1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-01-22 07:52:12 +01:00

2492 lines
80 KiB
C
Raw Normal View History

/**
******************************************************************************
*
* @file rfm22b.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief RF Module hardware layer
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
// *****************************************************************
// RFM22B hardware layer
//
// This module uses the RFM22B's internal packet handling hardware to encapsulate our own packet data.
//
// The RFM22B internal hardware packet handler configuration is as follows ..
//
// 4-byte (32-bit) preamble .. alternating 0's & 1's
// 4-byte (32-bit) sync
// 1-byte packet length (number of data bytes to follow)
// 0 to 255 user data bytes
//
// Our own packet data will also contain it's own header and 32-bit CRC as a single 16-bit CRC is not sufficient for wireless comms.
//
// *****************************************************************
#include <string.h> // memmove
#include "stm32f10x.h"
#include "main.h"
#include "stopwatch.h"
#include "gpio_in.h"
#include "rfm22b.h"
#if defined(PIOS_COM_DEBUG)
// #define RFM22_DEBUG
// #define RFM22_INT_TIMEOUT_DEBUG
#endif
// *****************************************************************
// forward delarations
#if defined(RFM22_EXT_INT_USE)
void rfm22_processInt(void);
#endif
// ************************************
// this is too adjust the RF module so that it is on frequency
#define OSC_LOAD_CAP 0x7F // cap = 12.5pf .. default
#define OSC_LOAD_CAP_1 0x7D // board 1
#define OSC_LOAD_CAP_2 0x7B // board 2
#define OSC_LOAD_CAP_3 0x7E // board 3
#define OSC_LOAD_CAP_4 0x7F // board 4
// ************************************
#define TX_TEST_MODE_TIMELIMIT_MS 30000 // TX test modes time limit (in ms)
//#define TX_PREAMBLE_NIBBLES 8 // 7 to 511 (number of nibbles)
//#define RX_PREAMBLE_NIBBLES 5 // 5 to 31 (number of nibbles)
#define TX_PREAMBLE_NIBBLES 12 // 7 to 511 (number of nibbles)
#define RX_PREAMBLE_NIBBLES 6 // 5 to 31 (number of nibbles)
#define FIFO_SIZE 64 // the size of the rf modules internal FIFO buffers
#define TX_FIFO_HI_WATERMARK 62 // 0-63
#define TX_FIFO_LO_WATERMARK 32 // 0-63
#define RX_FIFO_HI_WATERMARK 32 // 0-63
#define PREAMBLE_BYTE 0x55 // preamble byte (preceeds SYNC_BYTE's)
#define SYNC_BYTE_1 0x2D // RF sync bytes (32-bit in all)
#define SYNC_BYTE_2 0xD4 //
#define SYNC_BYTE_3 0x4B //
#define SYNC_BYTE_4 0x59 //
// ************************************
// the default TX power level
#define RFM22_DEFAULT_RF_POWER RFM22_tx_pwr_txpow_0 // +1dBm ... 1.25mW
//#define RFM22_DEFAULT_RF_POWER RFM22_tx_pwr_txpow_1 // +2dBm ... 1.6mW
//#define RFM22_DEFAULT_RF_POWER RFM22_tx_pwr_txpow_2 // +5dBm ... 3.16mW
//#define RFM22_DEFAULT_RF_POWER RFM22_tx_pwr_txpow_3 // +8dBm ... 6.3mW
//#define RFM22_DEFAULT_RF_POWER RFM22_tx_pwr_txpow_4 // +11dBm .. 12.6mW
//#define RFM22_DEFAULT_RF_POWER RFM22_tx_pwr_txpow_5 // +14dBm .. 25mW
//#define RFM22_DEFAULT_RF_POWER RFM22_tx_pwr_txpow_6 // +17dBm .. 50mW
//#define RFM22_DEFAULT_RF_POWER RFM22_tx_pwr_txpow_7 // +20dBm .. 100mW
// ************************************
// the default RF datarate
//#define RFM22_DEFAULT_RF_DATARATE 500 // 500 bits per sec
//#define RFM22_DEFAULT_RF_DATARATE 1000 // 1k bits per sec
//#define RFM22_DEFAULT_RF_DATARATE 2000 // 2k bits per sec
//#define RFM22_DEFAULT_RF_DATARATE 4000 // 4k bits per sec
//#define RFM22_DEFAULT_RF_DATARATE 8000 // 8k bits per sec
//#define RFM22_DEFAULT_RF_DATARATE 9600 // 9.6k bits per sec
//#define RFM22_DEFAULT_RF_DATARATE 16000 // 16k bits per sec
//#define RFM22_DEFAULT_RF_DATARATE 19200 // 19k2 bits per sec
//#define RFM22_DEFAULT_RF_DATARATE 24000 // 24k bits per sec
//#define RFM22_DEFAULT_RF_DATARATE 32000 // 32k bits per sec
//#define RFM22_DEFAULT_RF_DATARATE 64000 // 64k bits per sec
#define RFM22_DEFAULT_RF_DATARATE 128000 // 128k bits per sec
//#define RFM22_DEFAULT_RF_DATARATE 192000 // 192k bits per sec
//#define RFM22_DEFAULT_RF_DATARATE 256000 // 256k bits per sec .. NOT YET WORKING
// ************************************
#define RFM22_DEFAULT_SS_RF_DATARATE 125 // 128bps
// ************************************
// Normal data streaming
// GFSK modulation
// no manchester encoding
// data whitening
// FIFO mode
// 5-nibble rx preamble length detection
// 10-nibble tx preamble length
// AFC enabled
#define LOOKUP_SIZE 14
// xtal 10 ppm, 434MHz
const uint32_t data_rate[LOOKUP_SIZE] = { 500, 1000, 2000, 4000, 8000, 9600, 16000, 19200, 24000, 32000, 64000, 128000, 192000, 256000};
const uint8_t modulation_index[LOOKUP_SIZE] = { 16, 8, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
const uint32_t freq_deviation[LOOKUP_SIZE] = { 4000, 4000, 4000, 4000, 4000, 4800, 8000, 9600, 12000, 16000, 32000, 64000, 96000, 128000};
const uint32_t rx_bandwidth[LOOKUP_SIZE] = { 17500, 17500, 17500, 17500, 17500, 19400, 32200, 38600, 51200, 64100, 137900, 269300, 420200, 518800};
const int8_t est_rx_sens_dBm[LOOKUP_SIZE] = { -118, -118, -117, -116, -115, -115, -112, -112, -110, -109, -106, -103, -101, -100}; // estimated receiver sensitivity for BER = 1E-3
const uint8_t reg_1C[LOOKUP_SIZE] = { 0x37, 0x37, 0x37, 0x37, 0x3A, 0x3B, 0x26, 0x28, 0x2E, 0x16, 0x07, 0x83, 0x8A, 0x8C}; // rfm22_if_filter_bandwidth
const uint8_t reg_1D[LOOKUP_SIZE] = { 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44}; // rfm22_afc_loop_gearshift_override
const uint8_t reg_1E[LOOKUP_SIZE] = { 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x02}; // rfm22_afc_timing_control
const uint8_t reg_1F[LOOKUP_SIZE] = { 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03}; // rfm22_clk_recovery_gearshift_override
const uint8_t reg_20[LOOKUP_SIZE] = { 0xE8, 0xF4, 0xFA, 0x70, 0x3F, 0x34, 0x3F, 0x34, 0x2A, 0x3F, 0x3F, 0x5E, 0x3F, 0x2F}; // rfm22_clk_recovery_oversampling_ratio
const uint8_t reg_21[LOOKUP_SIZE] = { 0x60, 0x20, 0x00, 0x01, 0x02, 0x02, 0x02, 0x02, 0x03, 0x02, 0x02, 0x01, 0x02, 0x02}; // rfm22_clk_recovery_offset2
const uint8_t reg_22[LOOKUP_SIZE] = { 0x20, 0x41, 0x83, 0x06, 0x0C, 0x75, 0x0C, 0x75, 0x12, 0x0C, 0x0C, 0x5D, 0x0C, 0xBB}; // rfm22_clk_recovery_offset1
const uint8_t reg_23[LOOKUP_SIZE] = { 0xC5, 0x89, 0x12, 0x25, 0x4A, 0x25, 0x4A, 0x25, 0x6F, 0x4A, 0x4A, 0x86, 0x4A, 0x0D}; // rfm22_clk_recovery_offset0
const uint8_t reg_24[LOOKUP_SIZE] = { 0x00, 0x00, 0x00, 0x02, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x05, 0x07, 0x07}; // rfm22_clk_recovery_timing_loop_gain1
const uint8_t reg_25[LOOKUP_SIZE] = { 0x0A, 0x23, 0x85, 0x0E, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x74, 0xFF, 0xFF}; // rfm22_clk_recovery_timing_loop_gain0
const uint8_t reg_2A[LOOKUP_SIZE] = { 0x0E, 0x0E, 0x0E, 0x0E, 0x0E, 0x0D, 0x0D, 0x0E, 0x12, 0x17, 0x31, 0x50, 0x50, 0x50}; // rfm22_afc_limiter .. AFC_pull_in_range = <20>AFCLimiter[7:0] x (hbsel+1) x 625 Hz
const uint8_t reg_6E[LOOKUP_SIZE] = { 0x04, 0x08, 0x10, 0x20, 0x41, 0x4E, 0x83, 0x9D, 0xC4, 0x08, 0x10, 0x20, 0x31, 0x41}; // rfm22_tx_data_rate1
const uint8_t reg_6F[LOOKUP_SIZE] = { 0x19, 0x31, 0x62, 0xC5, 0x89, 0xA5, 0x12, 0x49, 0x9C, 0x31, 0x62, 0xC5, 0x27, 0x89}; // rfm22_tx_data_rate0
const uint8_t reg_70[LOOKUP_SIZE] = { 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D}; // rfm22_modulation_mode_control1
const uint8_t reg_71[LOOKUP_SIZE] = { 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23}; // rfm22_modulation_mode_control2
const uint8_t reg_72[LOOKUP_SIZE] = { 0x06, 0x06, 0x06, 0x06, 0x06, 0x08, 0x0D, 0x0F, 0x13, 0x1A, 0x33, 0x66, 0x9A, 0xCD}; // rfm22_frequency_deviation
// ************************************
// Scan Spectrum settings
// GFSK modulation
// no manchester encoding
// data whitening
// FIFO mode
// 5-nibble rx preamble length detection
// 10-nibble tx preamble length
// AFC disabled
#define SS_LOOKUP_SIZE 2
// xtal 1 ppm, 434MHz
const uint32_t ss_rx_bandwidth[SS_LOOKUP_SIZE] = { 2600, 10600};
const uint8_t ss_reg_1C[SS_LOOKUP_SIZE] = { 0x51, 0x32}; // rfm22_if_filter_bandwidth
const uint8_t ss_reg_1D[SS_LOOKUP_SIZE] = { 0x00, 0x00}; // rfm22_afc_loop_gearshift_override
const uint8_t ss_reg_20[SS_LOOKUP_SIZE] = { 0xE8, 0x38}; // rfm22_clk_recovery_oversampling_ratio
const uint8_t ss_reg_21[SS_LOOKUP_SIZE] = { 0x60, 0x02}; // rfm22_clk_recovery_offset2
const uint8_t ss_reg_22[SS_LOOKUP_SIZE] = { 0x20, 0x4D}; // rfm22_clk_recovery_offset1
const uint8_t ss_reg_23[SS_LOOKUP_SIZE] = { 0xC5, 0xD3}; // rfm22_clk_recovery_offset0
const uint8_t ss_reg_24[SS_LOOKUP_SIZE] = { 0x00, 0x07}; // rfm22_clk_recovery_timing_loop_gain1
const uint8_t ss_reg_25[SS_LOOKUP_SIZE] = { 0x0F, 0xFF}; // rfm22_clk_recovery_timing_loop_gain0
const uint8_t ss_reg_2A[SS_LOOKUP_SIZE] = { 0xFF, 0xFF}; // rfm22_afc_limiter .. AFC_pull_in_range = <20>AFCLimiter[7:0] x (hbsel+1) x 625 Hz
const uint8_t ss_reg_70[SS_LOOKUP_SIZE] = { 0x24, 0x2D}; // rfm22_modulation_mode_control1
