1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-11-29 07:24:13 +01:00
LibrePilot/flight/OpenPilot/Modules/Actuator/actuator.c

400 lines
11 KiB
C
Raw Normal View History

/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup ActuatorModule Actuator Module
* @brief Compute servo/motor settings based on @ref ActuatorDesired "desired actuator positions" and aircraft type.
* This is where all the mixing of channels is computed.
* @{
*
* @file actuator.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief Actuator module. Drives the actuators (servos, motors etc).
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "openpilot.h"
#include "actuator.h"
#include "actuatorsettings.h"
//#include "vtolsettings.h"
#include "systemsettings.h"
#include "actuatordesired.h"
#include "actuatorcommand.h"
#include "manualcontrolcommand.h"
#include "mixersettings.h"
#include "mixerstatus.h"
// Private constants
#define MAX_QUEUE_SIZE 2
#define STACK_SIZE configMINIMAL_STACK_SIZE
#define TASK_PRIORITY (tskIDLE_PRIORITY+4)
#define FAILSAFE_TIMEOUT_MS 100
#define MAX_MIX_ACTUATORS ACTUATORCOMMAND_CHANNEL_NUMELEM
// Private types
// Private variables
static xQueueHandle queue;
static xTaskHandle taskHandle;
static float lastResult[MAX_MIX_ACTUATORS]={0,0,0,0,0,0,0,0};
static float lastFilteredResult[MAX_MIX_ACTUATORS]={0,0,0,0,0,0,0,0};
static float filterAccumulator[MAX_MIX_ACTUATORS]={0,0,0,0,0,0,0,0};
// Private functions
static void actuatorTask(void* parameters);
static int16_t scaleChannel(float value, int16_t max, int16_t min, int16_t neutral);
static void setFailsafe();
static float MixerCurve(const float throttle, const float* curve);
float ProcessMixer(const int index, const float curve1, const float curve2,
MixerSettingsData* mixerSettings, ActuatorDesiredData* desired,
const float period);
// External watchdog update flag
volatile uint8_t actuator_updated;
//this structure is equivalent to the UAVObjects for one mixer.
typedef struct {
uint8_t type;
int8_t matrix[5];
} __attribute__((packed)) Mixer_t;
/**
* @brief Module initialization
* @return 0
*/
int32_t ActuatorInitialize()
{
// Create object queue
queue = xQueueCreate(MAX_QUEUE_SIZE, sizeof(UAVObjEvent));
// Listen for ExampleObject1 updates
ActuatorDesiredConnectQueue(queue);
// Start main task
xTaskCreate(actuatorTask, (signed char*)"Actuator", STACK_SIZE, NULL, TASK_PRIORITY, &taskHandle);
return 0;
}
/**
* @brieft Main Actuator module task
*
* Universal matrix based mixer for VTOL, helis and fixed wing.
* Converts desired roll,pitch,yaw and throttle to servo/ESC outputs.
*
* Because of how the Throttle ranges from 0 to 1, the motors should too!
*
* Note this code depends on the UAVObjects for the mixers being all being the same
* and in sequence. If you change the object definition, make sure you check the code!
