()->addItem(mag_x);
mag_x->setPos(startX,startY);
mag_x->setTransform(QTransform::fromScale(1,0),true);
lineMatrix = renderer->matrixForElement("mag_y");
rect = lineMatrix.mapRect(renderer->boundsOnElement("mag_y"));
startX = rect.x();
startY = rect.y()+ rect.height();
mag_y = new QGraphicsSvgItem();
mag_y->setSharedRenderer(renderer);
mag_y->setElementId("mag_y");
m_ahrs->ahrsBargraph->scene()->addItem(mag_y);
mag_y->setPos(startX,startY);
mag_y->setTransform(QTransform::fromScale(1,0),true);
lineMatrix = renderer->matrixForElement("mag_z");
rect = lineMatrix.mapRect(renderer->boundsOnElement("mag_z"));
startX = rect.x();
startY = rect.y()+ rect.height();
mag_z = new QGraphicsSvgItem();
mag_z->setSharedRenderer(renderer);
mag_z->setElementId("mag_z");
m_ahrs->ahrsBargraph->scene()->addItem(mag_z);
mag_z->setPos(startX,startY);
mag_z->setTransform(QTransform::fromScale(1,0),true);
position = -1;
// Fill the dropdown menus:
UAVObject *obj = dynamic_cast<UAVDataObject*>(getObjectManager()->getObject(QString("AHRSSettings")));
UAVObjectField *field = obj->getField(QString("Algorithm"));
m_ahrs->algorithm->addItems(field->getOptions());
// Register for Home Location state changes
obj = dynamic_cast<UAVDataObject*>(getObjectManager()->getObject(QString("HomeLocation")));
connect(obj, SIGNAL(objectUpdated(UAVObject*)), this , SLOT(enableHomeLocSave(UAVObject*)));
// Connect the signals
connect(m_ahrs->ahrsCalibStart, SIGNAL(clicked()), this, SLOT(launchAHRSCalibration()));
connect(m_ahrs->ahrsSettingsRequest, SIGNAL(clicked()), this, SLOT(ahrsSettingsRequest()));
/*
connect(m_ahrs->algorithm, SIGNAL(currentIndexChanged(int)), this, SLOT(ahrsSettingsSave()));
connect(m_ahrs->indoorFlight, SIGNAL(stateChanged(int)), this, SLOT(homeLocationSave()));
connect(m_ahrs->homeLocation, SIGNAL(clicked()), this, SLOT(homeLocationSaveSD()));
*/
connect(m_ahrs->ahrsSettingsSaveRAM, SIGNAL(clicked()), this, SLOT(ahrsSettingsSaveRAM()));
connect(m_ahrs->ahrsSettingsSaveSD, SIGNAL(clicked()), this, SLOT(ahrsSettingsSaveSD()));
connect(m_ahrs->sixPointsStart, SIGNAL(clicked()), this, SLOT(sixPointCalibrationMode()));
connect(m_ahrs->sixPointsSave, SIGNAL(clicked()), this, SLOT(savePositionData()));
connect(parent, SIGNAL(autopilotConnected()),this, SLOT(ahrsSettingsRequest()));
}
ConfigAHRSWidget::~ConfigAHRSWidget()
{
// Do nothing
}
void ConfigAHRSWidget::showEvent(QShowEvent *event)
{
Q_UNUSED(event)
// Thit fitInView method should only be called now, once the
// widget is shown, otherwise it cannot compute its values and
// the result is usually a ahrsbargraph that is way too small.