const uint8_t ss_reg_71[SS_LOOKUP_SIZE] = { 0x2B, 0x23}; // rfm22_modulation_mode_control2
// ************************************
volatile bool initialized = false;
#if defined(RFM22_EXT_INT_USE)
volatile bool exec_using_spi; // set this if you want to access the SPI bus outside of the interrupt
volatile bool inside_ext_int; // this is set whenever we are inside the interrupt
#endif
uint8_t device_type; // the RF chips device ID number
uint8_t device_version; // the RF chips revision number
volatile uint8_t rf_mode; // holds our current RF mode
uint32_t lower_carrier_frequency_limit_Hz; // the minimum RF frequency we can use
uint32_t upper_carrier_frequency_limit_Hz; // the maximum RF frequency we can use
uint32_t carrier_frequency_hz; // the current RF frequency we are on
uint32_t carrier_datarate_bps; // the RF data rate we are using
uint32_t rf_bandwidth_used; // the RF bandwidth currently used
uint32_t ss_rf_bandwidth_used; // the RF bandwidth currently used
uint8_t hbsel; // holds the hbsel (1 or 2)
float frequency_step_size; // holds the minimum frequency step size
uint8_t frequency_hop_channel; // current frequency hop channel
uint8_t frequency_hop_step_size_reg; //
uint8_t adc_config; // holds the adc config reg value
volatile uint8_t device_status; // device status register
volatile uint8_t int_status1; // interrupt status register 1
volatile uint8_t int_status2; // interrupt status register 2
volatile uint8_t ezmac_status; // ezmac status register
volatile int16_t afc_correction; // afc correction reading
volatile int32_t afc_correction_Hz; // afc correction reading (in Hz)
volatile int16_t temperature_reg; // the temperature sensor reading
#if defined(RFM22_DEBUG)
volatile uint8_t prev_device_status; // just for debugging
volatile uint8_t prev_int_status1; // " "
volatile uint8_t prev_int_status2; // " "
volatile uint8_t prev_ezmac_status; // " "
bool debug_outputted;
#endif
volatile uint8_t osc_load_cap; // xtal frequency calibration value
volatile uint8_t rssi; // the current RSSI (register value)
volatile int16_t rssi_dBm; // dBm value
uint8_t tx_power; // the transmit power to use for data transmissions
volatile uint8_t tx_pwr; // the tx power register read back
volatile uint8_t rx_buffer_current; // the current receive buffer in use (double buffer)
volatile uint8_t rx_buffer[256] __attribute__ ((aligned(4))); // the receive buffer .. received packet data is saved here
volatile uint16_t rx_buffer_wr; // the receive buffer write index
volatile uint8_t rx_packet_buf[256] __attribute__ ((aligned(4))); // the received packet
volatile uint16_t rx_packet_wr; // the receive packet write index
volatile int16_t rx_packet_start_rssi_dBm; //
volatile int32_t rx_packet_start_afc_Hz; //
volatile int16_t rx_packet_rssi_dBm; // the received packet signal strength
volatile int32_t rx_packet_afc_Hz; // the receive packet frequency offset
volatile uint8_t *tx_data_addr; // the address of the data we send in the transmitted packets
volatile uint16_t tx_data_rd; // the tx data read index
volatile uint16_t tx_data_wr; // the tx data write index
//volatile uint8_t tx_fifo[FIFO_SIZE]; //
volatile uint8_t rx_fifo[FIFO_SIZE]; //
volatile uint8_t rx_fifo_wr; //
int lookup_index;
int ss_lookup_index;
volatile bool power_on_reset; // set if the RF module has reset itself
volatile uint16_t rfm22_int_timer; // used to detect if the RF module stops responding. thus act accordingly if it does stop responding.
volatile uint16_t rfm22_int_time_outs; // counter
volatile uint16_t prev_rfm22_int_time_outs; //
uint32_t clear_channel_count = (TX_PREAMBLE_NIBBLES + 4) * 2; // minimum clear channel time before allowing transmit
uint16_t timeout_ms = 20000; //
uint16_t timeout_sync_ms = 3; //
uint16_t timeout_data_ms = 20; //
t_rfm22_TxDataByteCallback tx_data_byte_callback_function = NULL;
t_rfm22_RxDataCallback rx_data_callback_function = NULL;
// ************************************
// SPI read/write
void rfm22_startBurstWrite(uint8_t addr)
{
// wait 1us .. so we don't toggle the CS line to quickly
PIOS_DELAY_WaituS(1);
// chip select line LOW
PIOS_SPI_RC_PinSet(RFM22_PIOS_SPI, 0);
PIOS_SPI_TransferByte(RFM22_PIOS_SPI, 0x80 | addr);
}
inline void rfm22_burstWrite(uint8_t data)
{
PIOS_SPI_TransferByte(RFM22_PIOS_SPI, data);
}
void rfm22_endBurstWrite(void)
{
// chip select line HIGH
PIOS_SPI_RC_PinSet(RFM22_PIOS_SPI, 1);
}
void rfm22_write(uint8_t addr, uint8_t data)
{
// wait 1us .. so we don't toggle the CS line to quickly
PIOS_DELAY_WaituS(1);
// chip select line LOW
PIOS_SPI_RC_PinSet(RFM22_PIOS_SPI, 0);
PIOS_SPI_TransferByte(RFM22_PIOS_SPI, 0x80 | addr);
PIOS_SPI_TransferByte(RFM22_PIOS_SPI, data);
// chip select line HIGH
PIOS_SPI_RC_PinSet(RFM22_PIOS_SPI, 1);
}
void rfm22_startBurstRead(uint8_t addr)
{
// wait 1us .. so we don't toggle the CS line to quickly
PIOS_DELAY_WaituS(1);
// chip select line LOW
PIOS_SPI_RC_PinSet(RFM22_PIOS_SPI, 0);
PIOS_SPI_TransferByte(RFM22_PIOS_SPI, addr & 0x7f);
}
inline uint8_t rfm22_burstRead(void)
{
return PIOS_SPI_TransferByte(RFM22_PIOS_SPI, 0xff);
}
void rfm22_endBurstRead(void)
{
// chip select line HIGH
PIOS_SPI_RC_PinSet(RFM22_PIOS_SPI, 1);
}
uint8_t rfm22_read(uint8_t addr)
{
uint8_t rdata;
// wait 1us .. so we don't toggle the CS line to quickly
PIOS_DELAY_WaituS(1);
// chip select line LOW
PIOS_SPI_RC_PinSet(RFM22_PIOS_SPI, 0);
PIOS_SPI_TransferByte(RFM22_PIOS_SPI, addr & 0x7f);
rdata = PIOS_SPI_TransferByte(RFM22_PIOS_SPI, 0xff);
// chip select line HIGH
PIOS_SPI_RC_PinSet(RFM22_PIOS_SPI, 1);
return rdata;
}
// ************************************
// external interrupt
#if defined(RFM22_EXT_INT_USE)
void RFM22_EXT_INT_FUNC(void)
{
inside_ext_int = TRUE;
if (EXTI_GetITStatus(RFM22_EXT_INT_LINE) != RESET)
{
// Clear the EXTI line pending bit
EXTI_ClearITPendingBit(RFM22_EXT_INT_LINE);
// USB_LED_TOGGLE; // TEST ONLY
if (!booting && !exec_using_spi)
{
// while (!GPIO_IN(RF_INT_PIN) && !exec_using_spi)
{ // stay here until the interrupt line returns HIGH
rfm22_processInt();
}
}
}
inside_ext_int = FALSE;
}
void rfm22_disableExtInt(void)
{
// Configure the external interrupt
GPIO_EXTILineConfig(RFM22_EXT_INT_PORT_SOURCE, RFM22_EXT_INT_PIN_SOURCE);
EXTI_InitTypeDef EXTI_InitStructure;
EXTI_InitStructure.EXTI_Line = RFM22_EXT_INT_LINE;
EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;
EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling;
EXTI_InitStructure.EXTI_LineCmd = DISABLE;
EXTI_Init(&EXTI_InitStructure);
EXTI_ClearFlag(RFM22_EXT_INT_LINE);
}
void rfm22_enableExtInt(void)
{
// Configure the external interrupt
GPIO_EXTILineConfig(RFM22_EXT_INT_PORT_SOURCE, RFM22_EXT_INT_PIN_SOURCE);
EXTI_InitTypeDef EXTI_InitStructure;
EXTI_InitStructure.EXTI_Line = RFM22_EXT_INT_LINE;
EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;
EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling;
EXTI_InitStructure.EXTI_LineCmd = ENABLE;
EXTI_Init(&EXTI_InitStructure);
EXTI_ClearFlag(RFM22_EXT_INT_LINE);
// Enable and set the external interrupt
NVIC_InitTypeDef NVIC_InitStructure;
NVIC_InitStructure.NVIC_IRQChannel = RFM22_EXT_INT_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = RFM22_EXT_INT_PRIORITY;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
}
#endif
// ************************************
// set/get the current tx power setting
void rfm22_setTxPower(uint8_t tx_pwr)
{
switch (tx_pwr)
{
case 0: tx_power = RFM22_tx_pwr_txpow_0; break; // +1dBm ... 1.25mW
case 1: tx_power = RFM22_tx_pwr_txpow_1; break; // +2dBm ... 1.6mW
case 2: tx_power = RFM22_tx_pwr_txpow_2; break; // +5dBm ... 3.16mW
case 3: tx_power = RFM22_tx_pwr_txpow_3; break; // +8dBm ... 6.3mW
case 4: tx_power = RFM22_tx_pwr_txpow_4; break; // +11dBm .. 12.6mW
case 5: tx_power = RFM22_tx_pwr_txpow_5; break; // +14dBm .. 25mW
case 6: tx_power = RFM22_tx_pwr_txpow_6; break; // +17dBm .. 50mW
case 7: tx_power = RFM22_tx_pwr_txpow_7; break; // +20dBm .. 100mW
default: break;
}
}
uint8_t rfm22_getTxPower(void)
{
return tx_power;
}
// ************************************
uint32_t rfm22_minFrequency(void)
{
return lower_carrier_frequency_limit_Hz;
}
uint32_t rfm22_maxFrequency(void)
{
return upper_carrier_frequency_limit_Hz;
}
void rfm22_setNominalCarrierFrequency(uint32_t frequency_hz)
{
#if defined(RFM22_EXT_INT_USE)
exec_using_spi = TRUE;
#endif
// *******
if (frequency_hz < lower_carrier_frequency_limit_Hz) frequency_hz = lower_carrier_frequency_limit_Hz;
else
if (frequency_hz > upper_carrier_frequency_limit_Hz) frequency_hz = upper_carrier_frequency_limit_Hz;
if (frequency_hz < 480000000)
hbsel = 1;
else
hbsel = 2;
uint8_t fb = (uint8_t)(frequency_hz / (10000000 * hbsel));
uint32_t fc = (uint32_t)(frequency_hz - (10000000 * hbsel * fb));
fc = (fc * 64u) / (10000ul * hbsel);
fb -= 24;
// carrier_frequency_hz = frequency_hz;
carrier_frequency_hz = ((uint32_t)fb + 24 + ((float)fc / 64000)) * 10000000 * hbsel;
if (hbsel > 1)
fb |= RFM22_fbs_hbsel;
fb |= RFM22_fbs_sbse; // is this the RX LO polarity?