*
* @return -1 if error, 0 if success
*/
static void actuatorTask(void* parameters)
{
UAVObjEvent ev;
portTickType lastSysTime;
portTickType thisSysTime;
float dT = 0.0f;
ActuatorCommandData command;
ActuatorSettingsData settings;
SystemSettingsData sysSettings;
MixerSettingsData mixerSettings;
ActuatorDesiredData desired;
MixerStatusData mixerStatus;
ManualControlCommandData manualControl;
ActuatorSettingsGet(&settings);
// Set servo update frequency (done only on start-up)
PIOS_Servo_SetHz(settings.ChannelUpdateFreq[0], settings.ChannelUpdateFreq[1]);
float * status = (float *)&mixerStatus; //access status objects as an array of floats
// Go to the neutral (failsafe) values until an ActuatorDesired update is received
setFailsafe();
// Main task loop
lastSysTime = xTaskGetTickCount();
while (1)
{
// Wait until the ActuatorDesired object is updated, if a timeout then go to failsafe
if ( xQueueReceive(queue, &ev, FAILSAFE_TIMEOUT_MS / portTICK_RATE_MS) != pdTRUE )
{
setFailsafe();
continue;
}
actuator_updated = 1;
// Check how long since last update
thisSysTime = xTaskGetTickCount();
if(thisSysTime > lastSysTime) // reuse dt in case of wraparound
dT = (thisSysTime - lastSysTime) / portTICK_RATE_MS / 1000.0f;
lastSysTime = thisSysTime;
ManualControlCommandGet(&manualControl);
SystemSettingsGet(&sysSettings);
MixerStatusGet(&mixerStatus);
MixerSettingsGet (&mixerSettings);
ActuatorDesiredGet(&desired);
ActuatorCommandGet(&command);
ActuatorSettingsGet(&settings);
int nMixers = 0;
Mixer_t * mixers = (Mixer_t *)&mixerSettings.Mixer0Type;
for(int ct=0; ct < MAX_MIX_ACTUATORS; ct++)
{
if(mixers[ct].type != MIXERSETTINGS_MIXER0TYPE_DISABLED)
{
nMixers ++;
}
}
if(nMixers < 2) //Nothing can fly with less than two mixers.
{
AlarmsSet(SYSTEMALARMS_ALARM_ACTUATOR, SYSTEMALARMS_ALARM_WARNING);
continue;
}
AlarmsClear(SYSTEMALARMS_ALARM_ACTUATOR);
bool armed = manualControl.Armed == MANUALCONTROLCOMMAND_ARMED_TRUE;
armed &= desired.Throttle > 0.00; //zero throttle stops the motors
float curve1 = MixerCurve(desired.Throttle,mixerSettings.ThrottleCurve1);
float curve2 = MixerCurve(desired.Throttle,mixerSettings.ThrottleCurve2);
for(int ct=0; ct < MAX_MIX_ACTUATORS; ct++)
{
if(mixers[ct].type != MIXERSETTINGS_MIXER0TYPE_DISABLED)
{
status[ct] = ProcessMixer(ct, curve1, curve2, &mixerSettings, &desired, dT);
if(!armed &&
mixers[ct].type == MIXERSETTINGS_MIXER0TYPE_MOTOR)
{
command.Channel[ct] = settings.ChannelMin[ct]; //force zero throttle
filterAccumulator[ct] = 0;
lastResult[ct] = 0;
}else
{
command.Channel[ct] = scaleChannel(status[ct],
settings.ChannelMax[ct],
settings.ChannelMin[ct],
settings.ChannelNeutral[ct]);
}
}
}
MixerStatusSet(&mixerStatus);
// Update output object
ActuatorCommandSet(&command);
// Update in case read only (eg. during servo configuration)
ActuatorCommandGet(&command);
// Update servo outputs
for (int n = 0; n < ACTUATORCOMMAND_CHANNEL_NUMELEM; ++n)
{
PIOS_Servo_Set( n, command.Channel[n] );
}
}
}
/**
*Process mixing for one actuator
*/
float ProcessMixer(const int index, const float curve1, const float curve2,
MixerSettingsData* mixerSettings, ActuatorDesiredData* desired, const float period)
{
Mixer_t * mixers = (Mixer_t *)&mixerSettings->Mixer0Type; //pointer to array of mixers in UAVObjects
Mixer_t * mixer = &mixers[index];
float result = ((mixer->matrix[MIXERSETTINGS_MIXER0VECTOR_THROTTLECURVE1] / 128.0f) * curve1) +
((mixer->matrix[MIXERSETTINGS_MIXER0VECTOR_THROTTLECURVE2] / 128.0f) * curve2) +
((mixer->matrix[MIXERSETTINGS_MIXER0VECTOR_ROLL] / 128.0f) * desired->Roll) +
((mixer->matrix[MIXERSETTINGS_MIXER0VECTOR_PITCH] / 128.0f) * desired->Pitch) +
((mixer->matrix[MIXERSETTINGS_MIXER0VECTOR_YAW] / 128.0f) * desired->Yaw);
if(mixer->type == MIXERSETTINGS_MIXER0TYPE_MOTOR)
{
if(result < 0) //idle throttle
{
result = 0;
}
//feed forward
float accumulator = filterAccumulator[index];
accumulator += (result - lastResult[index]) * mixerSettings->FeedForward;
lastResult[index] = result;
result += accumulator;
if(period !=0)
{
if(accumulator > 0)
{
float filter = mixerSettings->AccelTime / period;
if(filter <1)
{
filter = 1;
}
accumulator -= accumulator / filter;
}else
{
float filter = mixerSettings->DecelTime / period;
if(filter <1)
{
filter = 1;
}
accumulator -= accumulator / filter;
}
}
filterAccumulator[index] = accumulator;
result += accumulator;
//acceleration limit
float dt = result - lastFilteredResult[index];
float maxDt = mixerSettings->MaxAccel * period;
if(dt > maxDt) //we are accelerating too hard
{
result = lastFilteredResult[index] + maxDt;
}
lastFilteredResult[index] = result;
}
return(result);
}
/**
*Interpolate a throttle curve. Throttle input should be in the range 0 to 1.
