1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-12-11 19:24:10 +01:00
LibrePilot/flight/Modules/Sensors/sensors.c

453 lines
13 KiB
C
Raw Normal View History

/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup Sensors
* @brief Acquires sensor data
* Specifically updates the the @ref Gyros, @ref Accels, and @ref Magnetometer objects
* @{
*
* @file sensors.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief Module to handle all comms to the AHRS on a periodic basis.
*
* @see The GNU Public License (GPL) Version 3
*
******************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/**
* Input objects: None, takes sensor data via pios
* Output objects: @ref Gyros @ref Accels @ref Magnetometer
*
* The module executes in its own thread.
*
* UAVObjects are automatically generated by the UAVObjectGenerator from
* the object definition XML file.
*
* Modules have no API, all communication to other modules is done through UAVObjects.
* However modules may use the API exposed by shared libraries.
* See the OpenPilot wiki for more details.
* http://www.openpilot.org/OpenPilot_Application_Architecture
*
*/
#include "pios.h"
#include "attitude.h"
#include "magnetometer.h"
#include "accels.h"
#include "gyros.h"
#include "gyrosbias.h"
#include "attitudeactual.h"
#include "attitudesettings.h"
#include "revocalibration.h"
#include "flightstatus.h"
#include "gpsposition.h"
#include "baroaltitude.h"
#include "CoordinateConversions.h"
// Private constants
#define STACK_SIZE_BYTES 1540
#define TASK_PRIORITY (tskIDLE_PRIORITY+3)
#define SENSOR_PERIOD 2
#define F_PI 3.14159265358979323846f
#define PI_MOD(x) (fmod(x + F_PI, F_PI * 2) - F_PI)
// Private types
// Private variables
static xTaskHandle sensorsTaskHandle;
static bool gps_updated = false;
static bool baro_updated = false;
// Private functions
static void SensorsTask(void *parameters);
static void settingsUpdatedCb(UAVObjEvent * objEv);
static void sensorsUpdatedCb(UAVObjEvent * objEv);
// These values are initialized by settings but can be updated by the attitude algorithm
static bool bias_correct_gyro = true;
static float mag_bias[3] = {0,0,0};
static float mag_scale[3] = {0,0,0};
static float accel_bias[3] = {0,0,0};
static float accel_scale[3] = {0,0,0};
/**
* API for sensor fusion algorithms:
* Configure(xQueueHandle gyro, xQueueHandle accel, xQueueHandle mag, xQueueHandle baro)
* Stores all the queues the algorithm will pull data from
* FinalizeSensors() -- before saving the sensors modifies them based on internal state (gyro bias)
* Update() -- queries queues and updates the attitude estiamte
*/
/**
* Initialise the module. Called before the start function
* \returns 0 on success or -1 if initialisation failed
*/
int32_t SensorsInitialize(void)
{
GyrosInitialize();
GyrosBiasInitialize();
AccelsInitialize();
MagnetometerInitialize();
RevoCalibrationInitialize();
RevoCalibrationConnectCallback(&settingsUpdatedCb);
return 0;
}
/**
* Start the task. Expects all objects to be initialized by this point.