frequency_step_size = 156.25f * hbsel;
rfm22_write(RFM22_frequency_hopping_channel_select, frequency_hop_channel); // frequency hopping channel (0-255)
rfm22_write(RFM22_frequency_offset1, 0); // no frequency offset
rfm22_write(RFM22_frequency_offset2, 0); // no frequency offset
rfm22_write(RFM22_frequency_band_select, fb); // set the carrier frequency
rfm22_write(RFM22_nominal_carrier_frequency1, fc >> 8); // " "
rfm22_write(RFM22_nominal_carrier_frequency0, fc & 0xff); // " "
// *******
#if defined(RFM22_DEBUG)
DEBUG_PRINTF("rf setFreq: %u\r\n", carrier_frequency_hz);
// DEBUG_PRINTF("rf setFreq frequency_step_size: %0.2f\r\n", frequency_step_size);
#endif
#if defined(RFM22_EXT_INT_USE)
exec_using_spi = FALSE;
#endif
}
uint32_t rfm22_getNominalCarrierFrequency(void)
{
return carrier_frequency_hz;
}
float rfm22_getFrequencyStepSize(void)
{
return frequency_step_size;
}
void rfm22_setFreqHopChannel(uint8_t channel)
{ // set the frequency hopping channel
frequency_hop_channel = channel;
rfm22_write(RFM22_frequency_hopping_channel_select, frequency_hop_channel);
}
uint8_t rfm22_freqHopChannel(void)
{ // return the current frequency hopping channel
return frequency_hop_channel;
}
uint32_t rfm22_freqHopSize(void)
{ // return the frequency hopping step size
return ((uint32_t)frequency_hop_step_size_reg * 10000);
}
// ************************************
// radio datarate about 19200 Baud
// radio frequency deviation 45kHz
// radio receiver bandwidth 67kHz.
//
// Carson's rule:
// The signal bandwidth is about 2(Delta-f + fm) ..
//
// Delta-f = frequency deviation
// fm = maximum frequency of the signal
//
// This gives 2(45 + 9.6) = 109.2kHz.
void rfm22_setDatarate(uint32_t datarate_bps, bool data_whitening)
{
#if defined(RFM22_EXT_INT_USE)
exec_using_spi = TRUE;
#endif
// *******
lookup_index = 0;
while (lookup_index < (LOOKUP_SIZE - 1) && data_rate[lookup_index] < datarate_bps)
lookup_index++;
carrier_datarate_bps = datarate_bps = data_rate[lookup_index];
rf_bandwidth_used = rx_bandwidth[lookup_index];
// ********************************
#if defined(RFM22_DEBUG)
uint32_t frequency_deviation = freq_deviation[lookup_index]; // Hz
uint32_t modulation_bandwidth = datarate_bps + (2 * frequency_deviation);
#endif
rfm22_write(0x1C, reg_1C[lookup_index]); // rfm22_if_filter_bandwidth
rfm22_write(0x1D, reg_1D[lookup_index]); // rfm22_afc_loop_gearshift_override
rfm22_write(0x1E, reg_1E[lookup_index]); // RFM22_afc_timing_control
rfm22_write(0x1F, reg_1F[lookup_index]); // RFM22_clk_recovery_gearshift_override
rfm22_write(0x20, reg_20[lookup_index]); // rfm22_clk_recovery_oversampling_ratio
rfm22_write(0x21, reg_21[lookup_index]); // rfm22_clk_recovery_offset2
rfm22_write(0x22, reg_22[lookup_index]); // rfm22_clk_recovery_offset1
rfm22_write(0x23, reg_23[lookup_index]); // rfm22_clk_recovery_offset0
rfm22_write(0x24, reg_24[lookup_index]); // rfm22_clk_recovery_timing_loop_gain1
rfm22_write(0x25, reg_25[lookup_index]); // rfm22_clk_recovery_timing_loop_gain0
rfm22_write(0x2A, reg_2A[lookup_index]); // rfm22_afc_limiter
if (carrier_datarate_bps < 100000)
rfm22_write(0x58, 0x80); // rfm22_chargepump_current_trimming_override
else
rfm22_write(0x58, 0xC0); // rfm22_chargepump_current_trimming_override
rfm22_write(0x6E, reg_6E[lookup_index]); // rfm22_tx_data_rate1
rfm22_write(0x6F, reg_6F[lookup_index]); // rfm22_tx_data_rate0
// Enable data whitening
// uint8_t txdtrtscale_bit = rfm22_read(RFM22_modulation_mode_control1) & RFM22_mmc1_txdtrtscale;
// rfm22_write(RFM22_modulation_mode_control1, txdtrtscale_bit | RFM22_mmc1_enwhite);
if (!data_whitening)
rfm22_write(0x70, reg_70[lookup_index] & ~RFM22_mmc1_enwhite); // rfm22_modulation_mode_control1
else
rfm22_write(0x70, reg_70[lookup_index] | RFM22_mmc1_enwhite); // rfm22_modulation_mode_control1
rfm22_write(0x71, reg_71[lookup_index]); // rfm22_modulation_mode_control2
rfm22_write(0x72, reg_72[lookup_index]); // rfm22_frequency_deviation
rfm22_write(RFM22_ook_counter_value1, 0x00);
rfm22_write(RFM22_ook_counter_value2, 0x00);
// ********************************
// calculate the TX register values
/*
uint16_t fd = frequency_deviation / 625;
uint8_t mmc1 = RFM22_mmc1_enphpwdn | RFM22_mmc1_manppol;
uint16_t txdr;
if (datarate_bps < 30000)
{
txdr = (datarate_bps * 20972) / 10000;
mmc1 |= RFM22_mmc1_txdtrtscale;
}
else
txdr = (datarate_bps * 6553) / 100000;
uint8_t mmc2 = RFM22_mmc2_dtmod_fifo | RFM22_mmc2_modtyp_gfsk; // FIFO mode, GFSK
// uint8_t mmc2 = RFM22_mmc2_dtmod_pn9 | RFM22_mmc2_modtyp_gfsk; // PN9 mode, GFSK .. TX TEST MODE
if (fd & 0x100) mmc2 |= RFM22_mmc2_fd;
rfm22_write(RFM22_frequency_deviation, fd); // set the TX peak frequency deviation
rfm22_write(RFM22_modulation_mode_control1, mmc1);
rfm22_write(RFM22_modulation_mode_control2, mmc2);
rfm22_write(RFM22_tx_data_rate1, txdr >> 8); // set the TX data rate
rfm22_write(RFM22_tx_data_rate0, txdr); // " "
*/
// ********************************
// determine a clear channel time
// initialise the stopwatch with a suitable resolution for the datarate
STOPWATCH_init(4000000ul / carrier_datarate_bps); // set resolution to the time for 1 nibble (4-bits) at rf datarate
// ********************************
// determine suitable time-out periods
timeout_sync_ms = (8000ul * 16) / carrier_datarate_bps; // milliseconds
if (timeout_sync_ms < 3)
timeout_sync_ms = 3; // because out timer resolution is only 1ms
timeout_data_ms = (8000ul * 100) / carrier_datarate_bps; // milliseconds
if (timeout_data_ms < 3)
timeout_data_ms = 3; // because out timer resolution is only 1ms
// ********************************
#if defined(RFM22_DEBUG)
DEBUG_PRINTF("rf datarate_bps: %d\r\n", datarate_bps);
DEBUG_PRINTF("rf frequency_deviation: %d\r\n", frequency_deviation);
DEBUG_PRINTF("rf modulation_bandwidth: %u\r\n", modulation_bandwidth);
DEBUG_PRINTF("rf_rx_bandwidth[%u]: %u\r\n", lookup_index, rx_bandwidth[lookup_index]);
DEBUG_PRINTF("rf est rx sensitivity[%u]: %ddBm\r\n", lookup_index, est_rx_sens_dBm[lookup_index]);
#endif
// *******
#if defined(RFM22_EXT_INT_USE)
exec_using_spi = FALSE;
#endif
}
uint32_t rfm22_getDatarate(void)
{
return carrier_datarate_bps;
}
// ************************************
void rfm22_setSSBandwidth(uint32_t bandwidth_index)
{
#if defined(RFM22_EXT_INT_USE)
exec_using_spi = TRUE;
#endif
// *******
ss_lookup_index = bandwidth_index;
ss_rf_bandwidth_used = ss_rx_bandwidth[lookup_index];
// ********************************
rfm22_write(0x1C, ss_reg_1C[ss_lookup_index]); // rfm22_if_filter_bandwidth
rfm22_write(0x1D, ss_reg_1D[ss_lookup_index]); // rfm22_afc_loop_gearshift_override
rfm22_write(0x20, ss_reg_20[ss_lookup_index]); // rfm22_clk_recovery_oversampling_ratio
rfm22_write(0x21, ss_reg_21[ss_lookup_index]); // rfm22_clk_recovery_offset2
rfm22_write(0x22, ss_reg_22[ss_lookup_index]); // rfm22_clk_recovery_offset1
rfm22_write(0x23, ss_reg_23[ss_lookup_index]); // rfm22_clk_recovery_offset0
rfm22_write(0x24, ss_reg_24[ss_lookup_index]); // rfm22_clk_recovery_timing_loop_gain1
rfm22_write(0x25, ss_reg_25[ss_lookup_index]); // rfm22_clk_recovery_timing_loop_gain0
rfm22_write(0x2A, ss_reg_2A[ss_lookup_index]); // rfm22_afc_limiter
rfm22_write(0x58, 0x80); // rfm22_chargepump_current_trimming_override
rfm22_write(0x70, ss_reg_70[ss_lookup_index]); // rfm22_modulation_mode_control1
rfm22_write(0x71, ss_reg_71[ss_lookup_index]); // rfm22_modulation_mode_control2
rfm22_write(RFM22_ook_counter_value1, 0x00);
rfm22_write(RFM22_ook_counter_value2, 0x00);
// ********************************
#if defined(RFM22_DEBUG)
DEBUG_PRINTF("ss_rf_rx_bandwidth[%u]: %u\r\n", ss_lookup_index, ss_rx_bandwidth[ss_lookup_index]);
#endif
// *******
#if defined(RFM22_EXT_INT_USE)
exec_using_spi = FALSE;
#endif
}
// ************************************
void rfm22_setRxMode(uint8_t mode, bool multi_packet_mode)
{
#if defined(RFM22_EXT_INT_USE)
exec_using_spi = TRUE;
#endif
// disable interrupts
rfm22_write(RFM22_interrupt_enable1, 0x00);
rfm22_write(RFM22_interrupt_enable2, 0x00);
// disable the receiver and transmitter
// rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_xton); // READY mode
rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon); // TUNE mode
RX_LED_OFF;
TX_LED_OFF;
// rfm22_write(RFM22_rx_fifo_control, RX_FIFO_HI_WATERMARK); // RX FIFO Almost Full Threshold (0 - 63)
if (rf_mode == TX_CARRIER_MODE || rf_mode == TX_PN_MODE)
{ // FIFO mode, GFSK modulation
uint8_t fd_bit = rfm22_read(RFM22_modulation_mode_control2) & RFM22_mmc2_fd;
rfm22_write(RFM22_modulation_mode_control2, fd_bit | RFM22_mmc2_dtmod_fifo | RFM22_mmc2_modtyp_gfsk);
}
rx_buffer_wr = 0; // empty the rx buffer
rfm22_int_timer = 0; // reset the timer
rf_mode = mode;
if (mode != RX_SCAN_SPECTRUM)
{
STOPWATCH_reset(); // reset clear channel detect timer
// enable RX interrupts
rfm22_write(RFM22_interrupt_enable1, RFM22_ie1_encrcerror | RFM22_ie1_enpkvalid | RFM22_ie1_enrxffafull | RFM22_ie1_enfferr);
rfm22_write(RFM22_interrupt_enable2, RFM22_ie2_enpreainval | RFM22_ie2_enpreaval | RFM22_ie2_enswdet);
}
// read interrupt status - clear interrupts
rfm22_read(RFM22_interrupt_status1);
rfm22_read(RFM22_interrupt_status2);
// clear FIFOs
if (!multi_packet_mode)
{
rfm22_write(RFM22_op_and_func_ctrl2, RFM22_opfc2_ffclrrx | RFM22_opfc2_ffclrtx);
rfm22_write(RFM22_op_and_func_ctrl2, 0x00);
}
else
{
rfm22_write(RFM22_op_and_func_ctrl2, RFM22_opfc2_rxmpk | RFM22_opfc2_ffclrrx | RFM22_opfc2_ffclrtx);