m_ahrs->ahrsBargraph->fitInView(ahrsbargraph, Qt::KeepAspectRatio);
m_ahrs->sixPointsHelp->fitInView(paperplane,Qt::KeepAspectRatio);
}
/**
Launches the AHRS sensors calibration
*/
void ConfigAHRSWidget::launchAHRSCalibration()
{
m_ahrs->calibInstructions->setText("Estimating sensor variance...");
m_ahrs->ahrsCalibStart->setEnabled(false);
UAVObject *obj = dynamic_cast<UAVDataObject*>(getObjectManager()->getObject(QString("AHRSCalibration")));
UAVObjectField *field = obj->getField(QString("measure_var"));
field->setValue("MEASURE");
obj->updated();
QTimer::singleShot(calibrationDelay*1000, this, SLOT(calibPhase2()));
m_ahrs->calibProgress->setRange(0,calibrationDelay);
phaseCounter = 0;
progressBarIndex = 0;
connect(&progressBarTimer, SIGNAL(timeout()), this, SLOT(incrementProgress()));
progressBarTimer.start(1000);
}
/**
Increment progress bar
*/
void ConfigAHRSWidget::incrementProgress()
{
m_ahrs->calibProgress->setValue(progressBarIndex++);
if (progressBarIndex > m_ahrs->calibProgress->maximum()) {
progressBarTimer.stop();
progressBarIndex = 0;
}
}
/**
Callback once calibration is done on the board.
Currently we don't have a way to tell if calibration is finished, so we
have to use a timer.
calibPhase2 is also connected to the AHRSCalibration object update signal.
*/
void ConfigAHRSWidget::calibPhase2()
{
UAVObject *obj = dynamic_cast<UAVDataObject*>(getObjectManager()->getObject(QString("AHRSCalibration")));
UAVObjectField *field = obj->getField(QString("measure_var"));
// This is a bit weird, but it is because we are expecting an update from the
// OP board with the correct calibration values, and those only arrive on the object update
// which comes back from the board, and not the first object update signal which is in fast
// the object update we did ourselves... Clear ?
switch (phaseCounter) {
case 0:
phaseCounter++;
m_ahrs->calibInstructions->setText("Getting results...");
connect(obj, SIGNAL(objectUpdated(UAVObject*)), this, SLOT(calibPhase2()));
// We need to echo back the results of calibration before changing to set mode
obj->requestUpdate();
break;
case 1: // This is the update with the right values (coming from the board)
disconnect(obj, SIGNAL(objectUpdated(UAVObject*)), this, SLOT(calibPhase2()));
// Now update size of all the graphs
drawVariancesGraph();
saveAHRSCalibration();
m_ahrs->calibInstructions->setText(QString("Calibration saved."));
m_ahrs->ahrsCalibStart->setEnabled(true);
break;
}
}
/**
Saves the AHRS sensors calibration (to RAM and SD)
*/
void ConfigAHRSWidget::saveAHRSCalibration()
{
UAVObject *obj = dynamic_cast<UAVDataObject*>(getObjectManager()->getObject(QString("AHRSCalibration")));
UAVObjectField *field = obj->getField(QString("measure_var"));
field->setValue("SET");
obj->updated();
updateObjectPersistance(ObjectPersistence::OPERATION_SAVE, obj);
}
void ConfigAHRSWidget::attitudeRawUpdated(UAVObject * obj)
{
QMutexLocker lock(&attitudeRawUpdateLock);
UAVObjectField *accel_field = obj->getField(QString("accels_filtered"));
UAVObjectField *gyro_field = obj->getField(QString("gyros_filtered"));
UAVObjectField *mag_field = obj->getField(QString("magnetometers"));
Q_ASSERT(gyro_field != 0 && accel_field != 0 & mag_field != 0);
// This is necessary to prevent a race condition on disconnect signal and another update
if (collectingData == true) {
accel_accum_x.append(accel_field->getValue(0).toDouble());
accel_accum_y.append(accel_field->getValue(1).toDouble());
accel_accum_z.append(accel_field->getValue(2).toDouble());