* \returns 0 on success or -1 if initialisation failed
*/
int32_t SensorsStart(void)
{
// Start main task
xTaskCreate(SensorsTask, (signed char *)"Sensors", STACK_SIZE_BYTES/4, NULL, TASK_PRIORITY, &sensorsTaskHandle);
TaskMonitorAdd(TASKINFO_RUNNING_SENSORS, sensorsTaskHandle);
PIOS_WDG_RegisterFlag(PIOS_WDG_SENSORS);
return 0;
}
MODULE_INITCALL(SensorsInitialize, SensorsStart)
int32_t accel_test;
int32_t gyro_test;
int32_t mag_test;
//int32_t pressure_test;
/**
* The sensor task. This polls the gyros at 500 Hz and pumps that data to
* stabilization and to the attitude loop
2012-01-05 02:47:57 +01:00
*
* This function has a lot of if/defs right now to allow these configurations:
* 1. BMA180 accel and MPU6000 gyro
* 2. MPU6000 gyro and accel
* 3. BMA180 accel and L3GD20 gyro
*/
uint32_t sensor_dt_us;
static void SensorsTask(void *parameters)
{
portTickType lastSysTime;
uint32_t accel_samples;
uint32_t gyro_samples;
int32_t accel_accum[3] = {0, 0, 0};
int32_t gyro_accum[3] = {0,0,0};
2012-01-05 02:47:57 +01:00
float gyro_scaling;
float accel_scaling;
static int32_t timeval;
AlarmsClear(SYSTEMALARMS_ALARM_SENSORS);
UAVObjEvent ev;
settingsUpdatedCb(&ev);
2012-01-28 07:21:58 +01:00
2012-01-05 02:47:57 +01:00
#if defined(PIOS_INCLUDE_MPU6000)
gyro_test = PIOS_MPU6000_Test();
2012-01-28 07:21:58 +01:00
#if !defined(PIOS_INCLUDE_BMA180)
accel_test = gyro_test;
#endif
2012-01-05 02:47:57 +01:00
#elif defined(PIOS_INCLUDE_L3GD20)
gyro_test = PIOS_L3GD20_Test();
2012-01-28 07:21:58 +01:00
#endif
#if defined(PIOS_INCLUDE_BMA180)
accel_test = PIOS_BMA180_Test();
2012-01-05 02:47:57 +01:00
#endif
mag_test = PIOS_HMC5883_Test();
if(accel_test < 0 || gyro_test < 0 || mag_test < 0) {
AlarmsSet(SYSTEMALARMS_ALARM_SENSORS, SYSTEMALARMS_ALARM_CRITICAL);
while(1) {
PIOS_WDG_UpdateFlag(PIOS_WDG_SENSORS);
vTaskDelay(10);
}
}
// If debugging connect callback
if(pios_com_aux_id != 0) {
BaroAltitudeConnectCallback(&sensorsUpdatedCb);
GPSPositionConnectCallback(&sensorsUpdatedCb);
}
// Main task loop
lastSysTime = xTaskGetTickCount();
bool error = false;
uint32_t mag_update_time = PIOS_DELAY_GetRaw();
while (1) {
// TODO: add timeouts to the sensor reads and set an error if the fail
sensor_dt_us = PIOS_DELAY_DiffuS(timeval);
timeval = PIOS_DELAY_GetRaw();
2012-01-05 02:47:57 +01:00
if (error) {
PIOS_WDG_UpdateFlag(PIOS_WDG_SENSORS);
lastSysTime = xTaskGetTickCount();
vTaskDelayUntil(&lastSysTime, SENSOR_PERIOD / portTICK_RATE_MS);
AlarmsSet(SYSTEMALARMS_ALARM_SENSORS, SYSTEMALARMS_ALARM_CRITICAL);
error = false;
} else {
AlarmsClear(SYSTEMALARMS_ALARM_SENSORS);
}
int32_t read_good;
int32_t count;
2012-01-05 02:47:57 +01:00
for (int i = 0; i < 3; i++) {
accel_accum[i] = 0;
gyro_accum[i] = 0;
}
accel_samples = 0;
gyro_samples = 0;
2012-01-05 02:47:57 +01:00
// Make sure we get one sample
#if !defined(PIOS_MPU6000_ACCEL)
2012-01-05 02:47:57 +01:00
struct pios_bma180_data accel;
count = 0;
while((read_good = PIOS_BMA180_ReadFifo(&accel)) != 0 && !error)
error = ((xTaskGetTickCount() - lastSysTime) > SENSOR_PERIOD) ? true : error;
if (error) {
// Unfortunately if the BMA180 ever misses getting read, then it will not
// trigger more interrupts. In this case we must force a read to kickstarts
// it.
