1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-01-19 04:52:12 +01:00

769 lines
32 KiB
C
Raw Normal View History

/**
******************************************************************************
*
* @file fixedwingpathfollower.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief This module compared @ref PositionActuatl to @ref ActiveWaypoint
* and sets @ref AttitudeDesired. It only does this when the FlightMode field
* of @ref ManualControlCommand is Auto.
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/**
* Input object: ActiveWaypoint
* Input object: PositionState
* Input object: ManualControlCommand
* Output object: AttitudeDesired
*
* This module will periodically update the value of the AttitudeDesired object.
*
* The module executes in its own thread in this example.
*
* Modules have no API, all communication to other modules is done through UAVObjects.
* However modules may use the API exposed by shared libraries.
* See the OpenPilot wiki for more details.
* http://www.openpilot.org/OpenPilot_Application_Architecture
*
*/
#include <openpilot.h>
#include "hwsettings.h"
#include "attitudestate.h"
#include "pathdesired.h" // object that will be updated by the module
#include "positionstate.h"
#include "flightstatus.h"
#include "pathstatus.h"
#include "airspeedstate.h"
#include "fixedwingpathfollowersettings.h"
#include "fixedwingpathfollowerstatus.h"
#include "homelocation.h"
#include "stabilizationdesired.h"
#include "stabilizationsettings.h"
#include "systemsettings.h"
#include "velocitydesired.h"
#include "velocitystate.h"
#include "taskinfo.h"
#include <pios_struct_helper.h>
#include "sin_lookup.h"
#include "paths.h"
#include "CoordinateConversions.h"
// Private constants
#define MAX_QUEUE_SIZE 4
#define STACK_SIZE_BYTES 1548
#define TASK_PRIORITY (tskIDLE_PRIORITY + 2)
// Private variables
static bool followerEnabled = false;
static xTaskHandle pathfollowerTaskHandle;
2012-05-24 23:28:13 +02:00
static PathDesiredData pathDesired;
static PathStatusData pathStatus;
static FixedWingPathFollowerSettingsData fixedwingpathfollowerSettings;
// Private functions
static void pathfollowerTask(void *parameters);
static void SettingsUpdatedCb(UAVObjEvent *ev);
static void updatePathVelocity();
static uint8_t updateFixedDesiredAttitude();
2012-05-24 23:28:13 +02:00
static void updateFixedAttitude();
static void airspeedStateUpdatedCb(UAVObjEvent *ev);
static bool correctCourse(float *C, float *V, float *F, float s);
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
int32_t FixedWingPathFollowerStart()
{
if (followerEnabled) {
// Start main task
xTaskCreate(pathfollowerTask, (signed char *)"PathFollower", STACK_SIZE_BYTES / 4, NULL, TASK_PRIORITY, &pathfollowerTaskHandle);
PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_PATHFOLLOWER, pathfollowerTaskHandle);
}
return 0;
}
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
int32_t FixedWingPathFollowerInitialize()
{
HwSettingsInitialize();
HwSettingsOptionalModulesData optionalModules;
HwSettingsOptionalModulesGet(&optionalModules);
if (optionalModules.FixedWingPathFollower == HWSETTINGS_OPTIONALMODULES_ENABLED) {
followerEnabled = true;
FixedWingPathFollowerSettingsInitialize();
FixedWingPathFollowerStatusInitialize();
PathDesiredInitialize();
PathStatusInitialize();
VelocityDesiredInitialize();
AirspeedStateInitialize();
} else {
followerEnabled = false;
}
return 0;
}
MODULE_INITCALL(FixedWingPathFollowerInitialize, FixedWingPathFollowerStart);
static float northVelIntegral = 0.0f;
static float eastVelIntegral = 0.0f;
static float downVelIntegral = 0.0f;
static float courseIntegral = 0.0f;
static float speedIntegral = 0.0f;
static float powerIntegral = 0.0f;
static float airspeedErrorInt = 0.0f;
// correct speed by measured airspeed
static float indicatedAirspeedStateBias = 0.0f;
/**
* Module thread, should not return.
