1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-11-30 08:24:11 +01:00

Merge remote-tracking branch 'revo/brian/rfm22_refactor' into rm2

This commit is contained in:
James Cotton 2012-09-26 01:40:23 -05:00
commit 333a96516c
7 changed files with 932 additions and 1282 deletions

View File

@ -475,12 +475,12 @@ static uint8_t PHLTransmitPacket(PHPacketDataHandle data, PHPacketHandle p)
// Set the sequence ID to the current ID.
p->header.tx_seq = data->tx_seq_id++;
p->header.source_id = data->cfg.source_id;
// Add the error correcting code.
encode_data((unsigned char*)p, PHPacketSize(p), (unsigned char*)p);
// Transmit the packet using the output stream.
p->header.source_id = data->cfg.source_id;
if(data->output_stream(p) == -1)
return 0;

View File

@ -41,13 +41,14 @@
// ****************
// Private constants
#define STACK_SIZE_BYTES 150
#define STACK_SIZE_BYTES 200
#define TASK_PRIORITY (tskIDLE_PRIORITY + 2)
#define PACKET_QUEUE_SIZE PIOS_PH_WIN_SIZE
#define MAX_PORT_DELAY 200
#define STATS_UPDATE_PERIOD_MS 500
#define RADIOSTATS_UPDATE_PERIOD_MS 250
#define MAX_LOST_CONTACT_TIME 4
#define PACKET_MAX_DELAY 50
#ifndef LINK_LED_ON
#define LINK_LED_ON
@ -73,7 +74,6 @@ typedef struct {
// The task handles.
xTaskHandle radioReceiveTaskHandle;
xTaskHandle radioStatusTaskHandle;
xTaskHandle sendPacketTaskHandle;
// Queue handles.
xQueueHandle radioPacketQueue;
@ -106,7 +106,6 @@ typedef struct {
static void radioReceiveTask(void *parameters);
static void radioStatusTask(void *parameters);
static void sendPacketTask(void *parameters);
static void StatusHandler(PHStatusPacketHandle p, int8_t rssi, int8_t afc);
static int32_t transmitPacket(PHPacketHandle packet);
static void PPMHandler(uint16_t *channels);
@ -137,11 +136,9 @@ static int32_t RadioStart(void)
// Start the tasks.
xTaskCreate(radioReceiveTask, (signed char *)"RadioReceive", STACK_SIZE_BYTES, NULL, TASK_PRIORITY, &(data->radioReceiveTaskHandle));
xTaskCreate(radioStatusTask, (signed char *)"RadioStatus", STACK_SIZE_BYTES * 2, NULL, TASK_PRIORITY, &(data->radioStatusTaskHandle));
xTaskCreate(sendPacketTask, (signed char *)"SendPacket", STACK_SIZE_BYTES, NULL, TASK_PRIORITY, &(data->sendPacketTaskHandle));
// Install the monitors
TaskMonitorAdd(TASKINFO_RUNNING_MODEMRX, data->radioReceiveTaskHandle);
TaskMonitorAdd(TASKINFO_RUNNING_MODEMTX, data->sendPacketTaskHandle);
TaskMonitorAdd(TASKINFO_RUNNING_MODEMSTAT, data->radioStatusTaskHandle);
// Register the watchdog timers.
@ -166,8 +163,10 @@ static int32_t RadioInitialize(void)
HwSettingsInitialize();
uint8_t optionalModules[HWSETTINGS_OPTIONALMODULES_NUMELEM];
HwSettingsOptionalModulesGet(optionalModules);
if (optionalModules[HWSETTINGS_OPTIONALMODULES_RADIO] != HWSETTINGS_OPTIONALMODULES_ENABLED)
if (optionalModules[HWSETTINGS_OPTIONALMODULES_RADIO] != HWSETTINGS_OPTIONALMODULES_ENABLED) {
pios_packet_handler = 0;
return -1;
}
#endif
// Initalize out UAVOs
@ -233,20 +232,8 @@ static int32_t RadioInitialize(void)
}
/* Initalize the RFM22B radio COM device. */
{
if (PIOS_RFM22B_Init(&pios_rfm22b_id, PIOS_RFM22_SPI_PORT, pios_rfm22b_cfg.slave_num, &pios_rfm22b_cfg)) {
return -1;
}
uint8_t * rx_buffer = (uint8_t *) pvPortMalloc(PIOS_COM_RFM22B_RF_RX_BUF_LEN);
uint8_t * tx_buffer = (uint8_t *) pvPortMalloc(PIOS_COM_RFM22B_RF_TX_BUF_LEN);
PIOS_Assert(rx_buffer);
PIOS_Assert(tx_buffer);
if (PIOS_COM_Init(&pios_com_rfm22b_id, &pios_rfm22b_com_driver, pios_rfm22b_id,
rx_buffer, PIOS_COM_RFM22B_RF_RX_BUF_LEN,
tx_buffer, PIOS_COM_RFM22B_RF_TX_BUF_LEN)) {
PIOS_Assert(0);
}
}
if (PIOS_RFM22B_Init(&pios_rfm22b_id, PIOS_RFM22_SPI_PORT, pios_rfm22b_cfg.slave_num, &pios_rfm22b_cfg))
return -1;
// Initialize the packet handler
PacketHandlerConfig pios_ph_cfg = {
@ -287,9 +274,6 @@ static int32_t RadioInitialize(void)
PipXSettingsPairIDGet(&(data->pairStats[0].pairID));
data->destination_id = data->pairStats[0].pairID ? data->pairStats[0].pairID : 0xffffffff;
// Create the packet queue.
data->radioPacketQueue = xQueueCreate(PACKET_QUEUE_SIZE, sizeof(PHPacketHandle));
// Register the callbacks with the packet handler
PHRegisterStatusHandler(pios_packet_handler, StatusHandler);
PHRegisterOutputStream(pios_packet_handler, transmitPacket);
@ -315,18 +299,9 @@ static void radioReceiveTask(void *parameters)
PIOS_WDG_UpdateFlag(PIOS_WDG_RADIORECEIVE);
#endif /* PIOS_INCLUDE_WDG */
// Get a RX packet from the packet handler if required.
if (p == NULL)
p = PHGetRXPacket(pios_packet_handler);
if(p == NULL) {
// Wait a bit for a packet to come available.
vTaskDelay(5);
continue;
}
// Receive data from the radio port
rx_bytes = PIOS_COM_ReceiveBuffer(PIOS_COM_RADIO, (uint8_t*)p, PIOS_PH_MAX_PACKET, MAX_PORT_DELAY);
p = NULL;
rx_bytes = PIOS_RFM22B_Receive_Packet(pios_rfm22b_id, &p, MAX_PORT_DELAY);
if(rx_bytes == 0)
continue;
data->rxBytes += rx_bytes;
@ -340,27 +315,6 @@ static void radioReceiveTask(void *parameters)
}
}
/**
* Send packets to the radio.
*/
static void sendPacketTask(void *parameters)
{
PHPacketHandle p;
// Loop forever
while (1) {
#ifdef PIOS_INCLUDE_WDG
// Update the watchdog timer.
//PIOS_WDG_UpdateFlag(PIOS_WDG_SENDPACKET);
#endif /* PIOS_INCLUDE_WDG */
// Wait for a packet on the queue.
if (xQueueReceive(data->radioPacketQueue, &p, MAX_PORT_DELAY) == pdTRUE) {
PIOS_COM_SendBuffer(PIOS_COM_RADIO, (uint8_t*)p, PH_PACKET_SIZE(p));
PHReleaseTXPacket(pios_packet_handler, p);
}
}
}
/**
* Transmit a packet to the radio port.
* \param[in] buf Data buffer to send
@ -372,7 +326,7 @@ static int32_t transmitPacket(PHPacketHandle p)
{
uint16_t len = PH_PACKET_SIZE(p);
data->txBytes += len;
if (xQueueSend(data->radioPacketQueue, &p, portMAX_DELAY) != pdTRUE)
if (!PIOS_RFM22B_Send_Packet(pios_rfm22b_id, p, PACKET_MAX_DELAY))
return -1;
return len;
}
@ -441,11 +395,9 @@ static void StatusHandler(PHStatusPacketHandle status, int8_t rssi, int8_t afc)
*/
static void radioStatusTask(void *parameters)
{
static portTickType lastSysTime;
PHStatusPacket status_packet;
while (1) {
lastSysTime = xTaskGetTickCount();
while (1) {
PipXStatusData pipxStatus;
uint32_t pairID;
@ -524,12 +476,7 @@ static void radioStatusTask(void *parameters)
}
}
portTickType timeSinceUpdate;
do {
PIOS_RFM22_processPendingISR(5);
timeSinceUpdate = xTaskGetTickCount() - lastSysTime;
}
while(timeSinceUpdate < STATS_UPDATE_PERIOD_MS / portTICK_RATE_MS);
vTaskDelay(STATS_UPDATE_PERIOD_MS / portTICK_RATE_MS);
}
}

View File

@ -264,7 +264,7 @@ static void processObjEvent(UAVObjEvent * ev)
if (ev->event == EV_UPDATED || ev->event == EV_UPDATED_MANUAL || ((ev->event == EV_UPDATED_PERIODIC) && (updateMode != UPDATEMODE_THROTTLED))) {
#ifdef PIOS_PACKET_HANDLER
// Don't send PipXStatus objects over the radio link.