// Note gyros actually (-y,-x,-z) but since we consistent here no prob
mag_accum_x.append(mag_field->getValue(0).toDouble());
mag_accum_y.append(mag_field->getValue(1).toDouble());
mag_accum_z.append(mag_field->getValue(2).toDouble());
gyro_accum_x.append(gyro_field->getValue(0).toDouble());
gyro_accum_y.append(gyro_field->getValue(1).toDouble());
gyro_accum_z.append(gyro_field->getValue(2).toDouble());
}
if(accel_accum_x.size() >= 20 && collectingData == true) {
collectingData = false;
disconnect(obj,SIGNAL(objectUpdated(UAVObject*)),this,SLOT(attitudeRawUpdated(UAVObject*)));
m_ahrs->sixPointsSave->setEnabled(true);
accel_data_x[position] = listMean(accel_accum_x);
accel_data_y[position] = listMean(accel_accum_y);
accel_data_z[position] = listMean(accel_accum_z);
mag_data_x[position] = listMean(mag_accum_x);
mag_data_y[position] = listMean(mag_accum_y);
mag_data_z[position] = listMean(mag_accum_z);
position = (position + 1) % 6;
if(position == 1) {
m_ahrs->sixPointCalibInstructions->append("Place with left side down and click save position...");
displayPlane("plane-left");
}
if(position == 2) {
m_ahrs->sixPointCalibInstructions->append("Place upside down and click save position...");
displayPlane("plane-flip");
}
if(position == 3) {
m_ahrs->sixPointCalibInstructions->append("Place with right side down and click save position...");
displayPlane("plane-right");
}
if(position == 4) {
m_ahrs->sixPointCalibInstructions->append("Place with nose up and click save position...");
displayPlane("plane-up");
}
if(position == 5) {
m_ahrs->sixPointCalibInstructions->append("Place with nose down and click save position...");
displayPlane("plane-down");
}
if(position == 0) {
computeScaleBias();
m_ahrs->sixPointsStart->setEnabled(true);
m_ahrs->sixPointsSave->setEnabled(false);
saveAHRSCalibration(); // Saves the result to SD.
/* Cleanup original settings */
getObjectManager()->getObject(QString("AttitudeRaw"))->setMetadata(initialMdata);
}
}
}
double ConfigAHRSWidget::listMean(QList<double> list)
{
double accum = 0;
for(int i = 0; i < list.size(); i++)
accum += list[i];
return accum / list.size();
}
/**
* Saves the data from the aircraft in one of six positions
*/
void ConfigAHRSWidget::savePositionData()
{
QMutexLocker lock(&attitudeRawUpdateLock);
m_ahrs->sixPointsSave->setEnabled(false);
accel_accum_x.clear();
accel_accum_y.clear();
accel_accum_z.clear();
mag_accum_x.clear();
mag_accum_y.clear();
mag_accum_z.clear();
collectingData = true;
UAVObject *obj = dynamic_cast<UAVDataObject*>(getObjectManager()->getObject(QString("AttitudeRaw")));
connect(obj, SIGNAL(objectUpdated(UAVObject*)), this, SLOT(attitudeRawUpdated(UAVObject*)));
m_ahrs->sixPointCalibInstructions->append("Hold...");
}
//*****************************************************************
int LinearEquationsSolving(int nDim, double* pfMatr, double* pfVect, double* pfSolution)
{
double fMaxElem;
double fAcc;
int i , j, k, m;
for(k=0; k<(nDim-1); k++) // base row of matrix
{
// search of line with max element
fMaxElem = fabs( pfMatr[k*nDim + k] );
m = k;
for(i=k+1; i<nDim; i++)
{
if(fMaxElem < fabs(pfMatr[i*nDim + k]) )
{
fMaxElem = pfMatr[i*nDim + k];
m = i;
}
}
// permutation of base line (index k) and max element line(index m)
if(m != k)
{
for(i=k; i<nDim; i++)
{
fAcc = pfMatr[k*nDim + i];
pfMatr[k*nDim + i] = pfMatr[m*nDim + i];
pfMatr[m*nDim + i] = fAcc;
}
fAcc = pfVect[k];
pfVect[k] = pfVect[m];
pfVect[m] = fAcc;
}
if( pfMatr[k*nDim + k] == 0.) return 0; // needs improvement !!!