*Output is in the range 0 to 1.
*/
#define MIXER_CURVE_ENTRIES 5
static float MixerCurve(const float throttle, const float* curve)
{
float scale = throttle * MIXER_CURVE_ENTRIES;
int idx1 = scale;
scale -= (float)idx1; //remainder
if(curve[0] < -1)
{
return(throttle);
}
if (idx1 < 0)
{
idx1 = 0; //clamp to lowest entry in table
scale = 0;
}
int idx2 = idx1 + 1;
if(idx2 >= MIXER_CURVE_ENTRIES)
{
idx2 = MIXER_CURVE_ENTRIES -1; //clamp to highest entry in table
if(idx1 >= MIXER_CURVE_ENTRIES)
{
idx1 = MIXER_CURVE_ENTRIES -1;
}
}
return((curve[idx1] * (1 - scale)) + (curve[idx2] * scale));
}
/**
* Convert channel from -1/+1 to servo pulse duration in microseconds
*/
static int16_t scaleChannel(float value, int16_t max, int16_t min, int16_t neutral)
{
int16_t valueScaled;
// Scale
if ( value >= 0.0)
{
valueScaled = (int16_t)(value*((float)(max-neutral))) + neutral;
}
else
{
valueScaled = (int16_t)(value*((float)(neutral-min))) + neutral;
}
if (max>min)
{
if( valueScaled > max ) valueScaled = max;
if( valueScaled < min ) valueScaled = min;
}
else
{
if( valueScaled < max ) valueScaled = max;
if( valueScaled > min ) valueScaled = min;
}
return valueScaled;
}
/**
* Set actuator output to the neutral values (failsafe)
*/
static void setFailsafe()
{
ActuatorCommandData command;
ActuatorSettingsData settings;
ActuatorCommandGet(&command);
ActuatorSettingsGet(&settings);
MixerSettingsData mixerSettings;
MixerSettingsGet (&mixerSettings);
Mixer_t * mixers = (Mixer_t *)&mixerSettings.Mixer0Type; //pointer to array of mixers in UAVObjects
// Reset ActuatorCommand to safe values
for (int n = 0; n < ACTUATORCOMMAND_CHANNEL_NUMELEM; ++n)
{
if(mixers[n].type == MIXERSETTINGS_MIXER0TYPE_MOTOR)
{
command.Channel[n] = settings.ChannelMin[n];
}
else
{
command.Channel[n] = settings.ChannelNeutral[n];
}
}
// Set alarm
AlarmsSet(SYSTEMALARMS_ALARM_ACTUATOR, SYSTEMALARMS_ALARM_CRITICAL);
// Update servo outputs
for (int n = 0; n < ACTUATORCOMMAND_CHANNEL_NUMELEM; ++n)
{
PIOS_Servo_Set( n, command.Channel[n] );
}
// Update output object
ActuatorCommandSet(&command);
}
/**
* @}
* @}
*/