if ((ev->obj == PipXStatusHandle()) && (getComPort() == 0) && PIOS_PACKET_HANDLER)
if (PIOS_PACKET_HANDLER && (ev->obj == PipXStatusHandle()) && (getComPort() == 0))
return;
#endif
// Send update to GCS (with retries)

View File

@ -71,13 +71,12 @@ TIM4 | RC In 1 | Servo 3 | Servo 2 | Servo 1
//------------------------
#define PIOS_WATCHDOG_TIMEOUT 500
#define PIOS_WDG_REGISTER BKP_DR4
#define PIOS_WDG_COMUAVTALK 0x0001
#define PIOS_WDG_RADIORECEIVE 0x0002
#define PIOS_WDG_SENDPACKET 0x0004
#define PIOS_WDG_COMGCS 0x0001
#define PIOS_WDG_COMUAVTALK 0x0002
#define PIOS_WDG_RADIORECEIVE 0x0004
#define PIOS_WDG_SENDDATA 0x0008
#define PIOS_WDG_TRANSCOMM 0x0010
#define PIOS_WDG_PPMINPUT 0x0020
#define PIOS_WDG_COMGCS 0x0040
#define PIOS_WDG_TRANSCOMM 0x0008
#define PIOS_WDG_PPMINPUT 0x0010
//------------------------
// TELEMETRY

View File

@ -56,12 +56,16 @@
#include <pios_rfm22b_priv.h>
/* Local Defines */
#define STACK_SIZE_BYTES 200
#define STACK_SIZE_BYTES 200
#define TASK_PRIORITY (tskIDLE_PRIORITY + 2)
#define ISR_TIMEOUT 5 // ms
#define EVENT_QUEUE_SIZE 5
#define PACKET_QUEUE_SIZE 3
// RTC timer is running at 625Hz (1.6ms or 5 ticks == 8ms).
// A 256 byte message at 56kbps should take less than 40ms
// Note: This timeout should be rate dependent.
#define PIOS_RFM22B_SUPERVISOR_TIMEOUT 65 // ~100ms
#define PIOS_RFM22B_SUPERVISOR_TIMEOUT 100 // ms
// this is too adjust the RF module so that it is on frequency
#define OSC_LOAD_CAP 0x7F // cap = 12.5pf .. default
@ -72,13 +76,9 @@
// ************************************
#define TX_TEST_MODE_TIMELIMIT_MS 30000 // TX test modes time limit (in ms)
#define TX_PREAMBLE_NIBBLES 12 // 7 to 511 (number of nibbles)
#define RX_PREAMBLE_NIBBLES 6 // 5 to 31 (number of nibbles)
// the size of the rf modules internal transmit buffers.
#define TX_BUFFER_SIZE 256
// the size of the rf modules internal FIFO buffers
#define FIFO_SIZE 64
@ -94,18 +94,6 @@
#define SYNC_BYTE_3 0x4B //
#define SYNC_BYTE_4 0x59 //
// ************************************
// the default TX power level
#define RFM22_DEFAULT_RF_POWER RFM22_tx_pwr_txpow_0 // +1dBm ... 1.25mW
//#define RFM22_DEFAULT_RF_POWER RFM22_tx_pwr_txpow_1 // +2dBm ... 1.6mW
//#define RFM22_DEFAULT_RF_POWER RFM22_tx_pwr_txpow_2 // +5dBm ... 3.16mW
//#define RFM22_DEFAULT_RF_POWER RFM22_tx_pwr_txpow_3 // +8dBm ... 6.3mW
//#define RFM22_DEFAULT_RF_POWER RFM22_tx_pwr_txpow_4 // +11dBm .. 12.6mW
//#define RFM22_DEFAULT_RF_POWER RFM22_tx_pwr_txpow_5 // +14dBm .. 25mW
//#define RFM22_DEFAULT_RF_POWER RFM22_tx_pwr_txpow_6 // +17dBm .. 50mW
//#define RFM22_DEFAULT_RF_POWER RFM22_tx_pwr_txpow_7 // +20dBm .. 100mW
// ************************************
// the default RF datarate
@ -154,6 +142,41 @@ enum pios_rfm22b_dev_magic {
PIOS_RFM22B_DEV_MAGIC = 0x68e971b6,
};
enum pios_rfm22b_state {
RFM22B_STATE_UNINITIALIZED,
RFM22B_STATE_INITIALIZING,
RFM22B_STATE_RX_MODE,
RFM22B_STATE_WAIT_PREAMBLE,
RFM22B_STATE_WAIT_SYNC,
RFM22B_STATE_RX_DATA,
RFM22B_STATE_TX_START,
RFM22B_STATE_TX_DATA,
RFM22B_STATE_TIMEOUT,
RFM22B_STATE_ERROR,
RFM22B_STATE_FATAL_ERROR,
RFM22B_STATE_NUM_STATES // Must be last
};
enum pios_rfm22b_event {
RFM22B_EVENT_INITIALIZE,
RFM22B_EVENT_INITIALIZED,
RFM22B_EVENT_INT_RECEIVED,
RFM22B_EVENT_RX_MODE,
RFM22B_EVENT_PREAMBLE_DETECTED,
RFM22B_EVENT_SYNC_DETECTED,
RFM22B_EVENT_RX_COMPLETE,
RFM22B_EVENT_SEND_PACKET,
RFM22B_EVENT_TX_START,
RFM22B_EVENT_TX_STARTED,
RFM22B_EVENT_TX_COMPLETE,
RFM22B_EVENT_TIMEOUT,
RFM22B_EVENT_ERROR,
RFM22B_EVENT_FATAL_ERROR,
RFM22B_EVENT_NUM_EVENTS // Must be last
};
struct pios_rfm22b_dev {
enum pios_rfm22b_dev_magic magic;
struct pios_rfm22b_cfg cfg;
@ -163,21 +186,87 @@ struct pios_rfm22b_dev {
uint32_t deviceID;
// The task handle
xTaskHandle taskHandle;
// ISR pending
xSemaphoreHandle isrPending;
// Receive packet complete
xSemaphoreHandle rxsem;
// The COM callback functions.
pios_com_callback rx_in_cb;
uint32_t rx_in_context;
pios_com_callback tx_out_cb;
uint32_t tx_out_context;
// The supervisor countdown timer.
uint16_t supv_timer;
// the transmit power to use for data transmissions
uint8_t tx_power;
// The state machine state and the current event
enum pios_rfm22b_state state;
// The event queue handle
xQueueHandle eventQueue;
// device status register
uint8_t device_status;
// interrupt status register 1
uint8_t int_status1;
// interrupt status register 2
uint8_t int_status2;
// ezmac status register
uint8_t ezmac_status;
// Stats
uint16_t resets;
uint32_t errors;
uint32_t irqs_processed;
// the current RSSI (register value)
uint8_t rssi;
// RSSI in dBm
int8_t rssi_dBm;
// The packet queue handle
xQueueHandle packetQueue;
// The current tx packet
PHPacketHandle tx_packet;
// the tx data read index
uint16_t tx_data_rd;
// the tx data write index
uint16_t tx_data_wr;
// The current rx packet
PHPacketHandle rx_packet;
// The previous rx packet
PHPacketHandle rx_packet_prev;
// The next rx packet
PHPacketHandle rx_packet_next;
// the receive buffer write index
uint16_t rx_buffer_wr;
// the receive buffer write index
uint16_t rx_packet_len;
// The frequency hopping step size
float frequency_step_size;
// current frequency hop channel
uint8_t frequency_hop_channel;
// the frequency hop step size
uint8_t frequency_hop_step_size_reg;
// afc correction reading (in Hz)
int32_t afc_correction_Hz;
int8_t rx_packet_start_afc_Hz;
// The maximum time (ms) that it should take to transmit / receive a packet.