*/
static void pathfollowerTask(__attribute__((unused)) void *parameters)
{
SystemSettingsData systemSettings;
FlightStatusData flightStatus;
portTickType lastUpdateTime;
AirspeedStateConnectCallback(airspeedStateUpdatedCb);
FixedWingPathFollowerSettingsConnectCallback(SettingsUpdatedCb);
PathDesiredConnectCallback(SettingsUpdatedCb);
FixedWingPathFollowerSettingsGet(&fixedwingpathfollowerSettings);
PathDesiredGet(&pathDesired);
// Main task loop
lastUpdateTime = xTaskGetTickCount();
while (1) {
// Conditions when this runs:
// 1. Must have FixedWing type airframe
// 2. Flight mode is PositionHold and PathDesired.Mode is Endpoint OR
// FlightMode is PathPlanner and PathDesired.Mode is Endpoint or Path
SystemSettingsGet(&systemSettings);
if ((systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_FIXEDWING) &&
(systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_FIXEDWINGELEVON) &&
(systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_FIXEDWINGVTAIL)) {
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_WARNING);
vTaskDelay(1000);
continue;
}
// Continue collecting data if not enough time
vTaskDelayUntil(&lastUpdateTime, fixedwingpathfollowerSettings.UpdatePeriod / portTICK_RATE_MS);
FlightStatusGet(&flightStatus);
PathStatusGet(&pathStatus);
uint8_t result;
// Check the combinations of flightmode and pathdesired mode
if (flightStatus.ControlChain.PathFollower == FLIGHTSTATUS_CONTROLCHAIN_TRUE) {
if (flightStatus.ControlChain.PathPlanner == FLIGHTSTATUS_CONTROLCHAIN_FALSE) {
if (pathDesired.Mode == PATHDESIRED_MODE_FLYENDPOINT) {
updatePathVelocity();
result = updateFixedDesiredAttitude();
if (result) {
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
} else {
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_WARNING);
}
} else {
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_ERROR);
}
} else {
pathStatus.UID = pathDesired.UID;
pathStatus.Status = PATHSTATUS_STATUS_INPROGRESS;
switch (pathDesired.Mode) {
case PATHDESIRED_MODE_FLYENDPOINT:
case PATHDESIRED_MODE_FLYVECTOR:
case PATHDESIRED_MODE_FLYCIRCLERIGHT:
case PATHDESIRED_MODE_FLYCIRCLELEFT:
updatePathVelocity();
result = updateFixedDesiredAttitude();
if (result) {
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
} else {
pathStatus.Status = PATHSTATUS_STATUS_CRITICAL;
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_WARNING);
}
break;
case PATHDESIRED_MODE_FIXEDATTITUDE:
updateFixedAttitude(pathDesired.ModeParameters);
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
break;
case PATHDESIRED_MODE_DISARMALARM:
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_CRITICAL);
break;
default:
pathStatus.Status = PATHSTATUS_STATUS_CRITICAL;
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_ERROR);
break;
}
}
} else {
// Be cleaner and get rid of global variables
northVelIntegral = 0.0f;
eastVelIntegral = 0.0f;
downVelIntegral = 0.0f;
courseIntegral = 0.0f;
speedIntegral = 0.0f;
powerIntegral = 0.0f;
}
PathStatusSet(&pathStatus);
}
}
/**
* Compute desired velocity from the current position and path
*
* Takes in @ref PositionState and compares it to @ref PathDesired
* and computes @ref VelocityDesired
*/
static void updatePathVelocity()
{
PositionStateData positionState;
PositionStateGet(&positionState);
VelocityStateData velocityState;
VelocityStateGet(&velocityState);
// look ahead fixedwingpathfollowerSettings.CourseFeedForward seconds
float cur[3] = { positionState.North + (velocityState.North * fixedwingpathfollowerSettings.CourseFeedForward),
positionState.East + (velocityState.East * fixedwingpathfollowerSettings.CourseFeedForward),