// triangulation of matrix with coefficients
for(j=(k+1); j<nDim; j++) // current row of matrix
{
fAcc = - pfMatr[j*nDim + k] / pfMatr[k*nDim + k];
for(i=k; i<nDim; i++)
{
pfMatr[j*nDim + i] = pfMatr[j*nDim + i] + fAcc*pfMatr[k*nDim + i];
}
pfVect[j] = pfVect[j] + fAcc*pfVect[k]; // free member recalculation
}
}
for(k=(nDim-1); k>=0; k--)
{
pfSolution[k] = pfVect[k];
for(i=(k+1); i<nDim; i++)
{
pfSolution[k] -= (pfMatr[k*nDim + i]*pfSolution[i]);
}
pfSolution[k] = pfSolution[k] / pfMatr[k*nDim + k];
}
return 1;
}
int SixPointInConstFieldCal( double ConstMag, double x[6], double y[6], double z[6], double S[3], double b[3] )
{
int i;
double A[5][5];
double f[5], c[5];
double xp, yp, zp, Sx;
// Fill in matrix A -
// write six difference-in-magnitude equations of the form
// Sx^2(x2^2-x1^2) + 2*Sx*bx*(x2-x1) + Sy^2(y2^2-y1^2) + 2*Sy*by*(y2-y1) + Sz^2(z2^2-z1^2) + 2*Sz*bz*(z2-z1) = 0
// or in other words
// 2*Sx*bx*(x2-x1)/Sx^2 + Sy^2(y2^2-y1^2)/Sx^2 + 2*Sy*by*(y2-y1)/Sx^2 + Sz^2(z2^2-z1^2)/Sx^2 + 2*Sz*bz*(z2-z1)/Sx^2 = (x1^2-x2^2)
for (i=0;i<5;i++){
A[i][0] = 2.0 * (x[i+1] - x[i]);
A[i][1] = y[i+1]*y[i+1] - y[i]*y[i];
A[i][2] = 2.0 * (y[i+1] - y[i]);
A[i][3] = z[i+1]*z[i+1] - z[i]*z[i];
A[i][4] = 2.0 * (z[i+1] - z[i]);
f[i] = x[i]*x[i] - x[i+1]*x[i+1];
}
// solve for c0=bx/Sx, c1=Sy^2/Sx^2; c2=Sy*by/Sx^2, c3=Sz^2/Sx^2, c4=Sz*bz/Sx^2
if ( !LinearEquationsSolving( 5, (double *)A, f, c) ) return 0;
// use one magnitude equation and c's to find Sx - doesn't matter which - all give the same answer
xp = x[0]; yp = y[0]; zp = z[0];
Sx = sqrt(ConstMag*ConstMag / (xp*xp + 2*c[0]*xp + c[0]*c[0] + c[1]*yp*yp + 2*c[2]*yp + c[2]*c[2]/c[1] + c[3]*zp*zp + 2*c[4]*zp + c[4]*c[4]/c[3]));
S[0] = Sx;
b[0] = Sx*c[0];
S[1] = sqrt(c[1]*Sx*Sx);
b[1] = c[2]*Sx*Sx/S[1];
S[2] = sqrt(c[3]*Sx*Sx);
b[2] = c[4]*Sx*Sx/S[2];
return 1;
}
void ConfigAHRSWidget::computeScaleBias()
{
UAVObject *obj = dynamic_cast<UAVDataObject*>(getObjectManager()->getObject(QString("AHRSCalibration")));
UAVObjectField *field;
double S[3], b[3];
SixPointInConstFieldCal( 9.81, accel_data_x, accel_data_y, accel_data_z, S, b);
field = obj->getField(QString("gyro_bias"));
field->setDouble(listMean(gyro_accum_x),0);
field->setDouble(listMean(gyro_accum_y),1);
field->setDouble(listMean(gyro_accum_z),2);
field = obj->getField(QString("accel_scale"));
field->setDouble(sign(S[0]) * S[0],0);
field->setDouble(sign(S[1]) * S[1],1);
field->setDouble(-sign(S[2]) * S[2],2);
field = obj->getField(QString("accel_bias"));
field->setDouble(sign(S[0]) * b[0],0);
field->setDouble(sign(S[1]) * b[1],1);
field->setDouble(-sign(S[2]) * b[2],2);
SixPointInConstFieldCal( 1, mag_data_x, mag_data_y, mag_data_z, S, b);
field = obj->getField(QString("mag_scale"));