uint32_t max_packet_time;
portTickType packet_start_time;
};
uint32_t random32 = 0x459ab8d8;
struct pios_rfm22b_transition {
enum pios_rfm22b_event (*entry_fn) (struct pios_rfm22b_dev *rfm22b_dev);
enum pios_rfm22b_state next_state[RFM22B_EVENT_NUM_EVENTS];
};
// Must ensure these prefilled arrays match the define sizes
static const uint8_t FULL_PREAMBLE[FIFO_SIZE] =
@ -205,14 +294,29 @@ static const uint8_t OUT_FF[64] = {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF};
/* Local function forwared declarations */
static void PIOS_RFM22B_Supervisor(uint32_t ppm_id);
static void rfm22_processInt(void);
static void rfm22_setTxMode(uint8_t mode);
static void PIOS_RFM22B_Task(void *parameters);
static void PIOS_RFM22B_InjectEvent(struct pios_rfm22b_dev *rfm22b_dev, enum pios_rfm22b_event event, bool inISR);
static bool rfm22_readStatus(struct pios_rfm22b_dev *rfm22b_dev);
static enum pios_rfm22b_event rfm22_setRxMode(struct pios_rfm22b_dev *rfm22b_dev);
static enum pios_rfm22b_event rfm22_detectPreamble(struct pios_rfm22b_dev *rfm22b_dev);
static enum pios_rfm22b_event rfm22_detectSync(struct pios_rfm22b_dev *rfm22b_dev);
static enum pios_rfm22b_event rfm22_rxData(struct pios_rfm22b_dev *rfm22b_dev);
static enum pios_rfm22b_event rfm22_init(struct pios_rfm22b_dev *rfm22b_dev);
static enum pios_rfm22b_event rfm22_txStart(struct pios_rfm22b_dev *rfm22b_dev);
static enum pios_rfm22b_event rfm22_txData(struct pios_rfm22b_dev *rfm22b_dev);
static enum pios_rfm22b_event rfm22_process_state_transition(struct pios_rfm22b_dev *rfm22b_dev, enum pios_rfm22b_event event);
static enum pios_rfm22b_event rfm22_timeout(struct pios_rfm22b_dev *rfm22b_dev);
static enum pios_rfm22b_event rfm22_error(struct pios_rfm22b_dev *rfm22b_dev);
static enum pios_rfm22b_event rfm22_fatal_error(struct pios_rfm22b_dev *rfm22b_dev);
// SPI read/write functions
static void rfm22_assertCs();
static void rfm22_deassertCs();
static void rfm22_claimBus();
static void rfm22_releaseBus();
static void rfm22_write(uint8_t addr, uint8_t data);
static uint8_t rfm22_read(uint8_t addr);
uint8_t rfm22_txStart();
static uint8_t rfm22_read_noclaim(uint8_t addr);
/* Provide a COM driver */
static void PIOS_RFM22B_ChangeBaud(uint32_t rfm22b_id, uint32_t baud);
@ -230,36 +334,143 @@ const struct pios_com_driver pios_rfm22b_com_driver = {
.bind_rx_cb = PIOS_RFM22B_RegisterRxCallback,
};
/* Te state transition table */
const static struct pios_rfm22b_transition rfm22b_transitions[RFM22B_STATE_NUM_STATES] = {
[RFM22B_STATE_UNINITIALIZED] = {
.entry_fn = 0,
.next_state = {
[RFM22B_EVENT_INITIALIZE] = RFM22B_STATE_INITIALIZING,
[RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR,
},
},
[RFM22B_STATE_INITIALIZING] = {
.entry_fn = rfm22_init,
.next_state = {
[RFM22B_EVENT_INITIALIZED] = RFM22B_STATE_TX_START,
[RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR,
[RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR,
},
},
[RFM22B_STATE_RX_MODE] = {
.entry_fn = rfm22_setRxMode,
.next_state = {
[RFM22B_EVENT_INT_RECEIVED] = RFM22B_STATE_WAIT_PREAMBLE,
[RFM22B_EVENT_SEND_PACKET] = RFM22B_STATE_TX_START,
[RFM22B_EVENT_TX_START] = RFM22B_STATE_TX_START,
[RFM22B_EVENT_TIMEOUT] = RFM22B_STATE_TIMEOUT,
[RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR,
[RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR,
},
},
[RFM22B_STATE_WAIT_PREAMBLE] = {
.entry_fn = rfm22_detectPreamble,
.next_state = {
[RFM22B_EVENT_INT_RECEIVED] = RFM22B_STATE_WAIT_PREAMBLE,
[RFM22B_EVENT_PREAMBLE_DETECTED] = RFM22B_STATE_WAIT_SYNC,
[RFM22B_EVENT_SEND_PACKET] = RFM22B_STATE_TX_START,
[RFM22B_EVENT_TX_START] = RFM22B_STATE_TX_START,
[RFM22B_EVENT_TIMEOUT] = RFM22B_STATE_TIMEOUT,
[RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR,
[RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR,
},
},
[RFM22B_STATE_WAIT_SYNC] = {
.entry_fn = rfm22_detectSync,
.next_state = {
[RFM22B_EVENT_INT_RECEIVED] = RFM22B_STATE_WAIT_SYNC,
[RFM22B_EVENT_SYNC_DETECTED] = RFM22B_STATE_RX_DATA,
[RFM22B_EVENT_TX_START] = RFM22B_STATE_TX_START,
[RFM22B_EVENT_TIMEOUT] = RFM22B_STATE_TIMEOUT,
[RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR,
[RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR,
},
},
[RFM22B_STATE_RX_DATA] = {
.entry_fn = rfm22_rxData,
.next_state = {
[RFM22B_EVENT_INT_RECEIVED] = RFM22B_STATE_RX_DATA,
[RFM22B_EVENT_RX_COMPLETE] = RFM22B_STATE_TX_START,
[RFM22B_EVENT_TIMEOUT] = RFM22B_STATE_TIMEOUT,
[RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR,
[RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR,
},
},
[RFM22B_STATE_TX_START] = {
.entry_fn = rfm22_txStart,
.next_state = {
[RFM22B_EVENT_INT_RECEIVED] = RFM22B_STATE_TX_DATA,
[RFM22B_EVENT_RX_MODE] = RFM22B_STATE_RX_MODE,
[RFM22B_EVENT_TIMEOUT] = RFM22B_STATE_TIMEOUT,
[RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR,
[RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR,
},
},
[RFM22B_STATE_TX_DATA] = {
.entry_fn = rfm22_txData,
.next_state = {
[RFM22B_EVENT_INT_RECEIVED] = RFM22B_STATE_TX_DATA,
[RFM22B_EVENT_TX_COMPLETE] = RFM22B_STATE_TX_START,
[RFM22B_EVENT_TIMEOUT] = RFM22B_STATE_TIMEOUT,
[RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR,
[RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR,
},
},
[RFM22B_STATE_TIMEOUT] = {
.entry_fn = rfm22_timeout,
.next_state = {
[RFM22B_EVENT_TX_START] = RFM22B_STATE_TX_START,
[RFM22B_EVENT_INITIALIZE] = RFM22B_STATE_INITIALIZING,
[RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR,
[RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR,
},
},
[RFM22B_STATE_ERROR] = {
.entry_fn = rfm22_error,
.next_state = {
[RFM22B_EVENT_INITIALIZE] = RFM22B_STATE_INITIALIZING,
[RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR,
[RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR,
},
},
[RFM22B_STATE_FATAL_ERROR] = {
.entry_fn = rfm22_fatal_error,
.next_state = {
[RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR,
[RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR,
},
},
};
// xtal 10 ppm, 434MHz
#define LOOKUP_SIZE 14
const uint32_t data_rate[] = { 500, 1000, 2000, 4000, 8000, 9600, 16000, 19200, 24000, 32000, 64000, 128000, 192000, 256000};
const uint8_t modulation_index[] = { 16, 8, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
const uint32_t freq_deviation[] = { 4000, 4000, 4000, 4000, 4000, 4800, 8000, 9600, 12000, 16000, 32000, 64000, 96000, 128000};
const uint32_t rx_bandwidth[] = { 17500, 17500, 17500, 17500, 17500, 19400, 32200, 38600, 51200, 64100, 137900, 269300, 420200, 518800};
const int8_t est_rx_sens_dBm[] = { -118, -118, -117, -116, -115, -115, -112, -112, -110, -109, -106, -103, -101, -100}; // estimated receiver sensitivity for BER = 1E-3
static const uint32_t data_rate[] = { 500, 1000, 2000, 4000, 8000, 9600, 16000, 19200, 24000, 32000, 64000, 128000, 192000, 256000};
static const uint8_t modulation_index[] = { 16, 8, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
static const uint32_t freq_deviation[] = { 4000, 4000, 4000, 4000, 4000, 4800, 8000, 9600, 12000, 16000, 32000, 64000, 96000, 128000};
static const uint32_t rx_bandwidth[] = { 17500, 17500, 17500, 17500, 17500, 19400, 32200, 38600, 51200, 64100, 137900, 269300, 420200, 518800};
static const int8_t est_rx_sens_dBm[] = { -118, -118, -117, -116, -115, -115, -112, -112, -110, -109, -106, -103, -101, -100}; // estimated receiver sensitivity for BER = 1E-3
const uint8_t reg_1C[] = { 0x37, 0x37, 0x37, 0x37, 0x3A, 0x3B, 0x26, 0x28, 0x2E, 0x16, 0x07, 0x83, 0x8A, 0x8C}; // rfm22_if_filter_bandwidth
static const uint8_t reg_1C[] = { 0x37, 0x37, 0x37, 0x37, 0x3A, 0x3B, 0x26, 0x28, 0x2E, 0x16, 0x07, 0x83, 0x8A, 0x8C}; // rfm22_if_filter_bandwidth
const uint8_t reg_1D[] = { 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44}; // rfm22_afc_loop_gearshift_override
const uint8_t reg_1E[] = { 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x02}; // rfm22_afc_timing_control