rfm22_write(RFM22_op_and_func_ctrl2, RFM22_opfc2_rxmpk);
}
// enable the receiver
// rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_xton | RFM22_opfc1_rxon);
rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon | RFM22_opfc1_rxon);
#if defined(RFM22_EXT_INT_USE)
exec_using_spi = FALSE;
#endif
#if defined(RFM22_DEBUG)
DEBUG_PRINTF(" RX Mode\r\n");
#endif
}
// ************************************
uint16_t rfm22_addHeader(uint8_t mode)
{
uint16_t i = 0;
if (mode == TX_STREAM_MODE)
{ // add header
for (uint16_t j = (TX_PREAMBLE_NIBBLES + 1) / 2; j > 0; j--)
{
rfm22_burstWrite(PREAMBLE_BYTE);
i++;
}
rfm22_burstWrite(SYNC_BYTE_1); i++;
rfm22_burstWrite(SYNC_BYTE_2); i++;
}
return i;
}
// ************************************
void rfm22_setTxMode(uint8_t mode)
{
if (mode != TX_DATA_MODE && mode != TX_STREAM_MODE && mode != TX_CARRIER_MODE && mode != TX_PN_MODE)
return; // invalid mode
#if defined(RFM22_EXT_INT_USE)
exec_using_spi = TRUE;
#endif
// *******************
// disable interrupts
rfm22_write(RFM22_interrupt_enable1, 0x00);
rfm22_write(RFM22_interrupt_enable2, 0x00);
// rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_xton); // READY mode
rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon); // TUNE mode
RX_LED_OFF;
// set the tx power
// rfm22_write(RFM22_tx_power, RFM22_tx_pwr_lna_sw | tx_power);
// rfm22_write(RFM22_tx_power, RFM22_tx_pwr_papeaken | RFM22_tx_pwr_papeaklvl_0 | RFM22_tx_pwr_lna_sw | tx_power);
rfm22_write(RFM22_tx_power, RFM22_tx_pwr_papeaken | RFM22_tx_pwr_papeaklvl_1 | RFM22_tx_pwr_papeaklvl_0 | RFM22_tx_pwr_lna_sw | tx_power);
uint8_t fd_bit = rfm22_read(RFM22_modulation_mode_control2) & RFM22_mmc2_fd;
if (mode == TX_CARRIER_MODE)
{ // blank carrier mode - for testing
rfm22_write(RFM22_modulation_mode_control2, fd_bit | RFM22_mmc2_dtmod_pn9 | RFM22_mmc2_modtyp_none); // FIFO mode, Blank carrier
}
else
if (mode == TX_PN_MODE)
{ // psuedo random data carrier mode - for testing
rfm22_write(RFM22_modulation_mode_control2, fd_bit | RFM22_mmc2_dtmod_pn9 | RFM22_mmc2_modtyp_gfsk); // FIFO mode, PN9 carrier
}
else
{ // data transmission
rfm22_write(RFM22_modulation_mode_control2, fd_bit | RFM22_mmc2_dtmod_fifo | RFM22_mmc2_modtyp_gfsk); // FIFO mode, GFSK modulation
}
// rfm22_write(0x72, reg_72[lookup_index]); // rfm22_frequency_deviation
// clear FIFOs
rfm22_write(RFM22_op_and_func_ctrl2, RFM22_opfc2_ffclrrx | RFM22_opfc2_ffclrtx);
rfm22_write(RFM22_op_and_func_ctrl2, 0x00);
// *******************
// add some data to the chips TX FIFO before enabling the transmitter
{
uint16_t rd = 0;
uint16_t wr = tx_data_wr;
if (!tx_data_addr) wr = 0;
if (mode == TX_DATA_MODE)
rfm22_write(RFM22_transmit_packet_length, wr); // set the total number of data bytes we are going to transmit
uint16_t max_bytes = FIFO_SIZE - 1;
uint16_t i = 0;
rfm22_startBurstWrite(RFM22_fifo_access);
if (mode == TX_STREAM_MODE)
{
if (rd >= wr)
{ // no data to send - yet .. just send preamble pattern
while (true)
{
rfm22_burstWrite(PREAMBLE_BYTE);
if (++i >= max_bytes) break;
}
}
else
{ // add the RF heaader
i += rfm22_addHeader(mode);
}
}
// add some data
for (uint16_t j = wr - rd; j > 0; j--)
{
// int16_t b = -1;
// if (tx_data_byte_callback_function)
// b = tx_data_byte_callback_function();
rfm22_burstWrite(tx_data_addr[rd++]);
if (++i >= max_bytes) break;
}
rfm22_endBurstWrite();
tx_data_rd = rd;
}
// *******************
rfm22_int_timer = 0; // reset the timer
rf_mode = mode;
// enable TX interrupts
// rfm22_write(RFM22_interrupt_enable1, RFM22_ie1_enpksent | RFM22_ie1_entxffaem | RFM22_ie1_enfferr);
rfm22_write(RFM22_interrupt_enable1, RFM22_ie1_enpksent | RFM22_ie1_entxffaem);
// read interrupt status - clear interrupts
rfm22_read(RFM22_interrupt_status1);
rfm22_read(RFM22_interrupt_status2);
// enable the transmitter
// rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_xton | RFM22_opfc1_txon);
rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon | RFM22_opfc1_txon);
TX_LED_ON;
// *******************
// create new slightly random clear channel detector count value
uint32_t ccc = (TX_PREAMBLE_NIBBLES + 8) + 4; // minimum clear channel time before allowing transmit
clear_channel_count = ccc + (random32 % (ccc * 2)); // plus a some randomness
// *******************
#if defined(RFM22_EXT_INT_USE)
exec_using_spi = FALSE;
#endif
#if defined(RFM22_DEBUG)
if (rf_mode == TX_DATA_MODE) DEBUG_PRINTF(" TX_Data_Mode\r\n");
else
if (rf_mode == TX_STREAM_MODE) DEBUG_PRINTF(" TX_Stream_Mode\r\n");
else
if (rf_mode == TX_CARRIER_MODE) DEBUG_PRINTF(" TX_Carrier_Mode\r\n");
else
if (rf_mode == TX_PN_MODE) DEBUG_PRINTF(" TX_PN_Mode\r\n");
#endif
}
// ************************************
// external interrupt line triggered (or polled) from the rf chip
void rfm22_processRxInt(void)
{
register uint8_t int_stat1 = int_status1;
register uint8_t int_stat2 = int_status2;
if (int_stat2 & RFM22_is2_ipreaval)
{ // Valid preamble detected
if (rf_mode == RX_WAIT_PREAMBLE_MODE)
{
rfm22_int_timer = 0; // reset the timer
rf_mode = RX_WAIT_SYNC_MODE;
RX_LED_ON;
#if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE)
DEBUG_PRINTF(" pream_det");
debug_outputted = true;
#endif
}
}
/* else
if (int_stat2 & RFM22_is2_ipreainval)
{ // Invalid preamble detected
if (rf_mode == RX_WAIT_SYNC_MODE)
{
#if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE)
DEBUG_PRINTF(" invalid_preamble");
debug_outputted = true;
#endif
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
return;
}
else
{
}
}
*/
if (int_stat2 & RFM22_is2_iswdet)
{ // Sync word detected
STOPWATCH_reset(); // reset timer
if (rf_mode == RX_WAIT_PREAMBLE_MODE || rf_mode == RX_WAIT_SYNC_MODE)
{
rfm22_int_timer = 0; // reset the timer
rf_mode = RX_DATA_MODE;
RX_LED_ON;
// read the 10-bit signed afc correction value
afc_correction = (uint16_t)rfm22_read(RFM22_afc_correction_read) << 8; // bits 9 to 2
afc_correction |= (uint16_t)rfm22_read(RFM22_ook_counter_value1) & 0x00c0; // bits 1 & 0
afc_correction >>= 6;
afc_correction_Hz = (int32_t)(frequency_step_size * afc_correction + 0.5f); // convert the afc value to Hz
rx_packet_start_rssi_dBm = rssi_dBm; // remember the rssi for this packet
rx_packet_start_afc_Hz = afc_correction_Hz; // remember the afc value for this packet
#if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE)
DEBUG_PRINTF(" sync_det");
DEBUG_PRINTF(" AFC_%d_%dHz", afc_correction, afc_correction_Hz);
debug_outputted = true;
#endif
}
}
if (int_stat1 & RFM22_is1_irxffafull)
{ // RX FIFO almost full, it needs emptying
if (rf_mode == RX_DATA_MODE)
{ // read data from the rf chips FIFO buffer
rfm22_int_timer = 0; // reset the timer
register uint16_t len = rfm22_read(RFM22_received_packet_length); // read the total length of the packet data
register uint16_t wr = rx_buffer_wr;
if ((wr + RX_FIFO_HI_WATERMARK) > len)
{ // some kind of error in the RF module
#if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE)
DEBUG_PRINTF(" r_size_error1");
debug_outputted = true;
#endif
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
return;
}
if (((wr + RX_FIFO_HI_WATERMARK) >= len) && !(int_stat1 & RFM22_is1_ipkvalid))
{ // some kind of error in the RF module
#if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE)
DEBUG_PRINTF(" r_size_error2");
debug_outputted = true;
#endif
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
return;
}
// fetch the rx'ed data from the rf chips RX FIFO
rfm22_startBurstRead(RFM22_fifo_access);
rx_fifo_wr = 0;
for (register uint8_t i = RX_FIFO_HI_WATERMARK; i > 0; i--)
rx_fifo[rx_fifo_wr++] = rfm22_burstRead(); // read a byte from the rf modules RX FIFO buffer
rfm22_endBurstRead();
uint16_t i = rx_fifo_wr;
if (wr + i > sizeof(rx_buffer)) i = sizeof(rx_buffer) - wr;
memcpy((void *)(rx_buffer + wr), (void *)rx_fifo, i); // save the new bytes into our rx buffer
wr += i;
rx_buffer_wr = wr;
if (rx_data_callback_function)
{ // pass the new data onto whoever wanted it
if (!rx_data_callback_function((void *)rx_fifo, rx_fifo_wr))
{
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
return;
}
}
#if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE)
// DEBUG_PRINTF(" r_data_%u/%u", rx_buffer_wr, len);
// debug_outputted = true;
#endif
}
else
{ // just clear the RX FIFO
rfm22_startBurstRead(RFM22_fifo_access);
for (register uint16_t i = RX_FIFO_HI_WATERMARK; i > 0; i--)
rfm22_burstRead(); // read a byte from the rf modules RX FIFO buffer
rfm22_endBurstRead();
}
}
if (int_stat1 & RFM22_is1_icrerror)
{ // CRC error .. discard the received data
if (rf_mode == RX_DATA_MODE)
{
rfm22_int_timer = 0; // reset the timer
#if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE)
DEBUG_PRINTF(" CRC_ERR");
debug_outputted = true;
#endif
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); // reset the receiver
return;
}
}
// if (int_stat2 & RFM22_is2_irssi)
// { // RSSI level is >= the set threshold
// }
// if (device_status & RFM22_ds_rxffem)
// { // RX FIFO empty
// }
// if (device_status & RFM22_ds_headerr)
// { // Header check error
// }
if (int_stat1 & RFM22_is1_ipkvalid)
{ // Valid packet received
if (rf_mode == RX_DATA_MODE)
{
rfm22_int_timer = 0; // reset the timer
// disable the receiver
// rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_xton); // READY mode
rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon); // TUNE mode
register uint16_t len = rfm22_read(RFM22_received_packet_length); // read the total length of the packet data
register uint16_t wr = rx_buffer_wr;