positionState.Down + (velocityState.Down * fixedwingpathfollowerSettings.CourseFeedForward) };
struct path_status progress;
path_progress(cast_struct_to_array(pathDesired.Start, pathDesired.Start.North),
cast_struct_to_array(pathDesired.End, pathDesired.End.North),
cur, &progress, pathDesired.Mode);
float groundspeed;
float altitudeSetpoint;
switch (pathDesired.Mode) {
case PATHDESIRED_MODE_FLYCIRCLERIGHT:
case PATHDESIRED_MODE_DRIVECIRCLERIGHT:
case PATHDESIRED_MODE_FLYCIRCLELEFT:
case PATHDESIRED_MODE_DRIVECIRCLELEFT:
groundspeed = pathDesired.EndingVelocity;
altitudeSetpoint = pathDesired.End.Down;
break;
case PATHDESIRED_MODE_FLYENDPOINT:
case PATHDESIRED_MODE_DRIVEENDPOINT:
case PATHDESIRED_MODE_FLYVECTOR:
case PATHDESIRED_MODE_DRIVEVECTOR:
default:
groundspeed = pathDesired.StartingVelocity + (pathDesired.EndingVelocity - pathDesired.StartingVelocity) *
boundf(progress.fractional_progress, 0.0f, 1.0f);
altitudeSetpoint = pathDesired.Start.Down + (pathDesired.End.Down - pathDesired.Start.Down) *
boundf(progress.fractional_progress, 0.0f, 1.0f);
break;
}
// make sure groundspeed is not zero
if (groundspeed < 1e-6f) {
groundspeed = 1e-6f;
}
// calculate velocity - can be zero if waypoints are too close
VelocityDesiredData velocityDesired;
velocityDesired.North = progress.path_direction[0];
velocityDesired.East = progress.path_direction[1];
float error_speed = progress.error * fixedwingpathfollowerSettings.HorizontalPosP;
// if a plane is crossing its desired flightpath facing the wrong way (away from flight direction)
// it would turn towards the flightpath to get on its desired course. This however would reverse the correction vector
// once it crosses the flightpath again, which would make it again turn towards the flightpath (but away from its desired heading)
// leading to an S-shape snake course the wrong way
// this only happens especially if HorizontalPosP is too high, as otherwise the angle between velocity desired and path_direction won't
// turn steep unless there is enough space complete the turn before crossing the flightpath
// in this case the plane effectively needs to be turned around
// indicators:
// difference between correction_direction and velocitystate >90 degrees and
// difference between path_direction and velocitystate >90 degrees ( 4th sector, facing away from everything )
// fix: ignore correction, steer in path direction until the situation has become better (condition doesn't apply anymore)
if ( // calculating angles < 90 degrees through dot products
((progress.path_direction[0] * velocityState.North + progress.path_direction[1] * velocityState.East) < 0.0f) &&
((progress.correction_direction[0] * velocityState.North + progress.correction_direction[1] * velocityState.East) < 0.0f)) {
error_speed = 0.0f;
}
// calculate correction - can also be zero if correction vector is 0 or no error present
velocityDesired.North += progress.correction_direction[0] * error_speed;
velocityDesired.East += progress.correction_direction[1] * error_speed;
// scale to correct length
float l = sqrtf(velocityDesired.North * velocityDesired.North + velocityDesired.East * velocityDesired.East);
if (l > 1e-9f) {
velocityDesired.North *= groundspeed / l;
velocityDesired.East *= groundspeed / l;
}
float downError = altitudeSetpoint - positionState.Down;
velocityDesired.Down = downError * fixedwingpathfollowerSettings.VerticalPosP;
// update pathstatus
pathStatus.error = progress.error;
pathStatus.fractional_progress = progress.fractional_progress;
VelocityDesiredSet(&velocityDesired);
}
/**