static const uint8_t reg_1D[] = { 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44}; // rfm22_afc_loop_gearshift_override
static const uint8_t reg_1E[] = { 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x02}; // rfm22_afc_timing_control
const uint8_t reg_1F[] = { 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03}; // rfm22_clk_recovery_gearshift_override
const uint8_t reg_20[] = { 0xE8, 0xF4, 0xFA, 0x70, 0x3F, 0x34, 0x3F, 0x34, 0x2A, 0x3F, 0x3F, 0x5E, 0x3F, 0x2F}; // rfm22_clk_recovery_oversampling_ratio
const uint8_t reg_21[] = { 0x60, 0x20, 0x00, 0x01, 0x02, 0x02, 0x02, 0x02, 0x03, 0x02, 0x02, 0x01, 0x02, 0x02}; // rfm22_clk_recovery_offset2
const uint8_t reg_22[] = { 0x20, 0x41, 0x83, 0x06, 0x0C, 0x75, 0x0C, 0x75, 0x12, 0x0C, 0x0C, 0x5D, 0x0C, 0xBB}; // rfm22_clk_recovery_offset1
const uint8_t reg_23[] = { 0xC5, 0x89, 0x12, 0x25, 0x4A, 0x25, 0x4A, 0x25, 0x6F, 0x4A, 0x4A, 0x86, 0x4A, 0x0D}; // rfm22_clk_recovery_offset0
const uint8_t reg_24[] = { 0x00, 0x00, 0x00, 0x02, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x05, 0x07, 0x07}; // rfm22_clk_recovery_timing_loop_gain1
const uint8_t reg_25[] = { 0x0A, 0x23, 0x85, 0x0E, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x74, 0xFF, 0xFF}; // rfm22_clk_recovery_timing_loop_gain0
static const uint8_t reg_1F[] = { 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03}; // rfm22_clk_recovery_gearshift_override
static const uint8_t reg_20[] = { 0xE8, 0xF4, 0xFA, 0x70, 0x3F, 0x34, 0x3F, 0x34, 0x2A, 0x3F, 0x3F, 0x5E, 0x3F, 0x2F}; // rfm22_clk_recovery_oversampling_ratio
static const uint8_t reg_21[] = { 0x60, 0x20, 0x00, 0x01, 0x02, 0x02, 0x02, 0x02, 0x03, 0x02, 0x02, 0x01, 0x02, 0x02}; // rfm22_clk_recovery_offset2
static const uint8_t reg_22[] = { 0x20, 0x41, 0x83, 0x06, 0x0C, 0x75, 0x0C, 0x75, 0x12, 0x0C, 0x0C, 0x5D, 0x0C, 0xBB}; // rfm22_clk_recovery_offset1
static const uint8_t reg_23[] = { 0xC5, 0x89, 0x12, 0x25, 0x4A, 0x25, 0x4A, 0x25, 0x6F, 0x4A, 0x4A, 0x86, 0x4A, 0x0D}; // rfm22_clk_recovery_offset0
static const uint8_t reg_24[] = { 0x00, 0x00, 0x00, 0x02, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x05, 0x07, 0x07}; // rfm22_clk_recovery_timing_loop_gain1
static const uint8_t reg_25[] = { 0x0A, 0x23, 0x85, 0x0E, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x74, 0xFF, 0xFF}; // rfm22_clk_recovery_timing_loop_gain0
const uint8_t reg_2A[] = { 0x0E, 0x0E, 0x0E, 0x0E, 0x0E, 0x0D, 0x0D, 0x0E, 0x12, 0x17, 0x31, 0x50, 0x50, 0x50}; // rfm22_afc_limiter .. AFC_pull_in_range = ±AFCLimiter[7:0] x (hbsel+1) x 625 Hz
static const uint8_t reg_2A[] = { 0x0E, 0x0E, 0x0E, 0x0E, 0x0E, 0x0D, 0x0D, 0x0E, 0x12, 0x17, 0x31, 0x50, 0x50, 0x50}; // rfm22_afc_limiter .. AFC_pull_in_range = ±AFCLimiter[7:0] x (hbsel+1) x 625 Hz
const uint8_t reg_6E[] = { 0x04, 0x08, 0x10, 0x20, 0x41, 0x4E, 0x83, 0x9D, 0xC4, 0x08, 0x10, 0x20, 0x31, 0x41}; // rfm22_tx_data_rate1
const uint8_t reg_6F[] = { 0x19, 0x31, 0x62, 0xC5, 0x89, 0xA5, 0x12, 0x49, 0x9C, 0x31, 0x62, 0xC5, 0x27, 0x89}; // rfm22_tx_data_rate0
static const uint8_t reg_6E[] = { 0x04, 0x08, 0x10, 0x20, 0x41, 0x4E, 0x83, 0x9D, 0xC4, 0x08, 0x10, 0x20, 0x31, 0x41}; // rfm22_tx_data_rate1
static const uint8_t reg_6F[] = { 0x19, 0x31, 0x62, 0xC5, 0x89, 0xA5, 0x12, 0x49, 0x9C, 0x31, 0x62, 0xC5, 0x27, 0x89}; // rfm22_tx_data_rate0
const uint8_t reg_70[] = { 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D}; // rfm22_modulation_mode_control1
const uint8_t reg_71[] = { 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23}; // rfm22_modulation_mode_control2
static const uint8_t reg_70[] = { 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D}; // rfm22_modulation_mode_control1
static const uint8_t reg_71[] = { 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23}; // rfm22_modulation_mode_control2
const uint8_t reg_72[] = { 0x06, 0x06, 0x06, 0x06, 0x06, 0x08, 0x0D, 0x0F, 0x13, 0x1A, 0x33, 0x66, 0x9A, 0xCD}; // rfm22_frequency_deviation
static const uint8_t reg_72[] = { 0x06, 0x06, 0x06, 0x06, 0x06, 0x08, 0x0D, 0x0F, 0x13, 0x1A, 0x33, 0x66, 0x9A, 0xCD}; // rfm22_frequency_deviation
// ************************************
// Scan Spectrum settings
@ -272,112 +483,22 @@ const uint8_t reg_72[] = { 0x06, 0x06, 0x06, 0x06, 0x06, 0x
#define SS_LOOKUP_SIZE 2
// xtal 1 ppm, 434MHz
const uint32_t ss_rx_bandwidth[] = { 2600, 10600};
static const uint32_t ss_rx_bandwidth[] = { 2600, 10600};
const uint8_t ss_reg_1C[] = { 0x51, 0x32}; // rfm22_if_filter_bandwidth
const uint8_t ss_reg_1D[] = { 0x00, 0x00}; // rfm22_afc_loop_gearshift_override
static const uint8_t ss_reg_1C[] = { 0x51, 0x32}; // rfm22_if_filter_bandwidth
static const uint8_t ss_reg_1D[] = { 0x00, 0x00}; // rfm22_afc_loop_gearshift_override
const uint8_t ss_reg_20[] = { 0xE8, 0x38}; // rfm22_clk_recovery_oversampling_ratio
const uint8_t ss_reg_21[] = { 0x60, 0x02}; // rfm22_clk_recovery_offset2
const uint8_t ss_reg_22[] = { 0x20, 0x4D}; // rfm22_clk_recovery_offset1
const uint8_t ss_reg_23[] = { 0xC5, 0xD3}; // rfm22_clk_recovery_offset0
const uint8_t ss_reg_24[] = { 0x00, 0x07}; // rfm22_clk_recovery_timing_loop_gain1
const uint8_t ss_reg_25[] = { 0x0F, 0xFF}; // rfm22_clk_recovery_timing_loop_gain0
static const uint8_t ss_reg_20[] = { 0xE8, 0x38}; // rfm22_clk_recovery_oversampling_ratio
static const uint8_t ss_reg_21[] = { 0x60, 0x02}; // rfm22_clk_recovery_offset2
static const uint8_t ss_reg_22[] = { 0x20, 0x4D}; // rfm22_clk_recovery_offset1
static const uint8_t ss_reg_23[] = { 0xC5, 0xD3}; // rfm22_clk_recovery_offset0
static const uint8_t ss_reg_24[] = { 0x00, 0x07}; // rfm22_clk_recovery_timing_loop_gain1
static const uint8_t ss_reg_25[] = { 0x0F, 0xFF}; // rfm22_clk_recovery_timing_loop_gain0
const uint8_t ss_reg_2A[] = { 0xFF, 0xFF}; // rfm22_afc_limiter .. AFC_pull_in_range = ±AFCLimiter[7:0] x (hbsel+1) x 625 Hz
static const uint8_t ss_reg_2A[] = { 0xFF, 0xFF}; // rfm22_afc_limiter .. AFC_pull_in_range = ±AFCLimiter[7:0] x (hbsel+1) x 625 Hz
const uint8_t ss_reg_70[] = { 0x24, 0x2D}; // rfm22_modulation_mode_control1
const uint8_t ss_reg_71[] = { 0x2B, 0x23}; // rfm22_modulation_mode_control2
// ************************************
volatile bool initialized = false;
#if defined(RFM22_EXT_INT_USE)
volatile bool exec_using_spi; // set this if you want to access the SPI bus outside of the interrupt
#endif
uint8_t device_type; // the RF chips device ID number
uint8_t device_version; // the RF chips revision number
volatile uint8_t rf_mode; // holds our current RF mode
uint32_t lower_carrier_frequency_limit_Hz; // the minimum RF frequency we can use
uint32_t upper_carrier_frequency_limit_Hz; // the maximum RF frequency we can use
uint32_t carrier_frequency_hz; // the current RF frequency we are on
uint32_t carrier_datarate_bps; // the RF data rate we are using
uint32_t rf_bandwidth_used; // the RF bandwidth currently used
uint32_t ss_rf_bandwidth_used; // the RF bandwidth currently used
uint8_t hbsel; // holds the hbsel (1 or 2)
float frequency_step_size; // holds the minimum frequency step size
uint8_t frequency_hop_channel; // current frequency hop channel
uint8_t frequency_hop_step_size_reg; //
uint8_t adc_config; // holds the adc config reg value
volatile uint8_t device_status; // device status register
volatile uint8_t int_status1; // interrupt status register 1
volatile uint8_t int_status2; // interrupt status register 2
volatile uint8_t ezmac_status; // ezmac status register
volatile int16_t afc_correction; // afc correction reading
volatile int32_t afc_correction_Hz; // afc correction reading (in Hz)
volatile int16_t temperature_reg; // the temperature sensor reading
volatile uint8_t osc_load_cap; // xtal frequency calibration value
volatile uint8_t rssi; // the current RSSI (register value)
volatile int8_t rssi_dBm; // dBm value
// the transmit power to use for data transmissions
uint8_t tx_power;
// the tx power register read back
volatile uint8_t tx_pwr;
// The transmit buffer. Holds data that is being transmitted.