if (wr < len)
{ // their must still be data in the RX FIFO we need to get
// fetch the rx'ed data from the rf chips RX FIFO
rfm22_startBurstRead(RFM22_fifo_access);
rx_fifo_wr = 0;
for (register uint8_t i = len - wr; i > 0; i--)
rx_fifo[rx_fifo_wr++] = rfm22_burstRead(); // read a byte from the rf modules RX FIFO buffer
rfm22_endBurstRead();
uint16_t i = rx_fifo_wr;
if (wr + i > sizeof(rx_buffer)) i = sizeof(rx_buffer) - wr;
memcpy((void *)(rx_buffer + wr), (void *)rx_fifo, i); // save the new bytes into our rx buffer
wr += i;
rx_buffer_wr = wr;
if (rx_data_callback_function)
{ // pass the new data onto whoever wanted it
if (!rx_data_callback_function((void *)rx_fifo, rx_fifo_wr))
{
// rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
// return;
}
}
}
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); // reset the receiver
if (wr != len)
{ // we have a packet length error .. discard the packet
#if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE)
DEBUG_PRINTF(" r_pack_len_error_%u_%u", len, wr);
debug_outputted = true;
#endif
return;
}
// we have a valid received packet
#if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE)
DEBUG_PRINTF(" VALID_R_PACKET_%u", wr);
debug_outputted = true;
#endif
if (rx_packet_wr == 0)
{ // save the received packet for further processing
rx_packet_rssi_dBm = rx_packet_start_rssi_dBm; // remember the rssi for this packet
rx_packet_afc_Hz = rx_packet_start_afc_Hz; // remember the afc offset for this packet
memmove((void *)rx_packet_buf, (void *)rx_buffer, wr); // copy the packet data
rx_packet_wr = wr; // save the length of the data
}
else
{ // the save buffer is still in use .. nothing we can do but to drop the packet
}
// return;
}
else
{
// rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); // reset the receiver
// return;
}
}
}
uint8_t rfm22_topUpRFTxFIFO(void)
{
rfm22_int_timer = 0; // reset the timer
uint16_t rd = tx_data_rd;
uint16_t wr = tx_data_wr;
if (rf_mode == TX_DATA_MODE && (!tx_data_addr || rd >= wr))
return 0; // no more data to send
uint16_t max_bytes = FIFO_SIZE - TX_FIFO_LO_WATERMARK - 1;
uint16_t i = 0;
// top-up the rf chips TX FIFO buffer
rfm22_startBurstWrite(RFM22_fifo_access);
// add some data
for (uint16_t j = wr - rd; j > 0; j--)
{
// int16_t b = -1;
// if (tx_data_byte_callback_function)
// b = tx_data_byte_callback_function();
rfm22_burstWrite(tx_data_addr[rd++]);
if (++i >= max_bytes) break;
}
tx_data_rd = rd;
if (rf_mode == TX_STREAM_MODE && rd >= wr)
{ // all data sent .. need to start sending RF header again
tx_data_addr = NULL;
tx_data_rd = tx_data_wr = 0;
while (i < max_bytes)
{
rfm22_burstWrite(PREAMBLE_BYTE); // preamble byte
i++;
}
// todo:
// add the RF heaader
// i += rfm22_addHeader(rf_mode);
}
rfm22_endBurstWrite();
#if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE)
// DEBUG_PRINTF(" added_%d_bytes", i);
// debug_outputted = true;
#endif
return i;
}
void rfm22_processTxInt(void)
{
register uint8_t int_stat1 = int_status1;
// register uint8_t int_stat2 = int_status2;
/*
if (int_stat1 & RFM22_is1_ifferr)
{ // FIFO underflow/overflow error
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
tx_data_addr = NULL;
tx_data_rd = tx_data_wr = 0;
return;
}
*/
if (int_stat1 & RFM22_is1_ixtffaem)
{ // TX FIFO almost empty, it needs filling up
#if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE)
// DEBUG_PRINTF(" T_FIFO_AE");
// debug_outputted = true;
#endif
// uint8_t bytes_added = rfm22_topUpRFTxFIFO();
rfm22_topUpRFTxFIFO();
}
if (int_stat1 & RFM22_is1_ipksent)
{ // Packet has been sent
#if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE)
DEBUG_PRINTF(" T_Sent");
debug_outputted = true;
#endif
if (rf_mode == TX_DATA_MODE)
{
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); // back to receive mode
tx_data_addr = NULL;
tx_data_rd = tx_data_wr = 0;
return;
}
else
if (rf_mode == TX_STREAM_MODE)
{
tx_data_addr = NULL;
tx_data_rd = tx_data_wr = 0;
rfm22_setTxMode(TX_STREAM_MODE);
return;
}
}
// if (int_stat1 & RFM22_is1_itxffafull)
// { // TX FIFO almost full, it needs to be transmitted
// }
}
void rfm22_processInt(void)
{ // this is called from the external interrupt handler
#if !defined(RFM22_EXT_INT_USE)
if (GPIO_IN(RF_INT_PIN))
return; // the external int line is high (no signalled interrupt)
#endif
if (!initialized || power_on_reset)
return; // we haven't yet been initialized
#if defined(RFM22_DEBUG)
debug_outputted = false;
#endif
// ********************************
// read the RF modules current status registers
// read device status register
device_status = rfm22_read(RFM22_device_status);
// read ezmac status register
ezmac_status = rfm22_read(RFM22_ezmac_status);
// read interrupt status registers - clears the interrupt line
int_status1 = rfm22_read(RFM22_interrupt_status1);
int_status2 = rfm22_read(RFM22_interrupt_status2);
if (rf_mode != TX_DATA_MODE && rf_mode != TX_STREAM_MODE && rf_mode != TX_CARRIER_MODE && rf_mode != TX_PN_MODE)
{
rssi = rfm22_read(RFM22_rssi); // read rx signal strength .. 45 = -100dBm, 205 = -20dBm
rssi_dBm = ((int16_t)rssi / 2) - 122; // convert to dBm
// calibrate the RSSI value (rf bandwidth appears to affect it)
// if (rf_bandwidth_used > 0)
// rssi_dBm -= 10000 / rf_bandwidth_used;
}
else
{
tx_pwr = rfm22_read(RFM22_tx_power); // read the tx power register
}
if (int_status2 & RFM22_is2_ipor)
{ // the RF module has gone and done a reset - we need to re-initialize the rf module
initialized = FALSE;
power_on_reset = TRUE;
return;
}
// ********************************
// debug stuff
#if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE)
if (prev_device_status != device_status || prev_int_status1 != int_status1 || prev_int_status2 != int_status2 || prev_ezmac_status != ezmac_status)
{
DEBUG_PRINTF("%02x %02x %02x %02x %dC", device_status, int_status1, int_status2, ezmac_status, temperature_reg);
if ((device_status & RFM22_ds_cps_mask) == RFM22_ds_cps_rx)
DEBUG_PRINTF(" %ddBm", rssi_dBm); // rx mode
else
if ((device_status & RFM22_ds_cps_mask) == RFM22_ds_cps_tx)
DEBUG_PRINTF(" %s", (tx_pwr & RFM22_tx_pwr_papeakval) ? "ANT_MISMATCH" : "ant_ok"); // tx mode
debug_outputted = true;
prev_device_status = device_status;
prev_int_status1 = int_status1;
prev_int_status2 = int_status2;
prev_ezmac_status = ezmac_status;
}
#endif
// ********************************
// read the ADC - temperature sensor .. this can only be used in IDLE mode
/*
if (!(rfm22_read(RFM22_adc_config) & RFM22_ac_adcstartbusy))
{ // the ADC has completed it's conversion
// read the ADC sample
temperature_reg = (int16_t)rfm22_read(RFM22_adc_value) * 0.5f - 64;
// start a new ADC conversion
rfm22_write(RFM22_adc_config, adc_config | RFM22_ac_adcstartbusy);
#if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE)
DEBUG_PRINTF(", %dC", temperature_reg);
debug_outputted = true;
#endif
}
*/
// ********************************
register uint16_t timer_ms = rfm22_int_timer;
switch (rf_mode)
{
case RX_SCAN_SPECTRUM:
break;
case RX_WAIT_PREAMBLE_MODE:
case RX_WAIT_SYNC_MODE:
case RX_DATA_MODE:
if (device_status & (RFM22_ds_ffunfl | RFM22_ds_ffovfl))
{ // FIFO under/over flow error
#if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE)
DEBUG_PRINTF(" R_UNDER/OVERRUN");
debug_outputted = true;
#endif
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); // reset the receiver
tx_data_rd = tx_data_wr = 0; // wipe TX buffer
break;
}
if (rf_mode == RX_WAIT_SYNC_MODE && timer_ms >= timeout_sync_ms)
{
rfm22_int_time_outs++;
#if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE)
DEBUG_PRINTF(" R_SYNC_TIMEOUT");
debug_outputted = true;
#endif
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); // reset the receiver
tx_data_rd = tx_data_wr = 0; // wipe TX buffer
break;
}
if (rf_mode == RX_DATA_MODE && timer_ms >= timeout_data_ms)
{ // missing interrupts
rfm22_int_time_outs++;
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); // reset the receiver
tx_data_rd = tx_data_wr = 0; // wipe TX buffer
break;
}
if ((device_status & RFM22_ds_cps_mask) != RFM22_ds_cps_rx)
{ // the rf module is not in rx mode
if (timer_ms >= 100)
{
rfm22_int_time_outs++;
#if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE)
DEBUG_PRINTF(" R_TIMEOUT");
debug_outputted = true;
#endif
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); // reset the receiver
tx_data_rd = tx_data_wr = 0; // wipe TX buffer
break;
}
}
rfm22_processRxInt(); // process the interrupt
break;
case TX_DATA_MODE:
if (device_status & (RFM22_ds_ffunfl | RFM22_ds_ffovfl))
{ // FIFO under/over flow error
#if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE)
DEBUG_PRINTF(" T_UNDER/OVERRUN");
debug_outputted = true;
#endif
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); // back to rx mode
tx_data_rd = tx_data_wr = 0; // wipe TX buffer
break;
}
if (timer_ms >= timeout_data_ms)
{
rfm22_int_time_outs++;
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); // back to rx mode
tx_data_rd = tx_data_wr = 0; // wipe TX buffer
break;
}
if ((device_status & RFM22_ds_cps_mask) != RFM22_ds_cps_tx)
{ // the rf module is not in tx mode
if (timer_ms >= 100)
{
rfm22_int_time_outs++;
#if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE)
DEBUG_PRINTF(" T_TIMEOUT");
debug_outputted = true;
#endif
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); // back to rx mode
tx_data_rd = tx_data_wr = 0; // wipe TX buffer
break;
}
}
rfm22_processTxInt(); // process the interrupt
break;