struct pios_bma180_data data;
PIOS_BMA180_ReadAccels(&data);
continue;
}
while(read_good == 0) {
count++;
accel_accum[0] += accel.x;
accel_accum[1] += accel.y;
accel_accum[2] += accel.z;
read_good = PIOS_BMA180_ReadFifo(&accel);
}
2012-01-05 02:47:57 +01:00
accel_samples = count;
accel_scaling = PIOS_BMA180_GetScale();
#endif
2012-01-05 02:47:57 +01:00
// Using MPU6000 gyro and possibly accel
#if defined(PIOS_INCLUDE_MPU6000)
struct pios_mpu6000_data gyro;
count = 0;
while((read_good = PIOS_MPU6000_ReadFifo(&gyro)) != 0 && !error)
error = ((xTaskGetTickCount() - lastSysTime) > SENSOR_PERIOD) ? true : error;
if (error)
continue;
while(read_good == 0) {
count++;
gyro_accum[0] += gyro.gyro_x;
gyro_accum[1] += gyro.gyro_y;
gyro_accum[2] += gyro.gyro_z;
#if defined(PIOS_MPU6000_ACCEL)
accel_accum[0] += gyro.accel_x;
accel_accum[1] += gyro.accel_y;
accel_accum[2] += gyro.accel_z;
#endif
read_good = PIOS_MPU6000_ReadFifo(&gyro);
}
gyro_samples = count;
2012-01-05 02:47:57 +01:00
gyro_scaling = PIOS_MPU6000_GetScale();
#if defined(PIOS_MPU6000_ACCEL)
accel_samples = count;
accel_scaling = PIOS_MPU6000_GetAccelScale();
#endif
// Using L3DG20 gyro
2012-01-08 14:25:11 +01:00
#elif defined(PIOS_INCLUDE_L3GD20)
2012-01-05 02:47:57 +01:00
struct pios_l3gd20_data gyro;
gyro_samples = 0;
xQueueHandle gyro_queue = PIOS_L3GD20_GetQueue();
if(xQueueReceive(gyro_queue, (void *) &gyro, 4) == errQUEUE_EMPTY) {
error = true;
continue;
}
gyro_samples = 1;
gyro_accum[0] += gyro.gyro_x;
gyro_accum[1] += gyro.gyro_y;
gyro_accum[2] += gyro.gyro_z;
2012-01-05 02:47:57 +01:00
gyro_scaling = PIOS_L3GD20_GetScale();
2012-01-05 02:47:57 +01:00
#else
//#error No gyro defined
struct gyro_data {float x; float y; float z; float temperature;} gyro;
gyro_scaling = 0;
gyro_samples = 1;
2012-01-05 02:47:57 +01:00
#endif
float accels[3] = {(float) accel_accum[1] / accel_samples, (float) accel_accum[0] / accel_samples, -(float) accel_accum[2] / accel_samples};
// Not the swaping of channel orders
#if defined(PIOS_MPU6000_ACCEL)
2012-01-05 02:47:57 +01:00
accel_scaling = PIOS_MPU6000_GetAccelScale();
#else
2012-01-05 02:47:57 +01:00
accel_scaling = PIOS_BMA180_GetScale();
#endif
AccelsData accelsData; // Skip get as we set all the fields
2012-01-05 02:47:57 +01:00
accelsData.x = accels[0] * accel_scaling * accel_scale[0] - accel_bias[0];
accelsData.y = accels[1] * accel_scaling * accel_scale[1] - accel_bias[1];
accelsData.z = accels[2] * accel_scaling * accel_scale[2] - accel_bias[2];
2012-01-28 07:21:58 +01:00
#if defined(BMA180)
accelsData.temperature = 25.0f + ((float) accel.temperature - 2.0f) / 2.0f;
2012-01-28 07:21:58 +01:00
#elif defined(PIOS_MPU6000_ACCEL)
accelsData.temperature = 35.0f + ((float) gyro.temperature + 512.0f) / 340.0f;
#endif
accelsData.temperature =
AccelsSet(&accelsData);
float gyros[3] = {(float) gyro_accum[1] / gyro_samples, (float) gyro_accum[0] / gyro_samples, -(float) gyro_accum[2] / gyro_samples};
GyrosData gyrosData; // Skip get as we set all the fields
2012-01-05 02:47:57 +01:00
gyrosData.x = gyros[0] * gyro_scaling;
gyrosData.y = gyros[1] * gyro_scaling;
gyrosData.z = gyros[2] * gyro_scaling;
2012-01-08 14:25:11 +01:00
#if defined(PIOS_INCLUDE_MPU6000)
gyrosData.temperature = 35.0f + ((float) gyro.temperature + 512.0f) / 340.0f;
2012-01-08 14:25:11 +01:00
#else
gyrosData.temperature = gyro.temperature;
#endif
if (bias_correct_gyro) {
// Apply bias correction to the gyros
GyrosBiasData gyrosBias;