uint8_t tx_buffer[TX_BUFFER_SIZE] __attribute__ ((aligned(4)));
// The transmit buffer. Hosts data that is wating to be transmitted.
uint8_t tx_pre_buffer[TX_BUFFER_SIZE] __attribute__ ((aligned(4)));
// The tx pre-buffer write index.
uint16_t tx_pre_buffer_size;
// the tx data read index
volatile uint16_t tx_data_rd;
// the tx data write index
volatile uint16_t tx_data_wr;
// the current receive buffer in use (double buffer)
volatile uint8_t rx_buffer_current;
// the receive buffer .. received packet data is saved here
volatile uint8_t rx_buffer[258] __attribute__ ((aligned(4)));
// the receive buffer write index
volatile uint16_t rx_buffer_wr;
// the received packet
volatile int8_t rx_packet_start_rssi_dBm; //
volatile int8_t rx_packet_start_afc_Hz; //
volatile int8_t rx_packet_rssi_dBm; // the received packet signal strength
volatile int8_t rx_packet_afc_Hz; // the receive packet frequency offset
int lookup_index;
int ss_lookup_index;
volatile bool power_on_reset; // set if the RF module has reset itself
volatile uint16_t rfm22_int_timer; // used to detect if the RF module stops responding. thus act accordingly if it does stop responding.
volatile uint16_t rfm22_int_time_outs; // counter
volatile uint16_t prev_rfm22_int_time_outs; //
uint16_t timeout_ms = 20000; //
uint16_t timeout_sync_ms = 3; //
uint16_t timeout_data_ms = 20; //
struct pios_rfm22b_dev * rfm22b_dev_g;
static const uint8_t ss_reg_70[] = { 0x24, 0x2D}; // rfm22_modulation_mode_control1
static const uint8_t ss_reg_71[] = { 0x2B, 0x23}; // rfm22_modulation_mode_control2
static bool PIOS_RFM22B_validate(struct pios_rfm22b_dev * rfm22b_dev)
@ -393,7 +514,6 @@ static struct pios_rfm22b_dev * PIOS_RFM22B_alloc(void)
rfm22b_dev = (struct pios_rfm22b_dev *)pvPortMalloc(sizeof(*rfm22b_dev));
rfm22b_dev->spi_id = 0;
if (!rfm22b_dev) return(NULL);
rfm22b_dev_g = rfm22b_dev;
rfm22b_dev->magic = PIOS_RFM22B_DEV_MAGIC;
return(rfm22b_dev);
@ -434,17 +554,52 @@ int32_t PIOS_RFM22B_Init(uint32_t *rfm22b_id, uint32_t spi_id, uint32_t slave_nu
rfm22b_dev->slave_num = slave_num;
rfm22b_dev->spi_id = spi_id;
// Set the state to initializing.
rfm22b_dev->state = RFM22B_STATE_UNINITIALIZED;
// Create the event queue
rfm22b_dev->eventQueue = xQueueCreate(EVENT_QUEUE_SIZE, sizeof(enum pios_rfm22b_event));
// Initialize the register values.
rfm22b_dev->device_status = 0;
rfm22b_dev->int_status1 = 0;
rfm22b_dev->int_status2 = 0;
rfm22b_dev->ezmac_status = 0;
// Initialize the stats.
rfm22b_dev->resets = 0;
rfm22b_dev->errors = 0;
rfm22b_dev->irqs_processed = 0;
rfm22b_dev->rssi = 0;
rfm22b_dev->rssi_dBm = -127;
// Bind the configuration to the device instance
rfm22b_dev->cfg = *cfg;
// Initialize the packets.
rfm22b_dev->rx_packet = NULL;
rfm22b_dev->rx_packet_next = NULL;
rfm22b_dev->rx_packet_prev = NULL;
rfm22b_dev->rx_packet_len = 0;
rfm22b_dev->tx_packet = NULL;
*rfm22b_id = (uint32_t)rfm22b_dev;
g_rfm22b_dev = rfm22b_dev;
// Calculate the (approximate) maximum amount of time that it should take to transmit / receive a packet.
rfm22b_dev->max_packet_time = (uint16_t)((float)(PIOS_PH_MAX_PACKET * 8 * 1000) / (float)(rfm22b_dev->cfg.maxRFBandwidth) + 0.5);
rfm22b_dev->packet_start_time = 0;
// Create a semaphore to know if an ISR needs responding to
vSemaphoreCreateBinary( rfm22b_dev->isrPending );
// Initialize the TX pre-buffer pointer.
tx_pre_buffer_size = 0;
// Create a semaphore to know when an rx packet is available
vSemaphoreCreateBinary( rfm22b_dev->rxsem );
// Create the packet queue.
rfm22b_dev->packetQueue = xQueueCreate(PACKET_QUEUE_SIZE, sizeof(PHPacketHandle));
// Initialize the max tx power level.
PIOS_RFM22B_SetTxPower(*rfm22b_id, cfg->maxTxPower);
// Create our (hopefully) unique 32 bit id from the processor serial number.
uint8_t crcs[] = { 0, 0, 0, 0 };
@ -458,75 +613,98 @@ int32_t PIOS_RFM22B_Init(uint32_t *rfm22b_id, uint32_t spi_id, uint32_t slave_nu
rfm22b_dev->deviceID = crcs[0] | crcs[1] << 8 | crcs[2] << 16 | crcs[3] << 24;
DEBUG_PRINTF(2, "RF device ID: %x\n\r", rfm22b_dev->deviceID);
// Initialize the supervisor timer.
rfm22b_dev->supv_timer = PIOS_RFM22B_SUPERVISOR_TIMEOUT;
rfm22b_dev->resets = 0;
// Initialize the external interrupt.
PIOS_EXTI_Init(cfg->exti_cfg);
// Register the watchdog timer for the radio driver task
#ifdef PIOS_WDG_RFM22B
PIOS_WDG_RegisterFlag(PIOS_WDG_RFM22B);
#endif /* PIOS_WDG_RFM22B */
// Start the driver task. This task controls the radio state machine and removed all of the IO from the IRQ handler.
xTaskCreate(PIOS_RFM22B_Task, (signed char *)"PIOS_RFM22B_Task", STACK_SIZE_BYTES, (void*)rfm22b_dev, TASK_PRIORITY, &(rfm22b_dev->taskHandle));
// Initialize the radio device.
int initval = rfm22_init_normal(rfm22b_dev->deviceID, cfg->minFrequencyHz, cfg->maxFrequencyHz, 50000);
if (initval < 0)
{
// RF module error .. flash the LED's
#if defined(PIOS_COM_DEBUG)
DEBUG_PRINTF(2, "RF ERROR res: %d\n\r\n\r", initval);
#endif
for(unsigned int j = 0; j < 16; j++)
{
USB_LED_ON;
LINK_LED_ON;
RX_LED_OFF;
TX_LED_OFF;
PIOS_DELAY_WaitmS(200);
USB_LED_OFF;
LINK_LED_OFF;
RX_LED_ON;
TX_LED_ON;
PIOS_DELAY_WaitmS(200);
}
PIOS_DELAY_WaitmS(1000);
return initval;
}
rfm22_setFreqCalibration(cfg->RFXtalCap);
rfm22_setNominalCarrierFrequency(cfg->frequencyHz);
rfm22_setDatarate(cfg->maxRFBandwidth, true);
rfm22_setTxPower(cfg->maxTxPower);
DEBUG_PRINTF(2, "\n\r");
DEBUG_PRINTF(2, "RF device ID: %x\n\r", rfm22b_dev->deviceID);
DEBUG_PRINTF(2, "RF datarate: %dbps\n\r", rfm22_getDatarate());
DEBUG_PRINTF(2, "RF frequency: %dHz\n\r", rfm22_getNominalCarrierFrequency());
DEBUG_PRINTF(2, "RF TX power: %d\n\r", rfm22_getTxPower());
// Setup a real-time clock callback to kickstart the radio if a transfer lock sup.
if (!PIOS_RTC_RegisterTickCallback(PIOS_RFM22B_Supervisor, *rfm22b_id)) {
PIOS_DEBUG_Assert(0);
}
PIOS_RFM22B_InjectEvent(rfm22b_dev, RFM22B_EVENT_INITIALIZE, false);
return(0);
}
/**
* The RFM22B external interrupt routine.