case TX_STREAM_MODE:
// todo:
rfm22_processTxInt(); // process the interrupt
break;
case TX_CARRIER_MODE:
case TX_PN_MODE:
// if (timer_ms >= TX_TEST_MODE_TIMELIMIT_MS) // 'nn'ms limit
// {
// rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); // back to rx mode
// tx_data_rd = tx_data_wr = 0; // wipe TX buffer
// break;
// }
break;
default: // unknown mode - this should NEVER happen, maybe we should do a complete CPU reset here
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); // to rx mode
tx_data_rd = tx_data_wr = 0; // wipe TX buffer
break;
}
// ********************************
#if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE)
if (debug_outputted)
{
switch (rf_mode)
{
case RX_SCAN_SPECTRUM:
DEBUG_PRINTF(" R_SCAN_SPECTRUM\r\n");
break;
case RX_WAIT_PREAMBLE_MODE:
DEBUG_PRINTF(" R_WAIT_PREAMBLE\r\n");
break;
case RX_WAIT_SYNC_MODE:
DEBUG_PRINTF(" R_WAIT_SYNC\r\n");
break;
case RX_DATA_MODE:
DEBUG_PRINTF(" R_DATA\r\n");
break;
case TX_DATA_MODE:
DEBUG_PRINTF(" T_DATA\r\n");
break;
case TX_STREAM_MODE:
DEBUG_PRINTF(" T_STREAM\r\n");
break;
case TX_CARRIER_MODE:
DEBUG_PRINTF(" T_CARRIER\r\n");
break;
case TX_PN_MODE:
DEBUG_PRINTF(" T_PN\r\n");
break;
default:
DEBUG_PRINTF(" UNKNOWN_MODE\r\n");
break;
}
}
#endif
// ********************************
}
// ************************************
int16_t rfm22_getRSSI(void)
{
#if defined(RFM22_EXT_INT_USE)
exec_using_spi = TRUE;
#endif
rssi = rfm22_read(RFM22_rssi); // read rx signal strength .. 45 = -100dBm, 205 = -20dBm
rssi_dBm = ((int16_t)rssi / 2) - 122; // convert to dBm
#if defined(RFM22_EXT_INT_USE)
exec_using_spi = FALSE;
#endif
return rssi_dBm;
}
int16_t rfm22_receivedRSSI(void)
{ // return the packets signal strength
if (!initialized)
return -200;
else
return rx_packet_rssi_dBm;
}
int32_t rfm22_receivedAFCHz(void)
{ // return the packets offset frequency
if (!initialized)
return 0;
else
return rx_packet_afc_Hz;
}
uint16_t rfm22_receivedLength(void)
{ // return the size of the data received
if (!initialized)
return 0;
else
return rx_packet_wr;
}
uint8_t * rfm22_receivedPointer(void)
{ // return the address of the data
return (uint8_t *)&rx_packet_buf;
}
void rfm22_receivedDone(void)
{ // empty the rx packet buffer
rx_packet_wr = 0;
}
// ************************************
int32_t rfm22_sendData(void *data, uint16_t length, bool send_immediately)
{
if (!initialized)
return -1; // we are not yet initialized
if (length == 0)
return -2; // no data to send
if (!data || length > 255)
return -3; // no data or too much data to send
if (tx_data_wr > 0)
return -4; // already have data to be sent
if (rf_mode == TX_DATA_MODE || rf_mode == TX_STREAM_MODE || rf_mode == TX_CARRIER_MODE || rf_mode == TX_PN_MODE || rf_mode == RX_SCAN_SPECTRUM)
return -5; // we are currently transmitting or scanning the spectrum
tx_data_addr = data;
tx_data_rd = 0;
tx_data_wr = length;
#if defined(RFM22_DEBUG)
DEBUG_PRINTF("rf sendData(0x%08x %u)\r\n", (uint32_t)tx_data_addr, tx_data_wr);
#endif
if (send_immediately || rfm22_channelIsClear()) // is the channel clear to transmit on?
rfm22_setTxMode(TX_DATA_MODE); // transmit NOW
return tx_data_wr;
}
// ************************************
void rfm22_setTxStream(void) // TEST ONLY
{
if (!initialized)
return;
tx_data_rd = tx_data_wr = 0;
rfm22_setTxMode(TX_STREAM_MODE);
}
// ************************************
void rfm22_setTxNormal(void)
{
if (!initialized)
return;
// if (rf_mode == TX_CARRIER_MODE || rf_mode == TX_PN_MODE)
if (rf_mode != RX_SCAN_SPECTRUM)
{
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
tx_data_rd = tx_data_wr = 0;
rx_packet_wr = 0;
rx_packet_start_rssi_dBm = 0;
rx_packet_start_afc_Hz = 0;
rx_packet_rssi_dBm = 0;
rx_packet_afc_Hz = 0;
}
}
// enable a blank tx carrier (for frequency alignment)
void rfm22_setTxCarrierMode(void)
{
if (!initialized)
return;
if (rf_mode != TX_CARRIER_MODE && rf_mode != RX_SCAN_SPECTRUM)
rfm22_setTxMode(TX_CARRIER_MODE);
}
// enable a psuedo random data tx carrier (for spectrum inspection)
void rfm22_setTxPNMode(void)
{
if (!initialized)
return;
if (rf_mode != TX_PN_MODE && rf_mode != RX_SCAN_SPECTRUM)
rfm22_setTxMode(TX_PN_MODE);
}
// ************************************
// return the current mode
int8_t rfm22_currentMode(void)
{
return rf_mode;
}
// return TRUE if we are transmitting
bool rfm22_transmitting(void)
{
return (rf_mode == TX_DATA_MODE || rf_mode == TX_STREAM_MODE || rf_mode == TX_CARRIER_MODE || rf_mode == TX_PN_MODE);
}
// return TRUE if the channel is clear to transmit on
bool rfm22_channelIsClear(void)
{
if (!initialized)
return FALSE; // we haven't yet been initialized
if (rf_mode != RX_WAIT_PREAMBLE_MODE && rf_mode != RX_WAIT_SYNC_MODE)
return FALSE; // we are receiving something or we are transmitting or we are scanning the spectrum
return TRUE;
// return (STOPWATCH_get_count() > clear_channel_count);
}
// return TRUE if the transmiter is ready for use
bool rfm22_txReady(void)
{
if (!initialized)
return FALSE; // we haven't yet been initialized
return (tx_data_rd == 0 && tx_data_wr == 0 && rf_mode != TX_DATA_MODE && rf_mode != TX_STREAM_MODE && rf_mode != TX_CARRIER_MODE && rf_mode != TX_PN_MODE && rf_mode != RX_SCAN_SPECTRUM);
}
// ************************************
// set/get the frequency calibration value
void rfm22_setFreqCalibration(uint8_t value)
{
osc_load_cap = value;
if (!initialized || power_on_reset)
return; // we haven't yet been initialized
uint8_t prev_rf_mode = rf_mode;
if (rf_mode == TX_CARRIER_MODE || rf_mode == TX_PN_MODE)
{
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
tx_data_rd = tx_data_wr = 0;
}
#if defined(RFM22_EXT_INT_USE)
exec_using_spi = TRUE;
#endif
rfm22_write(RFM22_xtal_osc_load_cap, osc_load_cap);
#if defined(RFM22_EXT_INT_USE)
exec_using_spi = FALSE;
#endif
if (prev_rf_mode == TX_CARRIER_MODE || prev_rf_mode == TX_PN_MODE)
rfm22_setTxMode(prev_rf_mode);
}
uint8_t rfm22_getFreqCalibration(void)
{
return osc_load_cap;
}
// ************************************
// can be called from an interrupt if you wish
void rfm22_1ms_tick(void)
{ // call this once every ms
if (booting) return;
if (!initialized) return; // we haven't yet been initialized
if (rf_mode != RX_SCAN_SPECTRUM)
{
if (rfm22_int_timer < 0xffff) rfm22_int_timer++;
}
}
// *****************************************************************************
// call this as often as possible - not from an interrupt
void rfm22_process(void)
{
if (booting) return;
if (!initialized) return; // we haven't yet been initialized
#if !defined(RFM22_EXT_INT_USE)
if (rf_mode != RX_SCAN_SPECTRUM)
rfm22_processInt(); // manually poll the interrupt line routine
#endif
if (power_on_reset)
{ // we need to re-initialize the RF module - it told us it's reset itself
if (rf_mode != RX_SCAN_SPECTRUM)
{ // normal data mode
uint32_t current_freq = carrier_frequency_hz; // fetch current rf nominal frequency
rfm22_init_normal(lower_carrier_frequency_limit_Hz, upper_carrier_frequency_limit_Hz, rfm22_freqHopSize());
rfm22_setNominalCarrierFrequency(current_freq); // restore the nominal carrier frequency
}
else
{ // we are scanning the spectrum
rfm22_init_scan_spectrum(lower_carrier_frequency_limit_Hz, upper_carrier_frequency_limit_Hz);
}
return;
}
switch (rf_mode)
{
case RX_SCAN_SPECTRUM: // we are scanning the spectrum
// read device status register
device_status = rfm22_read(RFM22_device_status);
// read ezmac status register
ezmac_status = rfm22_read(RFM22_ezmac_status);
// read interrupt status registers - clears the interrupt line
int_status1 = rfm22_read(RFM22_interrupt_status1);
int_status2 = rfm22_read(RFM22_interrupt_status2);
if (int_status2 & RFM22_is2_ipor)
{ // the RF module has gone and done a reset - we need to re-initialize the rf module
initialized = FALSE;
power_on_reset = TRUE;
return;
}
break;
case RX_WAIT_PREAMBLE_MODE:
if (rfm22_int_timer >= timeout_ms)
{ // assume somethings locked up
rfm22_int_time_outs++;
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); // reset the RF module to rx mode
tx_data_rd = tx_data_wr = 0; // wipe TX buffer
break;
}
// go to transmit mode if we have data to send and the channel is clear to transmit on
if (tx_data_rd == 0 && tx_data_wr > 0 && rfm22_channelIsClear())
{
rfm22_setTxMode(TX_DATA_MODE); // transmit packet NOW
break;
}
break;
case RX_WAIT_SYNC_MODE:
if (rfm22_int_timer >= timeout_sync_ms)
{ // assume somethings locked up
rfm22_int_time_outs++;
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); // reset the RF module to rx mode
tx_data_rd = tx_data_wr = 0; // wipe TX buffer
break;
}
// go to transmit mode if we have data to send and the channel is clear to transmit on
if (tx_data_rd == 0 && tx_data_wr > 0 && rfm22_channelIsClear())
{
rfm22_setTxMode(TX_DATA_MODE); // transmit packet NOW
break;
}
break;
case RX_DATA_MODE:
case TX_DATA_MODE:
if (rfm22_int_timer >= timeout_data_ms)
{ // assume somethings locked up
rfm22_int_time_outs++;
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); // reset the RF module to rx mode
tx_data_rd = tx_data_wr = 0; // wipe TX buffer
break;
}
break;
case TX_STREAM_MODE:
// todo:
break;
case TX_CARRIER_MODE:
case TX_PN_MODE:
// if (rfm22_int_timer >= TX_TEST_MODE_TIMELIMIT_MS)
// {
// rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); // back to rx mode
// tx_data_rd = tx_data_wr = 0; // wipe TX buffer
// break;
// }
break;
default:
// unknown mode - this should never happen, maybe we should do a complete CPU reset here?