field->setDouble(sign(S[0]) * S[0],0);
field->setDouble(sign(S[1]) * S[1],1);
field->setDouble(sign(S[2]) * S[2],2);
field = obj->getField(QString("mag_bias"));
field->setDouble(sign(S[0]) * b[0], 0);
field->setDouble(sign(S[1]) * b[1], 1);
field->setDouble(sign(S[2]) * b[2], 2);
// Go ahead and fix gyro scale here
field = obj->getField(QString("gyro_bias"));
double a = field->getDouble(0);
field->setDouble(-sign(a) * a, 0);
a = field->getDouble(1);
field->setDouble(sign(a) * a, 1);
a = field->getDouble(2);
field->setDouble(-sign(a) * a, 2);
field = obj->getField(QString("gyro_bias"));
a = listMean(gyro_accum_x);
field->setDouble(sign(a)*a,0);
a = listMean(gyro_accum_y);
field->setDouble(-sign(a)*a,1);
a = listMean(gyro_accum_z);
field->setDouble(sign(a)*a,2);
obj->updated();
position = -1; //set to run again
m_ahrs->sixPointCalibInstructions->append("Computed accel and mag scale and bias...");
}
/**
Six point calibration mode
*/
void ConfigAHRSWidget::sixPointCalibrationMode()
{
UAVObject *obj = dynamic_cast<UAVDataObject*>(getObjectManager()->getObject(QString("AHRSCalibration")));
// set accels to unity gain
UAVObjectField *field = obj->getField(QString("accel_scale"));
field->setDouble(1,0);
field->setDouble(1,1);
field->setDouble(1,2);
field = obj->getField(QString("accel_bias"));
field->setDouble(0,0);
field->setDouble(0,1);
field->setDouble(0,2);
field = obj->getField(QString("gyro_bias"));
field->setDouble(0,0);
field->setDouble(0,1);
field->setDouble(0,2);
obj->updated();
gyro_accum_x.clear();
gyro_accum_y.clear();
gyro_accum_z.clear();
/* Need to get as many AttitudeRaw updates as possible */
obj = getObjectManager()->getObject(QString("AttitudeRaw"));
initialMdata = obj->getMetadata();
UAVObject::Metadata mdata = initialMdata;
mdata.flightTelemetryUpdateMode = UAVObject::UPDATEMODE_PERIODIC;
mdata.flightTelemetryUpdatePeriod = 20;
obj->setMetadata(mdata);
/* Show instructions and enable controls */
m_ahrs->sixPointCalibInstructions->clear();
m_ahrs->sixPointCalibInstructions->append("Place horizontally and click save position...");
displayPlane("plane-horizontal");
m_ahrs->sixPointsStart->setEnabled(false);
m_ahrs->sixPointsSave->setEnabled(true);
position = 0;
}
/**
Rotate the paper plane
*/
void ConfigAHRSWidget::displayPlane(QString elementID)
{
paperplane->setElementId(elementID);
m_ahrs->sixPointsHelp->setSceneRect(paperplane->boundingRect());
m_ahrs->sixPointsHelp->fitInView(paperplane,Qt::KeepAspectRatio);
}
/**
Draws the sensor variances bargraph
*/
void ConfigAHRSWidget::drawVariancesGraph()
{
UAVObject *obj = dynamic_cast<UAVDataObject*>(getObjectManager()->getObject(QString("AHRSCalibration")));
// Now update size of all the graphs
// I have not found a way to do this elegantly...