* Compute desired attitude from a fixed preset
*
*/
static void updateFixedAttitude(float *attitude)
{
StabilizationDesiredData stabDesired;
StabilizationDesiredGet(&stabDesired);
stabDesired.Roll = attitude[0];
stabDesired.Pitch = attitude[1];
stabDesired.Yaw = attitude[2];
stabDesired.Thrust = attitude[3];
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_RATE;
stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
StabilizationDesiredSet(&stabDesired);
}
/**
* Compute desired attitude from the desired velocity
*
* Takes in @ref NedState which has the acceleration in the
* NED frame as the feedback term and then compares the
* @ref VelocityState against the @ref VelocityDesired
*/
static uint8_t updateFixedDesiredAttitude()
{
uint8_t result = 1;
float dT = fixedwingpathfollowerSettings.UpdatePeriod / 1000.0f; // Convert from [ms] to [s]
VelocityDesiredData velocityDesired;
VelocityStateData velocityState;
StabilizationDesiredData stabDesired;
AttitudeStateData attitudeState;
StabilizationSettingsData stabSettings;
FixedWingPathFollowerStatusData fixedwingpathfollowerStatus;
AirspeedStateData airspeedState;
SystemSettingsData systemSettings;
float groundspeedProjection;
float indicatedAirspeedState;
float indicatedAirspeedDesired;
float airspeedError;
float pitchCommand;
float descentspeedDesired;
float descentspeedError;
float powerCommand;
float airspeedVector[2];
float fluidMovement[2];
float courseComponent[2];
float courseError;
float courseCommand;
FixedWingPathFollowerStatusGet(&fixedwingpathfollowerStatus);
VelocityStateGet(&velocityState);
StabilizationDesiredGet(&stabDesired);
VelocityDesiredGet(&velocityDesired);
AttitudeStateGet(&attitudeState);
StabilizationSettingsGet(&stabSettings);
AirspeedStateGet(&airspeedState);
SystemSettingsGet(&systemSettings);
/**
* Compute speed error and course
*/
2014-05-17 23:27:30 +02:00
// missing sensors for airspeed-direction we have to assume within
// reasonable error that measured airspeed is actually the airspeed
// component in forward pointing direction
// airspeedVector is normalized
airspeedVector[0] = cos_lookup_deg(attitudeState.Yaw);
airspeedVector[1] = sin_lookup_deg(attitudeState.Yaw);
2014-05-17 23:27:30 +02:00
// current ground speed projected in forward direction
groundspeedProjection = velocityState.North * airspeedVector[0] + velocityState.East * airspeedVector[1];
// note that airspeedStateBias is ( calibratedAirspeed - groundspeedProjection ) at the time of measurement,
// but thanks to accelerometers, groundspeedProjection reacts faster to changes in direction
// than airspeed and gps sensors alone
indicatedAirspeedState = groundspeedProjection + indicatedAirspeedStateBias;
2014-05-17 23:27:30 +02:00
// fluidMovement is a vector describing the aproximate movement vector of
// the surrounding fluid in 2d space (aka wind vector)
fluidMovement[0] = velocityState.North - (indicatedAirspeedState * airspeedVector[0]);
fluidMovement[1] = velocityState.East - (indicatedAirspeedState * airspeedVector[1]);
2014-05-17 23:27:30 +02:00
// calculate the movement vector we need to fly to reach velocityDesired -
// taking fluidMovement into account
courseComponent[0] = velocityDesired.North - fluidMovement[0];
courseComponent[1] = velocityDesired.East - fluidMovement[1];
indicatedAirspeedDesired = boundf(sqrtf(courseComponent[0] * courseComponent[0] + courseComponent[1] * courseComponent[1]),
fixedwingpathfollowerSettings.HorizontalVelMin,
fixedwingpathfollowerSettings.HorizontalVelMax);
2014-05-17 23:27:30 +02:00
// if we could fly at arbitrary speeds, we'd just have to move towards the