GyrosBiasGet(&gyrosBias);
gyrosData.x += gyrosBias.x;
gyrosData.y += gyrosBias.y;
gyrosData.z += gyrosBias.z;
}
GyrosSet(&gyrosData);
// Because most crafts wont get enough information from gravity to zero yaw gyro, we try
// and make it average zero (weakly)
MagnetometerData mag;
bool mag_updated = false;
if (PIOS_HMC5883_NewDataAvailable() || PIOS_DELAY_DiffuS(mag_update_time) > 150000) {
mag_updated = true;
int16_t values[3];
PIOS_HMC5883_ReadMag(values);
mag.x = values[1] * mag_scale[0] - mag_bias[0];
mag.y = values[0] * mag_scale[1] - mag_bias[1];
mag.z = -values[2] * mag_scale[2] - mag_bias[2];
MagnetometerSet(&mag);
mag_update_time = PIOS_DELAY_GetRaw();
}
// For debugging purposes here we can output all of the sensors. Do it as a single transaction
// so the message isn't split if anything else is writing to it
if(pios_com_aux_id != 0) {
uint32_t message_size = 3;
uint8_t message[200] = {0xff, (lastSysTime & 0xff00) >> 8, lastSysTime & 0x00ff};
// Add accel data
memcpy(&message[message_size], &accelsData.x, sizeof(accelsData.x) * 3);
message_size += sizeof(accelsData.x) * 3;
// Add gyro data with temp
memcpy(&message[message_size], &gyrosData, sizeof(gyrosData));
message_size += sizeof(gyrosData);
if(mag_updated) { // Add mag data
message[message_size] = 0x01; // Indicate mag data here
message_size++;
memcpy(&message[message_size], &mag, sizeof(mag));
message_size += sizeof(mag);
}
if(gps_updated) { // Add GPS data
gps_updated = false;
GPSPositionData gps;
GPSPositionGet(&gps);
message[message_size] = 0x02; // Indicate gps data here
message_size++;
memcpy(&message[message_size], &gps, sizeof(gps));
message_size += sizeof(gps);
}
if(baro_updated) { // Add baro data
baro_updated = false;
BaroAltitudeData baro;
BaroAltitudeGet(&baro);
message[message_size] = 0x03; // Indicate mag data here
message_size++;
memcpy(&message[message_size], &baro, sizeof(baro));
message_size += sizeof(baro);
}
PIOS_COM_SendBufferNonBlocking(pios_com_aux_id, message, message_size);
}
PIOS_WDG_UpdateFlag(PIOS_WDG_SENSORS);
// For L3GD20 which runs at 760 then one cycle per sample
#if defined(PIOS_INCLUDE_MPU6000) && !defined(PIOS_INCLUDE_L3GD20)
vTaskDelayUntil(&lastSysTime, SENSOR_PERIOD / portTICK_RATE_MS);
#else
lastSysTime = xTaskGetTickCount();
#endif
}
}
/**
* Indicate that these sensors have been updated
*/
static void sensorsUpdatedCb(UAVObjEvent * objEv)
{
if(objEv->obj == GPSPositionHandle())
gps_updated = true;
if(objEv->obj == BaroAltitudeHandle())
baro_updated = true;
}
/**
* Locally cache some variables from the AtttitudeSettings object
*/
static void settingsUpdatedCb(UAVObjEvent * objEv) {
RevoCalibrationData cal;
RevoCalibrationGet(&cal);
mag_bias[0] = cal.mag_bias[REVOCALIBRATION_MAG_BIAS_X];
mag_bias[1] = cal.mag_bias[REVOCALIBRATION_MAG_BIAS_Y];
mag_bias[2] = cal.mag_bias[REVOCALIBRATION_MAG_BIAS_Z];
mag_scale[0] = cal.mag_scale[REVOCALIBRATION_MAG_SCALE_X];
mag_scale[1] = cal.mag_scale[REVOCALIBRATION_MAG_SCALE_Y];
mag_scale[2] = cal.mag_scale[REVOCALIBRATION_MAG_SCALE_Z];
accel_bias[0] = cal.accel_bias[REVOCALIBRATION_ACCEL_BIAS_X];
accel_bias[1] = cal.accel_bias[REVOCALIBRATION_ACCEL_BIAS_Y];
accel_bias[2] = cal.accel_bias[REVOCALIBRATION_ACCEL_BIAS_Z];
accel_scale[0] = cal.accel_scale[REVOCALIBRATION_ACCEL_SCALE_X];
accel_scale[1] = cal.accel_scale[REVOCALIBRATION_ACCEL_SCALE_Y];
accel_scale[2] = cal.accel_scale[REVOCALIBRATION_ACCEL_SCALE_Z];
}
/**
* @}
* @}
*/