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); // to rx mode
tx_data_rd = tx_data_wr = 0; // wipe TX buffer
break;
}
#if defined(RFM22_INT_TIMEOUT_DEBUG)
if (prev_rfm22_int_time_outs != rfm22_int_time_outs)
{
prev_rfm22_int_time_outs = rfm22_int_time_outs;
DEBUG_PRINTF("rf int timeouts %d\r\n", rfm22_int_time_outs);
}
#endif
}
// ************************************
void rfm22_TxDataByte_SetCallback(t_rfm22_TxDataByteCallback new_function)
{
tx_data_byte_callback_function = new_function;
}
void rfm22_RxData_SetCallback(t_rfm22_RxDataCallback new_function)
{
rx_data_callback_function = new_function;
}
// ************************************
// reset the RF module
int rfm22_resetModule(uint8_t mode, uint32_t min_frequency_hz, uint32_t max_frequency_hz)
{
initialized = false;
#if defined(RFM22_EXT_INT_USE)
rfm22_disableExtInt();
#endif
power_on_reset = false;
// ****************
#if defined(RFM22_EXT_INT_USE)
exec_using_spi = TRUE;
#endif
// ****************
// setup the SPI port
// chip select line HIGH
PIOS_SPI_RC_PinSet(RFM22_PIOS_SPI, 1);
// set SPI port SCLK frequency .. 4.5MHz
PIOS_SPI_SetClockSpeed(RFM22_PIOS_SPI, PIOS_SPI_PRESCALER_16);
// set SPI port SCLK frequency .. 2.25MHz
// PIOS_SPI_SetClockSpeed(RFM22_PIOS_SPI, PIOS_SPI_PRESCALER_32);
// set SPI port SCLK frequency .. 285kHz .. purely for hardware fault finding
// PIOS_SPI_SetClockSpeed(RFM22_PIOS_SPI, PIOS_SPI_PRESCALER_256);
// ****************
// software reset the RF chip .. following procedure according to Si4x3x Errata (rev. B)
rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_swres); // software reset the radio
PIOS_DELAY_WaitmS(26); // wait 26ms
for (int i = 50; i > 0; i--)
{
PIOS_DELAY_WaitmS(1); // wait 1ms
// read the status registers
int_status1 = rfm22_read(RFM22_interrupt_status1);
int_status2 = rfm22_read(RFM22_interrupt_status2);
if (int_status2 & RFM22_is2_ichiprdy) break;
}
// ****************
// read status - clears interrupt
device_status = rfm22_read(RFM22_device_status);
int_status1 = rfm22_read(RFM22_interrupt_status1);
int_status2 = rfm22_read(RFM22_interrupt_status2);
ezmac_status = rfm22_read(RFM22_ezmac_status);
// disable all interrupts
rfm22_write(RFM22_interrupt_enable1, 0x00);
rfm22_write(RFM22_interrupt_enable2, 0x00);
// ****************
#if defined(RFM22_EXT_INT_USE)
exec_using_spi = FALSE;
#endif
// ****************
#if defined(RFM22_EXT_INT_USE)
inside_ext_int = FALSE;
#endif
rf_mode = mode;
device_status = int_status1 = int_status2 = ezmac_status = 0;
rssi = 0;
rssi_dBm = -200;
tx_data_byte_callback_function = NULL;
rx_data_callback_function = NULL;
rx_buffer_current = 0;
rx_buffer_wr = 0;
rx_packet_wr = 0;
rx_packet_rssi_dBm = -200;
rx_packet_afc_Hz = 0;
tx_data_addr = NULL;
tx_data_rd = tx_data_wr = 0;
lookup_index = 0;
ss_lookup_index = 0;
rf_bandwidth_used = 0;
ss_rf_bandwidth_used = 0;
rfm22_int_timer = 0;
rfm22_int_time_outs = 0;
prev_rfm22_int_time_outs = 0;
hbsel = 0;
frequency_step_size = 0.0f;
frequency_hop_channel = 0;
afc_correction = 0;
afc_correction_Hz = 0;
temperature_reg = 0;
// set the TX power
tx_power = RFM22_DEFAULT_RF_POWER;
tx_pwr = 0;
// ****************
// read the RF chip ID bytes
device_type = rfm22_read(RFM22_DEVICE_TYPE) & RFM22_DT_MASK; // read the device type
device_version = rfm22_read(RFM22_DEVICE_VERSION) & RFM22_DV_MASK; // read the device version
#if defined(RFM22_DEBUG)
DEBUG_PRINTF("rf device type: %d\r\n", device_type);
DEBUG_PRINTF("rf device version: %d\r\n", device_version);
#endif
if (device_type != 0x08)
{
#if defined(RFM22_DEBUG)
DEBUG_PRINTF("rf device type: INCORRECT - should be 0x08\r\n");
#endif
return -1; // incorrect RF module type
}
// if (device_version != RFM22_DEVICE_VERSION_V2) // V2
// return -2; // incorrect RF module version
// if (device_version != RFM22_DEVICE_VERSION_A0) // A0
// return -2; // incorrect RF module version
if (device_version != RFM22_DEVICE_VERSION_B1) // B1
{
#if defined(RFM22_DEBUG)
DEBUG_PRINTF("rf device version: INCORRECT\r\n");
#endif
return -2; // incorrect RF module version
}
// ****************
// set the minimum and maximum carrier frequency allowed
if (min_frequency_hz < RFM22_MIN_CARRIER_FREQUENCY_HZ) min_frequency_hz = RFM22_MIN_CARRIER_FREQUENCY_HZ;
else
if (min_frequency_hz > RFM22_MAX_CARRIER_FREQUENCY_HZ) min_frequency_hz = RFM22_MAX_CARRIER_FREQUENCY_HZ;
if (max_frequency_hz < RFM22_MIN_CARRIER_FREQUENCY_HZ) max_frequency_hz = RFM22_MIN_CARRIER_FREQUENCY_HZ;
else
if (max_frequency_hz > RFM22_MAX_CARRIER_FREQUENCY_HZ) max_frequency_hz = RFM22_MAX_CARRIER_FREQUENCY_HZ;
if (min_frequency_hz > max_frequency_hz)
{ // swap them over
uint32_t tmp = min_frequency_hz;
min_frequency_hz = max_frequency_hz;
max_frequency_hz = tmp;
}
lower_carrier_frequency_limit_Hz = min_frequency_hz;
upper_carrier_frequency_limit_Hz = max_frequency_hz;
// ****************
// calibrate our RF module to be exactly on frequency .. different for every module
osc_load_cap = OSC_LOAD_CAP; // default
rfm22_write(RFM22_xtal_osc_load_cap, osc_load_cap);
// ****************
// disable Low Duty Cycle Mode
rfm22_write(RFM22_op_and_func_ctrl2, 0x00);
rfm22_write(RFM22_cpu_output_clk, RFM22_coc_1MHz); // 1MHz clock output
rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_xton); // READY mode
// rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon); // TUNE mode
// choose the 3 GPIO pin functions
rfm22_write(RFM22_io_port_config, RFM22_io_port_default); // GPIO port use default value
rfm22_write(RFM22_gpio0_config, RFM22_gpio0_config_drv3 | RFM22_gpio0_config_txstate); // GPIO0 = TX State (to control RF Switch)
rfm22_write(RFM22_gpio1_config, RFM22_gpio1_config_drv3 | RFM22_gpio1_config_rxstate); // GPIO1 = RX State (to control RF Switch)
rfm22_write(RFM22_gpio2_config, RFM22_gpio2_config_drv3 | RFM22_gpio2_config_cca); // GPIO2 = Clear Channel Assessment
// ****************
return 0; // OK
}
// ************************************
int rfm22_init_scan_spectrum(uint32_t min_frequency_hz, uint32_t max_frequency_hz)
{
#if defined(RFM22_DEBUG)
DEBUG_PRINTF("\r\nRF init scan spectrum\r\n");
#endif
int res = rfm22_resetModule(RX_SCAN_SPECTRUM, min_frequency_hz, max_frequency_hz);
if (res < 0)
return res;
// rfm22_setSSBandwidth(0);
rfm22_setSSBandwidth(1);
// FIFO mode, GFSK modulation
uint8_t fd_bit = rfm22_read(RFM22_modulation_mode_control2) & RFM22_mmc2_fd;
rfm22_write(RFM22_modulation_mode_control2, RFM22_mmc2_trclk_clk_none | RFM22_mmc2_dtmod_fifo | fd_bit | RFM22_mmc2_modtyp_gfsk);
rfm22_write(RFM22_cpu_output_clk, RFM22_coc_1MHz); // 1MHz clock output
rfm22_write(RFM22_rssi_threshold_clear_chan_indicator, 0);
rfm22_write(RFM22_preamble_detection_ctrl1, 31 << 3); // 31-nibbles rx preamble detection
// avoid packet detection
rfm22_write(RFM22_data_access_control, RFM22_dac_enpacrx | RFM22_dac_encrc);
rfm22_write(RFM22_header_control1, 0x0f);
rfm22_write(RFM22_header_control2, 0x77);
rfm22_write(RFM22_sync_word3, SYNC_BYTE_1);
rfm22_write(RFM22_sync_word2, SYNC_BYTE_2);
rfm22_write(RFM22_sync_word1, SYNC_BYTE_3 ^ 0xff);
rfm22_write(RFM22_sync_word0, SYNC_BYTE_4 ^ 0xff);
// all the bits to be checked
rfm22_write(RFM22_header_enable3, 0xff);
rfm22_write(RFM22_header_enable2, 0xff);
rfm22_write(RFM22_header_enable1, 0xff);
rfm22_write(RFM22_header_enable0, 0xff);
// rfm22_write(RFM22_frequency_hopping_step_size, 0); // set frequency hopping channel step size (multiples of 10kHz)
rfm22_setNominalCarrierFrequency(min_frequency_hz); // set our nominal carrier frequency
rfm22_write(RFM22_tx_power, RFM22_tx_pwr_lna_sw | 0); // set minimum tx power
rfm22_write(RFM22_agc_override1, RFM22_agc_ovr1_sgi | RFM22_agc_ovr1_agcen);
// rfm22_write(RFM22_vco_current_trimming, 0x7f);
// rfm22_write(RFM22_vco_calibration_override, 0x40);
// rfm22_write(RFM22_chargepump_current_trimming_override, 0x80);
#if defined(RFM22_EXT_INT_USE)
// Enable RF module external interrupt
rfm22_enableExtInt();
#endif
rfm22_setRxMode(RX_SCAN_SPECTRUM, true);
initialized = true;
return 0; // OK
}
// ************************************
int rfm22_init_tx_stream(uint32_t min_frequency_hz, uint32_t max_frequency_hz)
{
#if defined(RFM22_DEBUG)
DEBUG_PRINTF("\r\nRF init TX stream\r\n");
#endif
int res = rfm22_resetModule(TX_STREAM_MODE, min_frequency_hz, max_frequency_hz);
if (res < 0)
return res;
frequency_hop_step_size_reg = 0;
// set the RF datarate
rfm22_setDatarate(RFM22_DEFAULT_RF_DATARATE, FALSE);
// FIFO mode, GFSK modulation
uint8_t fd_bit = rfm22_read(RFM22_modulation_mode_control2) & RFM22_mmc2_fd;
rfm22_write(RFM22_modulation_mode_control2, RFM22_mmc2_trclk_clk_none | RFM22_mmc2_dtmod_fifo | fd_bit | RFM22_mmc2_modtyp_gfsk);
// disable the internal Tx & Rx packet handlers (without CRC)
rfm22_write(RFM22_data_access_control, 0);
rfm22_write(RFM22_preamble_length, TX_PREAMBLE_NIBBLES); // x-nibbles tx preamble
rfm22_write(RFM22_preamble_detection_ctrl1, RX_PREAMBLE_NIBBLES << 3); // x-nibbles rx preamble detection
rfm22_write(RFM22_header_control1, RFM22_header_cntl1_bcen_none | RFM22_header_cntl1_hdch_none); // header control - we are not using the header
rfm22_write(RFM22_header_control2, RFM22_header_cntl2_fixpklen | RFM22_header_cntl2_hdlen_none | RFM22_header_cntl2_synclen_32 | ((TX_PREAMBLE_NIBBLES >> 8) & 0x01)); // no header bytes, synchronization word length 3, 2 used, packet length not included in header (fixed packet length).