// courseComponent vector as previously calculated and we'd be fine
// unfortunately however we are bound by min and max air speed limits, so
// we need to recalculate the correct course to meet at least the
// velocityDesired vector direction at our current speed
// this overwrites courseComponent
bool valid = correctCourse(courseComponent, (float *)&velocityDesired.North, fluidMovement, indicatedAirspeedDesired);
2014-05-17 23:27:30 +02:00
// Error condition: wind speed too high, we can't go where we want anymore
fixedwingpathfollowerStatus.Errors.Wind = 0;
if ((!valid) &&
fixedwingpathfollowerSettings.Safetymargins.Wind > 0.5f) { // alarm switched on
fixedwingpathfollowerStatus.Errors.Wind = 1;
result = 0;
}
// Airspeed error
airspeedError = indicatedAirspeedDesired - indicatedAirspeedState;
// Vertical speed error
descentspeedDesired = boundf(
velocityDesired.Down,
-fixedwingpathfollowerSettings.VerticalVelMax,
fixedwingpathfollowerSettings.VerticalVelMax);
descentspeedError = descentspeedDesired - velocityState.Down;
// Error condition: plane too slow or too fast
fixedwingpathfollowerStatus.Errors.Highspeed = 0;
fixedwingpathfollowerStatus.Errors.Lowspeed = 0;
if (indicatedAirspeedState > systemSettings.AirSpeedMax * fixedwingpathfollowerSettings.Safetymargins.Overspeed) {
fixedwingpathfollowerStatus.Errors.Overspeed = 1;
result = 0;
}
if (indicatedAirspeedState > fixedwingpathfollowerSettings.HorizontalVelMax * fixedwingpathfollowerSettings.Safetymargins.Highspeed) {
fixedwingpathfollowerStatus.Errors.Highspeed = 1;
result = 0;
}
if (indicatedAirspeedState < fixedwingpathfollowerSettings.HorizontalVelMin * fixedwingpathfollowerSettings.Safetymargins.Lowspeed) {
fixedwingpathfollowerStatus.Errors.Lowspeed = 1;
result = 0;
}
if (indicatedAirspeedState < systemSettings.AirSpeedMin * fixedwingpathfollowerSettings.Safetymargins.Stallspeed) {
fixedwingpathfollowerStatus.Errors.Stallspeed = 1;
result = 0;
}
/**
* Compute desired thrust command
*/
// compute saturated integral error thrust response. Make integral leaky for better performance. Approximately 30s time constant.
if (fixedwingpathfollowerSettings.PowerPI.Ki > 0.0f) {
powerIntegral = boundf(powerIntegral + -descentspeedError * dT,
-fixedwingpathfollowerSettings.PowerPI.ILimit / fixedwingpathfollowerSettings.PowerPI.Ki,
fixedwingpathfollowerSettings.PowerPI.ILimit / fixedwingpathfollowerSettings.PowerPI.Ki
) * (1.0f - 1.0f / (1.0f + 30.0f / dT));
2014-05-17 23:27:30 +02:00
} else {
powerIntegral = 0.0f;
2014-05-17 23:27:30 +02:00
}
// Compute the cross feed from vertical speed to pitch, with saturation
float speedErrorToPowerCommandComponent = boundf(
(airspeedError / fixedwingpathfollowerSettings.HorizontalVelMin) * fixedwingpathfollowerSettings.AirspeedToPowerCrossFeed.Kp,
-fixedwingpathfollowerSettings.AirspeedToPowerCrossFeed.Max,
fixedwingpathfollowerSettings.AirspeedToPowerCrossFeed.Max
);
// Compute final thrust response
powerCommand = -descentspeedError * fixedwingpathfollowerSettings.PowerPI.Kp +
powerIntegral * fixedwingpathfollowerSettings.PowerPI.Ki +
speedErrorToPowerCommandComponent;
// Output internal state to telemetry
fixedwingpathfollowerStatus.Error.Power = descentspeedError;
fixedwingpathfollowerStatus.ErrorInt.Power = powerIntegral;
fixedwingpathfollowerStatus.Command.Power = powerCommand;
// set thrust
stabDesired.Thrust = boundf(fixedwingpathfollowerSettings.ThrustLimit.Neutral + powerCommand,
fixedwingpathfollowerSettings.ThrustLimit.Min,
fixedwingpathfollowerSettings.ThrustLimit.Max);
// Error condition: plane cannot hold altitude at current speed.