*/
void PIOS_RFM22_EXT_Int(void)
{
if (!PIOS_RFM22B_validate(g_rfm22b_dev))
return;
// Inject an interrupt event into the state machine.
PIOS_RFM22B_InjectEvent(g_rfm22b_dev, RFM22B_EVENT_INT_RECEIVED, true);
}
/**
* Inject an event into the RFM22B state machine.
* \param[in] rfm22b_dev The device structure
* \param[in] event The event to inject
* \param[in] inISR Is this being called from an interrrup service routine?
*/
static void PIOS_RFM22B_InjectEvent(struct pios_rfm22b_dev *rfm22b_dev, enum pios_rfm22b_event event, bool inISR)
{
// Store the event.
if (xQueueSend(rfm22b_dev->eventQueue, &event, portMAX_DELAY) != pdTRUE)
return;
// Signal the semaphore to wake up the handler thread.
if (inISR) {
portBASE_TYPE pxHigherPriorityTaskWoken;
if (xSemaphoreGiveFromISR(rfm22b_dev->isrPending, &pxHigherPriorityTaskWoken) != pdTRUE) {
// Something went fairly seriously wrong
rfm22b_dev->errors++;
}
portEND_SWITCHING_ISR(pxHigherPriorityTaskWoken);
}
else
{
if (xSemaphoreGive(rfm22b_dev->isrPending) != pdTRUE) {
// Something went fairly seriously wrong
rfm22b_dev->errors++;
}
}
}
/**
* Returns the unique device ID for th RFM22B device.
* \param[in] rfm22b_id The RFM22B device index.
* \return The unique device ID
*/
uint32_t PIOS_RFM22B_DeviceID(uint32_t rfm22b_id)
{
struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
return rfm22b_dev->deviceID;
if(PIOS_RFM22B_validate(rfm22b_dev))
return rfm22b_dev->deviceID;
else
return 0;
}
int8_t PIOS_RFM22B_RSSI(uint32_t rfm22b_id)
void PIOS_RFM22B_SetTxPower(uint32_t rfm22b_id, uint8_t tx_pwr)
{
return rfm22_receivedRSSI();
struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
if(!PIOS_RFM22B_validate(rfm22b_dev))
return;
switch (tx_pwr)
{
case 0: rfm22b_dev->tx_power = RFM22_tx_pwr_txpow_0; break; // +1dBm ... 1.25mW
case 1: rfm22b_dev->tx_power = RFM22_tx_pwr_txpow_1; break; // +2dBm ... 1.6mW
case 2: rfm22b_dev->tx_power = RFM22_tx_pwr_txpow_2; break; // +5dBm ... 3.16mW
case 3: rfm22b_dev->tx_power = RFM22_tx_pwr_txpow_3; break; // +8dBm ... 6.3mW
case 4: rfm22b_dev->tx_power = RFM22_tx_pwr_txpow_4; break; // +11dBm .. 12.6mW
case 5: rfm22b_dev->tx_power = RFM22_tx_pwr_txpow_5; break; // +14dBm .. 25mW
case 6: rfm22b_dev->tx_power = RFM22_tx_pwr_txpow_6; break; // +17dBm .. 50mW
case 7: rfm22b_dev->tx_power = RFM22_tx_pwr_txpow_7; break; // +20dBm .. 100mW
default: break;
}
}
int16_t PIOS_RFM22B_Resets(uint32_t rfm22b_id)
@ -545,36 +723,161 @@ static void PIOS_RFM22B_RxStart(uint32_t rfm22b_id, uint16_t rx_bytes_avail)
}
/**
* Insert a packet on the packet queue for sending.
* Note: If this finction succedds, the packet will be released by the driver, so no release is necessary.
* If this function doesn't success, the caller is still responsible for the packet.
* \param[in] rfm22b_id The rfm22b device.
* \param[in] p The packet handle.
* \param[in] max_delay The maximum time to delay waiting to queue the packet.
* \return true on success, false on failue to queue the packet.
*/
bool PIOS_RFM22B_Send_Packet(uint32_t rfm22b_id, PHPacketHandle p, uint32_t max_delay)
{
struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
if(!PIOS_RFM22B_validate(rfm22b_dev))
return false;
// Store the packet handle in the packet queue
if (xQueueSend(rfm22b_dev->packetQueue, &p, max_delay) != pdTRUE)
return false;
// Inject a send packet event
PIOS_RFM22B_InjectEvent(g_rfm22b_dev, RFM22B_EVENT_SEND_PACKET, false);
// Success
return true;
}
/**
* Receive a packet from the radio.
* \param[in] rfm22b_id The rfm22b device.
* \param[in] p A pointer to the packet handle.
* \param[in] max_delay The maximum time to delay waiting for a packet.
* \return The number of bytes received.
*/
uint32_t PIOS_RFM22B_Receive_Packet(uint32_t rfm22b_id, PHPacketHandle *p, uint32_t max_delay)
{
struct pios_rfm22b_dev * rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
if (!PIOS_RFM22B_validate(rfm22b_dev))
return 0;
// Allocate the next Rx packet
if (rfm22b_dev->rx_packet_next == NULL)
rfm22b_dev->rx_packet_next = PHGetRXPacket(pios_packet_handler);
// Block on the semephore until the a packet has been received.
if (xSemaphoreTake(rfm22b_dev->rxsem, max_delay / portTICK_RATE_MS) != pdTRUE)
return 0;
// Return the Rx packet if it's available.
uint32_t rx_len = 0;
if (rfm22b_dev->rx_packet_prev)
{
*p = rfm22b_dev->rx_packet_prev;
rfm22b_dev->rx_packet_prev = NULL;
rx_len = rfm22b_dev->rx_packet_len;
}
return rx_len;
}
/**
* The task that controls the radio state machine.
*/
static void PIOS_RFM22B_Task(void *parameters)
{
struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)parameters;
if (!PIOS_RFM22B_validate(rfm22b_dev))
return;
static portTickType lastEventTime;
while(1)
{
#ifdef PIOS_WDG_RFM22B
// Update the watchdog timer
PIOS_WDG_UpdateFlag(PIOS_WDG_RFM22B);
#endif /* PIOS_WDG_RFM22B */
// Wait for a signal indicating an external interrupt or a pending send/receive request.
if ( xSemaphoreTake(g_rfm22b_dev->isrPending, ISR_TIMEOUT / portTICK_RATE_MS) == pdTRUE ) {
rfm22b_dev->irqs_processed++;
lastEventTime = xTaskGetTickCount();
// Process events through the state machine.
enum pios_rfm22b_event event;
while (xQueueReceive(rfm22b_dev->eventQueue, &event, 0) == pdTRUE)
{
if ((event == RFM22B_EVENT_INT_RECEIVED) &&
((rfm22b_dev->state == RFM22B_STATE_UNINITIALIZED) || (rfm22b_dev->state == RFM22B_STATE_INITIALIZING)))
continue;
// Process all state transitions.
while(event != RFM22B_EVENT_NUM_EVENTS)
event = rfm22_process_state_transition(rfm22b_dev, event);
}
}
else
{
// Has it been too long since the last event?
portTickType timeSinceEvent = xTaskGetTickCount() - lastEventTime;
if ((timeSinceEvent / portTICK_RATE_MS) > PIOS_RFM22B_SUPERVISOR_TIMEOUT)
{
// Transsition through an error event.
enum pios_rfm22b_event event = RFM22B_EVENT_ERROR;
while(event != RFM22B_EVENT_NUM_EVENTS)
event = rfm22_process_state_transition(rfm22b_dev, event);
// Clear the event queue.
while (xQueueReceive(rfm22b_dev->eventQueue, &event, 0) == pdTRUE)
;
lastEventTime = xTaskGetTickCount();
}
else
{
rfm22b_dev->resets = rfm22b_dev->state;
enum pios_rfm22b_event event = RFM22B_EVENT_TIMEOUT;
while(event != RFM22B_EVENT_NUM_EVENTS)
event = rfm22_process_state_transition(rfm22b_dev, event);
}
}
// Have we locked up sending / receiving a packet?
if (rfm22b_dev->packet_start_time > 0)
{
portTickType cur_time = xTaskGetTickCount();
// Did the clock wrap around?
if (cur_time < rfm22b_dev->packet_start_time)
rfm22b_dev->packet_start_time = (cur_time > 0) ? cur_time : 1;
// Have we been sending this packet too long?