UAVObjectField *field = obj->getField(QString("accel_var"));
// The expected range is from 1E-6 to 1E-1
double steps = 6; // 6 bars on the graph
float accel_x_var = -1/steps*(1+steps+log10(field->getValue(0).toFloat()));
accel_x->setTransform(QTransform::fromScale(1,accel_x_var),false);
float accel_y_var = -1/steps*(1+steps+log10(field->getValue(1).toFloat()));
accel_y->setTransform(QTransform::fromScale(1,accel_y_var),false);
float accel_z_var = -1/steps*(1+steps+log10(field->getValue(2).toFloat()));
accel_z->setTransform(QTransform::fromScale(1,accel_z_var),false);
field = obj->getField(QString("gyro_var"));
float gyro_x_var = -1/steps*(1+steps+log10(field->getValue(0).toFloat()));
gyro_x->setTransform(QTransform::fromScale(1,gyro_x_var),false);
float gyro_y_var = -1/steps*(1+steps+log10(field->getValue(1).toFloat()));
gyro_y->setTransform(QTransform::fromScale(1,gyro_y_var),false);
float gyro_z_var = -1/steps*(1+steps+log10(field->getValue(2).toFloat()));
gyro_z->setTransform(QTransform::fromScale(1,gyro_z_var),false);
field = obj->getField(QString("mag_var"));
float mag_x_var = -1/steps*(1+steps+log10(field->getValue(0).toFloat()));
mag_x->setTransform(QTransform::fromScale(1,mag_x_var),false);
float mag_y_var = -1/steps*(1+steps+log10(field->getValue(1).toFloat()));
mag_y->setTransform(QTransform::fromScale(1,mag_y_var),false);
float mag_z_var = -1/steps*(1+steps+log10(field->getValue(2).toFloat()));
mag_z->setTransform(QTransform::fromScale(1,mag_z_var),false);
}
/**
Request current settings from the AHRS
*/
void ConfigAHRSWidget::ahrsSettingsRequest()
{
UAVObject *obj = dynamic_cast<UAVDataObject*>(getObjectManager()->getObject(QString("AHRSSettings")));
obj->requestUpdate();
UAVObjectField *field = obj->getField(QString("Algorithm"));
if (field)
m_ahrs->algorithm->setCurrentIndex(m_ahrs->algorithm->findText(field->getValue().toString()));
drawVariancesGraph();
obj = dynamic_cast<UAVDataObject*>(getObjectManager()->getObject(QString("HomeLocation")));
field = obj->getField(QString("Set"));
if (field)
m_ahrs->homeLocationSet->setEnabled(field->getValue().toBool());
m_ahrs->ahrsCalibStart->setEnabled(true);
m_ahrs->sixPointsStart->setEnabled(true);
m_ahrs->calibInstructions->setText(QString("Press \"Start\" above to calibrate."));
}
/**
Enables/disables the Home Location saving button depending on whether the
home location is set-able
*/
void ConfigAHRSWidget::enableHomeLocSave(UAVObject * obj)
{
UAVObjectField *field = obj->getField(QString("Set"));
if (field) {
m_ahrs->homeLocationSet->setEnabled(field->getValue().toBool());
}
}
/**
Save current settings to RAM
*/
void ConfigAHRSWidget::ahrsSettingsSaveRAM()
{
UAVDataObject *obj = dynamic_cast<UAVDataObject*>(getObjectManager()->getObject(QString("AHRSSettings")));
UAVObjectField *field = obj->getField(QString("Algorithm"));
field->setValue(m_ahrs->algorithm->currentText());
obj->updated();
obj = dynamic_cast<UAVDataObject*>(getObjectManager()->getObject(QString("HomeLocation")));
field = obj->getField(QString("Set"));
if (m_ahrs->homeLocationSet->isChecked())
field->setValue(QString("TRUE"));
else
field->setValue(QString("FALSE"));
obj->updated();
}
/**
Save AHRS Settings and home location to SD
*/
void ConfigAHRSWidget::ahrsSettingsSaveSD()
{
ahrsSettingsSaveRAM();
UAVDataObject *obj = dynamic_cast<UAVDataObject*>(getObjectManager()->getObject(QString("HomeLocation")));
saveObjectToSD(obj);
obj = dynamic_cast<UAVDataObject*>(getObjectManager()->getObject(QString("AHRSSettings")));
saveObjectToSD(obj);
}
/**
@}
@}
*/