fixedwingpathfollowerStatus.Errors.Lowpower = 0;
if (fixedwingpathfollowerSettings.ThrustLimit.Neutral + powerCommand >= fixedwingpathfollowerSettings.ThrustLimit.Max && // thrust at maximum
velocityState.Down > 0.0f && // we ARE going down
descentspeedDesired < 0.0f && // we WANT to go up
airspeedError > 0.0f && // we are too slow already
fixedwingpathfollowerSettings.Safetymargins.Lowpower > 0.5f) { // alarm switched on
fixedwingpathfollowerStatus.Errors.Lowpower = 1;
result = 0;
}
// Error condition: plane keeps climbing despite minimum thrust (opposite of above)
fixedwingpathfollowerStatus.Errors.Highpower = 0;
if (fixedwingpathfollowerSettings.ThrustLimit.Neutral + powerCommand <= fixedwingpathfollowerSettings.ThrustLimit.Min && // thrust at minimum
velocityState.Down < 0.0f && // we ARE going up
descentspeedDesired > 0.0f && // we WANT to go down
airspeedError < 0.0f && // we are too fast already
fixedwingpathfollowerSettings.Safetymargins.Highpower > 0.5f) { // alarm switched on
fixedwingpathfollowerStatus.Errors.Highpower = 1;
result = 0;
}
/**
* Compute desired pitch command
*/
if (fixedwingpathfollowerSettings.SpeedPI.Ki > 0) {
// Integrate with saturation
airspeedErrorInt = boundf(airspeedErrorInt + airspeedError * dT,
-fixedwingpathfollowerSettings.SpeedPI.ILimit / fixedwingpathfollowerSettings.SpeedPI.Ki,
fixedwingpathfollowerSettings.SpeedPI.ILimit / fixedwingpathfollowerSettings.SpeedPI.Ki);
}
// Compute the cross feed from vertical speed to pitch, with saturation
float verticalSpeedToPitchCommandComponent = boundf(-descentspeedError * fixedwingpathfollowerSettings.VerticalToPitchCrossFeed.Kp,
-fixedwingpathfollowerSettings.VerticalToPitchCrossFeed.Max,
fixedwingpathfollowerSettings.VerticalToPitchCrossFeed.Max
);
// Compute the pitch command as err*Kp + errInt*Ki + X_feed.
pitchCommand = -(airspeedError * fixedwingpathfollowerSettings.SpeedPI.Kp
+ airspeedErrorInt * fixedwingpathfollowerSettings.SpeedPI.Ki
) + verticalSpeedToPitchCommandComponent;
fixedwingpathfollowerStatus.Error.Speed = airspeedError;
fixedwingpathfollowerStatus.ErrorInt.Speed = airspeedErrorInt;
fixedwingpathfollowerStatus.Command.Speed = pitchCommand;
stabDesired.Pitch = boundf(fixedwingpathfollowerSettings.PitchLimit.Neutral + pitchCommand,
fixedwingpathfollowerSettings.PitchLimit.Min,
fixedwingpathfollowerSettings.PitchLimit.Max);
// Error condition: high speed dive
fixedwingpathfollowerStatus.Errors.Pitchcontrol = 0;
if (fixedwingpathfollowerSettings.PitchLimit.Neutral + pitchCommand >= fixedwingpathfollowerSettings.PitchLimit.Max && // pitch demand is full up
velocityState.Down > 0.0f && // we ARE going down
descentspeedDesired < 0.0f && // we WANT to go up
airspeedError < 0.0f && // we are too fast already
fixedwingpathfollowerSettings.Safetymargins.Pitchcontrol > 0.5f) { // alarm switched on
fixedwingpathfollowerStatus.Errors.Pitchcontrol = 1;
result = 0;
}
/**
* Compute desired roll command
*/