if ((cur_time - rfm22b_dev->packet_start_time) > (rfm22b_dev->max_packet_time * 5))
{
enum pios_rfm22b_event event = RFM22B_EVENT_TIMEOUT;
while(event != RFM22B_EVENT_NUM_EVENTS)
event = rfm22_process_state_transition(rfm22b_dev, event);
}
}
}
}
static void PIOS_RFM22B_TxStart(uint32_t rfm22b_id, uint16_t tx_bytes_avail)
{
struct pios_rfm22b_dev * rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
bool valid = PIOS_RFM22B_validate(rfm22b_dev);
PIOS_Assert(valid);
#ifdef NEVER
// Get some data to send
bool need_yield = false;
if(tx_pre_buffer_size == 0)
tx_pre_buffer_size = (rfm22b_dev->tx_out_cb)(rfm22b_dev->tx_out_context, tx_pre_buffer,
TX_BUFFER_SIZE, NULL, &need_yield);
if(tx_pre_buffer_size > 0)
{
// already have data to be sent
if (tx_data_wr > 0)
return;
// we are currently transmitting or scanning the spectrum
if (rf_mode == TX_DATA_MODE || rf_mode == TX_STREAM_MODE || rf_mode == TX_CARRIER_MODE ||
rf_mode == TX_PN_MODE || rf_mode == RX_SCAN_SPECTRUM)
return;
// is the channel clear to transmit on?
if (!rfm22_channelIsClear())
return;
// Start the transmit
rfm22_txStart();
}
// Inject a send packet event
PIOS_RFM22B_InjectEvent(g_rfm22b_dev, RFM22B_EVENT_TX_START, false);
#endif
}
/**
@ -621,47 +924,6 @@ static void PIOS_RFM22B_RegisterTxCallback(uint32_t rfm22b_id, pios_com_callback
rfm22b_dev->tx_out_cb = tx_out_cb;
}
static void PIOS_RFM22B_Supervisor(uint32_t rfm22b_id)
{
/* Recover our device context */
struct pios_rfm22b_dev * rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
if (!PIOS_RFM22B_validate(rfm22b_dev)) {
/* Invalid device specified */
return;
}
/* If we're waiting for a receive, we just need to make sure that there are no packets waiting to be transmitted. */
if(rf_mode == RX_WAIT_PREAMBLE_MODE)
{
/* Start a packet transfer if one is available. */
PIOS_RFM22B_TxStart(rfm22b_id, 0);
return;
}
/* The radio must be locked up if the timer reaches 0 */
if(--(rfm22b_dev->supv_timer) != 0)
return;
++(rfm22b_dev->resets);
TX_LED_OFF;
TX_LED_OFF;
/* Clear the TX buffer in case we locked up in a transmit */
tx_data_wr = 0;
rfm22_init_normal(rfm22b_dev->deviceID, rfm22b_dev->cfg.minFrequencyHz, rfm22b_dev->cfg.maxFrequencyHz, 50000);
/* Start a packet transfer if one is available. */
rf_mode = RX_WAIT_PREAMBLE_MODE;
PIOS_RFM22B_TxStart(rfm22b_id, 0);
if(rf_mode == RX_WAIT_PREAMBLE_MODE)
{
/* Switch to RX mode */
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
}
}
// ************************************
// SPI read/write
@ -716,7 +978,6 @@ static void rfm22_write(uint8_t addr, uint8_t data)
* toggle the NSS line
* @param[in] addr The address of the RFM22b register to write
* @param[in] data The data to write to that register
*/
static void rfm22_write_noclaim(uint8_t addr, uint8_t data)
{
uint8_t buf[2] = {addr | 0x80, data};
@ -726,6 +987,7 @@ static void rfm22_write_noclaim(uint8_t addr, uint8_t data)
rfm22_deassertCs();
}
}
*/
/**
@ -756,7 +1018,7 @@ static uint8_t rfm22_read_noclaim(uint8_t addr)
{
uint8_t out[2] = {addr & 0x7F, 0xFF};
uint8_t in[2];
if (PIOS_RFM22B_validate(rfm22b_dev_g)) {
if (PIOS_RFM22B_validate(g_rfm22b_dev)) {
rfm22_assertCs();
PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, out, in, sizeof(out), NULL);
rfm22_deassertCs();
@ -765,84 +1027,51 @@ static uint8_t rfm22_read_noclaim(uint8_t addr)
}
// ************************************
// external interrupt
uint32_t rfm32_errors;
uint32_t rfm32_irqs_processed;
void PIOS_RFM22_EXT_Int(void)
static enum pios_rfm22b_event rfm22_process_state_transition(struct pios_rfm22b_dev *rfm22b_dev, enum pios_rfm22b_event event)
{
bool valid = PIOS_RFM22B_validate(g_rfm22b_dev);
PIOS_Assert(valid);
portBASE_TYPE pxHigherPriorityTaskWoken;
if (!exec_using_spi) {
if (xSemaphoreGiveFromISR(g_rfm22b_dev->isrPending, &pxHigherPriorityTaskWoken) != pdTRUE) {
// Something went fairly seriously wrong
rfm32_errors++;
}
portEND_SWITCHING_ISR(pxHigherPriorityTaskWoken);
}
}
// No event
if (event == RFM22B_EVENT_NUM_EVENTS)
return RFM22B_EVENT_NUM_EVENTS;
void PIOS_RFM22_processPendingISR(uint32_t wait_ms)
{
bool valid = PIOS_RFM22B_validate(g_rfm22b_dev);
PIOS_Assert(valid);
// Don't transition if there is no transition defined
enum pios_rfm22b_state next_state = rfm22b_transitions[rfm22b_dev->state].next_state[event];
if (!next_state)
return RFM22B_EVENT_NUM_EVENTS;
if ( xSemaphoreTake(g_rfm22b_dev->isrPending, wait_ms / portTICK_RATE_MS) == pdTRUE ) {
rfm32_irqs_processed++;
rfm22_processInt();
}
}
/*
* Move to the next state
*
* This is done prior to calling the new state's entry function to
* guarantee that the entry function never depends on the previous
* state. This way, it cannot ever know what the previous state was.
*/
enum pios_rfm22b_state prev_state = rfm22b_dev->state;
if (prev_state) ;
// ************************************
// set/get the current tx power setting
rfm22b_dev->state = next_state;
void rfm22_setTxPower(uint8_t tx_pwr)
{
switch (tx_pwr)
{
case 0: tx_power = RFM22_tx_pwr_txpow_0; break; // +1dBm ... 1.25mW
case 1: tx_power = RFM22_tx_pwr_txpow_1; break; // +2dBm ... 1.6mW
case 2: tx_power = RFM22_tx_pwr_txpow_2; break; // +5dBm ... 3.16mW
case 3: tx_power = RFM22_tx_pwr_txpow_3; break; // +8dBm ... 6.3mW
case 4: tx_power = RFM22_tx_pwr_txpow_4; break; // +11dBm .. 12.6mW
case 5: tx_power = RFM22_tx_pwr_txpow_5; break; // +14dBm .. 25mW
case 6: tx_power = RFM22_tx_pwr_txpow_6; break; // +17dBm .. 50mW
case 7: tx_power = RFM22_tx_pwr_txpow_7; break; // +20dBm .. 100mW
default: break;
}
}
/* Call the entry function (if any) for the next state. */
if (rfm22b_transitions[rfm22b_dev->state].entry_fn)
return rfm22b_transitions[rfm22b_dev->state].entry_fn(rfm22b_dev);
uint8_t rfm22_getTxPower(void)
{
return tx_power;
return RFM22B_EVENT_NUM_EVENTS;
}
// ************************************
uint32_t rfm22_minFrequency(void)
static void rfm22_setNominalCarrierFrequency(struct pios_rfm22b_dev *rfm22b_dev, uint32_t frequency_hz)
{
return lower_carrier_frequency_limit_Hz;
}
uint32_t rfm22_maxFrequency(void)
{
return upper_carrier_frequency_limit_Hz;
}
void rfm22_setNominalCarrierFrequency(uint32_t frequency_hz)
{
exec_using_spi = true;
// *******
if (frequency_hz < lower_carrier_frequency_limit_Hz)
frequency_hz = lower_carrier_frequency_limit_Hz;
else if (frequency_hz > upper_carrier_frequency_limit_Hz)
frequency_hz = upper_carrier_frequency_limit_Hz;
uint32_t min_frequency_hz = rfm22b_dev->cfg.minFrequencyHz;
uint32_t max_frequency_hz = rfm22b_dev->cfg.maxFrequencyHz;
if (frequency_hz < min_frequency_hz)
frequency_hz = min_frequency_hz;
else if (frequency_hz > max_frequency_hz)
frequency_hz = max_frequency_hz;
// holds the hbsel (1 or 2)
uint8_t hbsel;
if (frequency_hz < 480000000)
hbsel = 1;
else
@ -854,59 +1083,37 @@ void rfm22_setNominalCarrierFrequency(uint32_t frequency_hz)
fc = (fc * 64u) / (10000ul * hbsel);
fb -= 24;
// carrier_frequency_hz = frequency_hz;
carrier_frequency_hz = ((uint32_t)fb + 24 + ((float)fc / 64000)) * 10000000 * hbsel;
if (hbsel > 1)
fb |= RFM22_fbs_hbsel;
fb |= RFM22_fbs_sbse; // is this the RX LO polarity?