rfm22_write(RFM22_sync_word3, SYNC_BYTE_1); // sync word
rfm22_write(RFM22_sync_word2, SYNC_BYTE_2); //
// rfm22_write(RFM22_modem_test, 0x01);
rfm22_write(RFM22_agc_override1, RFM22_agc_ovr1_agcen);
// rfm22_write(RFM22_agc_override1, RFM22_agc_ovr1_sgi | RFM22_agc_ovr1_agcen);
rfm22_write(RFM22_frequency_hopping_step_size, frequency_hop_step_size_reg); // set frequency hopping channel step size (multiples of 10kHz)
rfm22_setNominalCarrierFrequency((min_frequency_hz + max_frequency_hz) / 2); // set our nominal carrier frequency
rfm22_write(RFM22_tx_power, RFM22_tx_pwr_papeaken | RFM22_tx_pwr_papeaklvl_0 | RFM22_tx_pwr_lna_sw | tx_power); // set the tx power
// rfm22_write(RFM22_tx_power, RFM22_tx_pwr_lna_sw | tx_power); // set the tx power
// rfm22_write(RFM22_vco_current_trimming, 0x7f);
// rfm22_write(RFM22_vco_calibration_override, 0x40);
// rfm22_write(RFM22_chargepump_current_trimming_override, 0x80);
rfm22_write(RFM22_tx_fifo_control1, TX_FIFO_HI_WATERMARK); // TX FIFO Almost Full Threshold (0 - 63)
rfm22_write(RFM22_tx_fifo_control2, TX_FIFO_LO_WATERMARK); // TX FIFO Almost Empty Threshold (0 - 63)
#if defined(RFM22_EXT_INT_USE)
// Enable RF module external interrupt
rfm22_enableExtInt();
#endif
initialized = true;
return 0; // OK
}
// ************************************
int rfm22_init_rx_stream(uint32_t min_frequency_hz, uint32_t max_frequency_hz)
{
#if defined(RFM22_DEBUG)
DEBUG_PRINTF("\r\nRF init RX stream\r\n");
#endif
int res = rfm22_resetModule(RX_WAIT_PREAMBLE_MODE, min_frequency_hz, max_frequency_hz);
if (res < 0)
return res;
frequency_hop_step_size_reg = 0;
// set the RF datarate
rfm22_setDatarate(RFM22_DEFAULT_RF_DATARATE, FALSE);
// FIFO mode, GFSK modulation
uint8_t fd_bit = rfm22_read(RFM22_modulation_mode_control2) & RFM22_mmc2_fd;
rfm22_write(RFM22_modulation_mode_control2, RFM22_mmc2_trclk_clk_none | RFM22_mmc2_dtmod_fifo | fd_bit | RFM22_mmc2_modtyp_gfsk);
// disable the internal Tx & Rx packet handlers (without CRC)
rfm22_write(RFM22_data_access_control, 0);
rfm22_write(RFM22_preamble_length, TX_PREAMBLE_NIBBLES); // x-nibbles tx preamble
rfm22_write(RFM22_preamble_detection_ctrl1, RX_PREAMBLE_NIBBLES << 3); // x-nibbles rx preamble detection
rfm22_write(RFM22_header_control1, RFM22_header_cntl1_bcen_none | RFM22_header_cntl1_hdch_none); // header control - we are not using the header
rfm22_write(RFM22_header_control2, RFM22_header_cntl2_fixpklen | RFM22_header_cntl2_hdlen_none | RFM22_header_cntl2_synclen_32 | ((TX_PREAMBLE_NIBBLES >> 8) & 0x01)); // no header bytes, synchronization word length 3, 2 used, packet length not included in header (fixed packet length).
rfm22_write(RFM22_sync_word3, SYNC_BYTE_1); // sync word
rfm22_write(RFM22_sync_word2, SYNC_BYTE_2); //
// no header bits to be checked
rfm22_write(RFM22_header_enable3, 0x00);
rfm22_write(RFM22_header_enable2, 0x00);
rfm22_write(RFM22_header_enable1, 0x00);
rfm22_write(RFM22_header_enable0, 0x00);
// rfm22_write(RFM22_modem_test, 0x01);
rfm22_write(RFM22_agc_override1, RFM22_agc_ovr1_agcen);
// rfm22_write(RFM22_agc_override1, RFM22_agc_ovr1_sgi | RFM22_agc_ovr1_agcen);
rfm22_write(RFM22_frequency_hopping_step_size, frequency_hop_step_size_reg); // set frequency hopping channel step size (multiples of 10kHz)
rfm22_setNominalCarrierFrequency((min_frequency_hz + max_frequency_hz) / 2); // set our nominal carrier frequency
// rfm22_write(RFM22_vco_current_trimming, 0x7f);
// rfm22_write(RFM22_vco_calibration_override, 0x40);
// rfm22_write(RFM22_chargepump_current_trimming_override, 0x80);
rfm22_write(RFM22_rx_fifo_control, RX_FIFO_HI_WATERMARK); // RX FIFO Almost Full Threshold (0 - 63)
#if defined(RFM22_EXT_INT_USE)
// Enable RF module external interrupt
rfm22_enableExtInt();
#endif
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
initialized = true;
return 0; // OK
}
// ************************************
// Initialise this hardware layer module and the rf module
int rfm22_init_normal(uint32_t min_frequency_hz, uint32_t max_frequency_hz, uint32_t freq_hop_step_size)
{
#if defined(RFM22_DEBUG)
DEBUG_PRINTF("\r\nRF init normal\r\n");
#endif
int res = rfm22_resetModule(RX_WAIT_PREAMBLE_MODE, min_frequency_hz, max_frequency_hz);
if (res < 0)
return res;
// ****************
freq_hop_step_size /= 10000; // in 10kHz increments
if (freq_hop_step_size > 255) freq_hop_step_size = 255;
frequency_hop_step_size_reg = freq_hop_step_size;
// ****************
// set the RF datarate
rfm22_setDatarate(RFM22_DEFAULT_RF_DATARATE, TRUE);
// FIFO mode, GFSK modulation
uint8_t fd_bit = rfm22_read(RFM22_modulation_mode_control2) & RFM22_mmc2_fd;
rfm22_write(RFM22_modulation_mode_control2, RFM22_mmc2_trclk_clk_none | RFM22_mmc2_dtmod_fifo | fd_bit | RFM22_mmc2_modtyp_gfsk);
// setup to read the internal temperature sensor
adc_config = RFM22_ac_adcsel_temp_sensor | RFM22_ac_adcref_bg; // ADC used to sample the temperature sensor
rfm22_write(RFM22_adc_config, adc_config); //
rfm22_write(RFM22_adc_sensor_amp_offset, 0); // adc offset
rfm22_write(RFM22_temp_sensor_calib, RFM22_tsc_tsrange0 | RFM22_tsc_entsoffs); // temp sensor calibration .. <20>40C to +64C 0.5C resolution
rfm22_write(RFM22_temp_value_offset, 0); // temp sensor offset
rfm22_write(RFM22_adc_config, adc_config | RFM22_ac_adcstartbusy); // start an ADC conversion
rfm22_write(RFM22_rssi_threshold_clear_chan_indicator, (-90 + 122) * 2); // set the RSSI threshold interrupt to about -90dBm
// enable the internal Tx & Rx packet handlers (with CRC)
// rfm22_write(RFM22_data_access_control, RFM22_dac_enpacrx | RFM22_dac_enpactx | RFM22_dac_encrc | RFM22_dac_crc_crc16);
// enable the internal Tx & Rx packet handlers (without CRC)
rfm22_write(RFM22_data_access_control, RFM22_dac_enpacrx | RFM22_dac_enpactx);
rfm22_write(RFM22_preamble_length, TX_PREAMBLE_NIBBLES); // x-nibbles tx preamble
rfm22_write(RFM22_preamble_detection_ctrl1, RX_PREAMBLE_NIBBLES << 3); // x-nibbles rx preamble detection
rfm22_write(RFM22_header_control1, RFM22_header_cntl1_bcen_none | RFM22_header_cntl1_hdch_none); // header control - we are not using the header
rfm22_write(RFM22_header_control2, RFM22_header_cntl2_hdlen_none | RFM22_header_cntl2_synclen_3210 | ((TX_PREAMBLE_NIBBLES >> 8) & 0x01)); // no header bytes, synchronization word length 3, 2, 1 & 0 used, packet length included in header.
rfm22_write(RFM22_sync_word3, SYNC_BYTE_1); // sync word
rfm22_write(RFM22_sync_word2, SYNC_BYTE_2); //
rfm22_write(RFM22_sync_word1, SYNC_BYTE_3); //
rfm22_write(RFM22_sync_word0, SYNC_BYTE_4); //
/*
rfm22_write(RFM22_transmit_header3, 'p'); // set tx header
rfm22_write(RFM22_transmit_header2, 'i'); //
rfm22_write(RFM22_transmit_header1, 'p'); //
rfm22_write(RFM22_transmit_header0, ' '); //
rfm22_write(RFM22_check_header3, 'p'); // set expected rx header
rfm22_write(RFM22_check_header2, 'i'); //
rfm22_write(RFM22_check_header1, 'p'); //
rfm22_write(RFM22_check_header0, ' '); //
// all the bits to be checked
rfm22_write(RFM22_header_enable3, 0xff);
rfm22_write(RFM22_header_enable2, 0xff);
rfm22_write(RFM22_header_enable1, 0xff);
rfm22_write(RFM22_header_enable0, 0xff);
*/ // no bits to be checked
rfm22_write(RFM22_header_enable3, 0x00);
rfm22_write(RFM22_header_enable2, 0x00);
rfm22_write(RFM22_header_enable1, 0x00);
rfm22_write(RFM22_header_enable0, 0x00);
// rfm22_write(RFM22_modem_test, 0x01);
rfm22_write(RFM22_agc_override1, RFM22_agc_ovr1_agcen);
// rfm22_write(RFM22_agc_override1, RFM22_agc_ovr1_sgi | RFM22_agc_ovr1_agcen);
rfm22_write(RFM22_frequency_hopping_step_size, frequency_hop_step_size_reg); // set frequency hopping channel step size (multiples of 10kHz)
rfm22_setNominalCarrierFrequency((min_frequency_hz + max_frequency_hz) / 2); // set our nominal carrier frequency
rfm22_write(RFM22_tx_power, RFM22_tx_pwr_papeaken | RFM22_tx_pwr_papeaklvl_0 | RFM22_tx_pwr_lna_sw | tx_power); // set the tx power
// rfm22_write(RFM22_tx_power, RFM22_tx_pwr_lna_sw | tx_power); // set the tx power
// rfm22_write(RFM22_vco_current_trimming, 0x7f);
// rfm22_write(RFM22_vco_calibration_override, 0x40);
// rfm22_write(RFM22_chargepump_current_trimming_override, 0x80);
rfm22_write(RFM22_tx_fifo_control1, TX_FIFO_HI_WATERMARK); // TX FIFO Almost Full Threshold (0 - 63)
rfm22_write(RFM22_tx_fifo_control2, TX_FIFO_LO_WATERMARK); // TX FIFO Almost Empty Threshold (0 - 63)
rfm22_write(RFM22_rx_fifo_control, RX_FIFO_HI_WATERMARK); // RX FIFO Almost Full Threshold (0 - 63)
#if defined(RFM22_EXT_INT_USE)
// Enable RF module external interrupt
rfm22_enableExtInt();
#endif
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
initialized = true;
return 0; // ok
}
// ************************************