courseError = RAD2DEG(atan2f(courseComponent[1], courseComponent[0])) - attitudeState.Yaw;
if (courseError < -180.0f) {
courseError += 360.0f;
}
if (courseError > 180.0f) {
courseError -= 360.0f;
}
// overlap calculation. Theres a dead zone behind the craft where the
// counter-yawing of some craft while rolling could render a desired right
// turn into a desired left turn. Making the turn direction based on
// current roll angle keeps the plane committed to a direction once chosen
if (courseError < -180.0f + (fixedwingpathfollowerSettings.ReverseCourseOverlap * 0.5f)
&& attitudeState.Roll > 0.0f) {
courseError += 360.0f;
}
if (courseError > 180.0f - (fixedwingpathfollowerSettings.ReverseCourseOverlap * 0.5f)
&& attitudeState.Roll < 0.0f) {
courseError -= 360.0f;
}
courseIntegral = boundf(courseIntegral + courseError * dT * fixedwingpathfollowerSettings.CoursePI.Ki,
-fixedwingpathfollowerSettings.CoursePI.ILimit,
fixedwingpathfollowerSettings.CoursePI.ILimit);
courseCommand = (courseError * fixedwingpathfollowerSettings.CoursePI.Kp +
courseIntegral);
fixedwingpathfollowerStatus.Error.Course = courseError;
fixedwingpathfollowerStatus.ErrorInt.Course = courseIntegral;
fixedwingpathfollowerStatus.Command.Course = courseCommand;
stabDesired.Roll = boundf(fixedwingpathfollowerSettings.RollLimit.Neutral +
courseCommand,
fixedwingpathfollowerSettings.RollLimit.Min,
fixedwingpathfollowerSettings.RollLimit.Max);
// TODO: find a check to determine loss of directional control. Likely needs some check of derivative
/**
* Compute desired yaw command
*/
// TODO implement raw control mode for yaw and base on Accels.Y
stabDesired.Yaw = 0.0f;
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
StabilizationDesiredSet(&stabDesired);
FixedWingPathFollowerStatusSet(&fixedwingpathfollowerStatus);
return result;
}
static void SettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
FixedWingPathFollowerSettingsGet(&fixedwingpathfollowerSettings);
PathDesiredGet(&pathDesired);
}
static void airspeedStateUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
AirspeedStateData airspeedState;
VelocityStateData velocityState;
AirspeedStateGet(&airspeedState);
VelocityStateGet(&velocityState);
float airspeedVector[2];
float yaw;
AttitudeStateYawGet(&yaw);
airspeedVector[0] = cos_lookup_deg(yaw);
airspeedVector[1] = sin_lookup_deg(yaw);
// vector projection of groundspeed on airspeed vector to handle both forward and backwards movement
float groundspeedProjection = velocityState.North * airspeedVector[0] + velocityState.East * airspeedVector[1];
indicatedAirspeedStateBias = airspeedState.CalibratedAirspeed - groundspeedProjection;
// note - we do fly by Indicated Airspeed (== calibrated airspeed) however
// since airspeed is updated less often than groundspeed, we use sudden
// changes to groundspeed to offset the airspeed by the same measurement.
// This has a side effect that in the absence of any airspeed updates, the
// pathfollower will fly using groundspeed.
}
/**
2014-05-17 23:27:30 +02:00
* Function to calculate course vector C based on airspeed s, fluid movement F
* and desired movement vector V
* parameters in: V,F,s
* parameters out: C
* returns true if a valid solution could be found for V,F,s, false if not
* C will be set to a best effort attempt either way
*/
static bool correctCourse(float *C, float *V, float *F, float s)
{
2014-05-17 23:27:30 +02:00
// Approach:
// Let Sc be a circle around origin marking possible movement vectors
// of the craft with airspeed s (all possible options for C)
// Let Vl be a line through the origin along movement vector V where fr any
// point v on line Vl v = k * (V / |V|) = k' * V
// Let Wl be a line parallel to Vl where for any point v on line Vl exists
// a point w on WL with w = v - F
// Then any intersection between circle Sc and line Wl represents course
// vector which would result in a movement vector
// V' = k * ( V / |V|) = k' * V
// If there is no intersection point, S is insufficient to compensate
// for F and we can only try to fly in direction of V (thus having wind drift
// but at least making progress orthogonal to wind)
s = fabsf(s);
float f = sqrtf(F[0] * F[0] + F[1] * F[1]);
2014-05-17 23:27:30 +02:00
// normalize Cn=V/|V|, |V| must be >0
float v = sqrtf(V[0] * V[0] + V[1] * V[1]);
if (v < 1e-6f) {
2014-05-17 23:27:30 +02:00
// if |V|=0, we aren't supposed to move, turn into the wind
// (this allows hovering)
C[0] = -F[0];
C[1] = -F[1];
2014-05-17 23:27:30 +02:00
// if desired airspeed matches fluidmovement a hover is actually
// intended so return true
return fabsf(f - s) < 1e-3f;
}
float Vn[2] = { V[0] / v, V[1] / v };
// project F on V
float fp = F[0] * Vn[0] + F[1] * Vn[1];
2014-05-17 23:27:30 +02:00
// find component Fo of F that is orthogonal to V
// (which is exactly the distance between Vl and Wl)
float Fo[2] = { F[0] - (fp * Vn[0]), F[1] - (fp * Vn[1]) };
float fo2 = Fo[0] * Fo[0] + Fo[1] * Fo[1];
// find k where k * Vn = C - Fo
2014-05-17 23:27:30 +02:00
// |C|=s is the hypothenuse in any rectangular triangle formed by k * Vn and Fo
// so k^2 + fo^2 = s^2 (since |Vn|=1)
float k2 = s * s - fo2;
if (k2 <= -1e-3f) {
// there is no solution, we will be drifted off either way
2014-05-17 23:27:30 +02:00
// fallback: fly stupidly in direction of V and hope for the best
C[0] = V[0];
C[1] = V[1];
return false;
} else if (k2 <= 1e-3f) {
2014-05-17 23:27:30 +02:00
// there is exactly one solution: -Fo
C[0] = -Fo[0];
C[1] = -Fo[1];
return true;
}
2014-05-17 23:27:30 +02:00
// we have two possible solutions k positive and k negative as there are
// two intersection points between Wl and Sc
// which one is better? two criteria:
// 1. we MUST move in the right direction, if any k leads to -v its invalid
// 2. we should minimize the speed error
float k = sqrt(k2);
float C1[2] = { -k * Vn[0] - Fo[0], -k * Vn[1] - Fo[1] };
float C2[2] = { k *Vn[0] - Fo[0], k * Vn[1] - Fo[1] };
2014-05-17 23:27:30 +02:00
// project C+F on Vn to find signed resulting movement vector length
float vp1 = (C1[0] + F[0]) * Vn[0] + (C1[1] + F[1]) * Vn[1];
float vp2 = (C2[0] + F[0]) * Vn[0] + (C2[1] + F[1]) * Vn[1];
if (vp1 >= 0.0f && fabsf(v - vp1) < fabsf(v - vp2)) {
2014-05-17 23:27:30 +02:00
// in this case the angle between course and resulting movement vector
// is greater than 90 degrees - so we actually fly backwards
C[0] = C1[0];
C[1] = C1[1];
return true;
}
C[0] = C2[0];
C[1] = C2[1];
if (vp2 >= 0.0f) {
2014-05-17 23:27:30 +02:00
// in this case the angle between course and movement vector is less than
// 90 degrees, but we do move in the right direction
return true;
} else {
2014-05-17 23:27:30 +02:00
// in this case we actually get driven in the opposite direction of V
// with both solutions for C
// this might be reached in headwind stronger than maximum allowed
// airspeed.
return false;
}
}