frequency_step_size = 156.25f * hbsel;
// frequency hopping channel (0-255)
rfm22b_dev->frequency_step_size = 156.25f * hbsel;
rfm22_write(RFM22_frequency_hopping_channel_select, frequency_hop_channel); // frequency hopping channel (0-255)
// frequency hopping channel (0-255)
rfm22_write(RFM22_frequency_hopping_channel_select, rfm22b_dev->frequency_hop_channel);
rfm22_write(RFM22_frequency_offset1, 0); // no frequency offset
rfm22_write(RFM22_frequency_offset2, 0); // no frequency offset
// no frequency offset
rfm22_write(RFM22_frequency_offset1, 0);
// no frequency offset
rfm22_write(RFM22_frequency_offset2, 0);
rfm22_write(RFM22_frequency_band_select, fb); // set the carrier frequency
rfm22_write(RFM22_nominal_carrier_frequency1, fc >> 8); // " "
rfm22_write(RFM22_nominal_carrier_frequency0, fc & 0xff); // " "
// *******
#if defined(RFM22_DEBUG)
//DEBUG_PRINTF(2, "rf setFreq: %u\n\r", carrier_frequency_hz);
// DEBUG_PRINTF(2, "rf setFreq frequency_step_size: %0.2f\n\r", frequency_step_size);
#endif
exec_using_spi = false;
}
uint32_t rfm22_getNominalCarrierFrequency(void)
{
return carrier_frequency_hz;
}
float rfm22_getFrequencyStepSize(void)
{
return frequency_step_size;
// set the carrier frequency
rfm22_write(RFM22_frequency_band_select, fb);
rfm22_write(RFM22_nominal_carrier_frequency1, fc >> 8);
rfm22_write(RFM22_nominal_carrier_frequency0, fc & 0xff);
}
void rfm22_setFreqHopChannel(uint8_t channel)
{ // set the frequency hopping channel
frequency_hop_channel = channel;
rfm22_write(RFM22_frequency_hopping_channel_select, frequency_hop_channel);
}
uint8_t rfm22_freqHopChannel(void)
{ // return the current frequency hopping channel
return frequency_hop_channel;
g_rfm22b_dev->frequency_hop_channel = channel;
rfm22_write(RFM22_frequency_hopping_channel_select, channel);
}
uint32_t rfm22_freqHopSize(void)
{ // return the frequency hopping step size
return ((uint32_t)frequency_hop_step_size_reg * 10000);
return ((uint32_t)g_rfm22b_dev->frequency_hop_step_size_reg * 10000);
}
// ************************************
@ -925,15 +1132,12 @@ uint32_t rfm22_freqHopSize(void)
void rfm22_setDatarate(uint32_t datarate_bps, bool data_whitening)
{
exec_using_spi = true;
lookup_index = 0;
// Find the closest data rate that is >= the value passed in
int lookup_index = 0;
while (lookup_index < (LOOKUP_SIZE - 1) && data_rate[lookup_index] < datarate_bps)
lookup_index++;
carrier_datarate_bps = datarate_bps = data_rate[lookup_index];
rf_bandwidth_used = rx_bandwidth[lookup_index];
datarate_bps = data_rate[lookup_index];
// rfm22_if_filter_bandwidth
rfm22_write(0x1C, reg_1C[lookup_index]);
@ -961,7 +1165,7 @@ void rfm22_setDatarate(uint32_t datarate_bps, bool data_whitening)
// rfm22_afc_limiter
rfm22_write(0x2A, reg_2A[lookup_index]);
if (carrier_datarate_bps < 100000)
if (datarate_bps < 100000)
// rfm22_chargepump_current_trimming_override
rfm22_write(0x58, 0x80);
else
@ -992,128 +1196,13 @@ void rfm22_setDatarate(uint32_t datarate_bps, bool data_whitening)
rfm22_write(RFM22_ook_counter_value1, 0x00);
rfm22_write(RFM22_ook_counter_value2, 0x00);
// ********************************
// calculate the TX register values
/*
uint16_t fd = frequency_deviation / 625;
uint8_t mmc1 = RFM22_mmc1_enphpwdn | RFM22_mmc1_manppol;
uint16_t txdr;
if (datarate_bps < 30000)
{
txdr = (datarate_bps * 20972) / 10000;
mmc1 |= RFM22_mmc1_txdtrtscale;
}
else
txdr = (datarate_bps * 6553) / 100000;
uint8_t mmc2 = RFM22_mmc2_dtmod_fifo | RFM22_mmc2_modtyp_gfsk; // FIFO mode, GFSK
// uint8_t mmc2 = RFM22_mmc2_dtmod_pn9 | RFM22_mmc2_modtyp_gfsk; // PN9 mode, GFSK .. TX TEST MODE
if (fd & 0x100) mmc2 |= RFM22_mmc2_fd;
rfm22_write(RFM22_frequency_deviation, fd); // set the TX peak frequency deviation
rfm22_write(RFM22_modulation_mode_control1, mmc1);
rfm22_write(RFM22_modulation_mode_control2, mmc2);
rfm22_write(RFM22_tx_data_rate1, txdr >> 8); // set the TX data rate
rfm22_write(RFM22_tx_data_rate0, txdr); // " "
*/
// ********************************
// determine a clear channel time
// initialise the stopwatch with a suitable resolution for the datarate
//STOPWATCH_init(4000000ul / carrier_datarate_bps); // set resolution to the time for 1 nibble (4-bits) at rf datarate
// ********************************
// determine suitable time-out periods
// milliseconds
timeout_sync_ms = (8000ul * 16) / carrier_datarate_bps;
if (timeout_sync_ms < 3)
// because out timer resolution is only 1ms
timeout_sync_ms = 3;
// milliseconds
timeout_data_ms = (8000ul * 100) / carrier_datarate_bps;
if (timeout_data_ms < 3)
// because out timer resolution is only 1ms
timeout_data_ms = 3;
// ********************************
#if defined(RFM22_DEBUG)
/*
DEBUG_PRINTF(2, "rf datarate_bps: %d\n\r", datarate_bps);
DEBUG_PRINTF(2, "rf frequency_deviation: %d\n\r", frequency_deviation);
uint32_t frequency_deviation = freq_deviation[lookup_index]; // Hz
uint32_t modulation_bandwidth = datarate_bps + (2 * frequency_deviation);
DEBUG_PRINTF(2, "rf modulation_bandwidth: %u\n\r", modulation_bandwidth);
DEBUG_PRINTF(2, "rf_rx_bandwidth[%u]: %u\n\r", lookup_index, rx_bandwidth[lookup_index]);
DEBUG_PRINTF(2, "rf est rx sensitivity[%u]: %ddBm\n\r", lookup_index, est_rx_sens_dBm[lookup_index]);
*/
#endif
// *******
exec_using_spi = false;
}
uint32_t rfm22_getDatarate(void)
{
return carrier_datarate_bps;
}
// ************************************
void rfm22_setSSBandwidth(uint32_t bandwidth_index)
static enum pios_rfm22b_event rfm22_setRxMode(struct pios_rfm22b_dev *rfm22b_dev)
{
exec_using_spi = true;
ss_lookup_index = bandwidth_index;
ss_rf_bandwidth_used = ss_rx_bandwidth[lookup_index];
// ********************************
rfm22_write(0x1C, ss_reg_1C[ss_lookup_index]); // rfm22_if_filter_bandwidth
rfm22_write(0x1D, ss_reg_1D[ss_lookup_index]); // rfm22_afc_loop_gearshift_override
rfm22_write(0x20, ss_reg_20[ss_lookup_index]); // rfm22_clk_recovery_oversampling_ratio
rfm22_write(0x21, ss_reg_21[ss_lookup_index]); // rfm22_clk_recovery_offset2
rfm22_write(0x22, ss_reg_22[ss_lookup_index]); // rfm22_clk_recovery_offset1
rfm22_write(0x23, ss_reg_23[ss_lookup_index]); // rfm22_clk_recovery_offset0
rfm22_write(0x24, ss_reg_24[ss_lookup_index]); // rfm22_clk_recovery_timing_loop_gain1
rfm22_write(0x25, ss_reg_25[ss_lookup_index]); // rfm22_clk_recovery_timing_loop_gain0
rfm22_write(0x2A, ss_reg_2A[ss_lookup_index]); // rfm22_afc_limiter
rfm22_write(0x58, 0x80); // rfm22_chargepump_current_trimming_override
rfm22_write(0x70, ss_reg_70[ss_lookup_index]); // rfm22_modulation_mode_control1
rfm22_write(0x71, ss_reg_71[ss_lookup_index]); // rfm22_modulation_mode_control2
rfm22_write(RFM22_ook_counter_value1, 0x00);
rfm22_write(RFM22_ook_counter_value2, 0x00);
// ********************************
#if defined(RFM22_DEBUG)
DEBUG_PRINTF(2, "ss_rf_rx_bandwidth[%u]: %u\n\r", ss_lookup_index, ss_rx_bandwidth[ss_lookup_index]);
#endif
// *******
exec_using_spi = false;
}
// ************************************
void rfm22_setRxMode(uint8_t mode, bool multi_packet_mode)
{
exec_using_spi = true;
rfm22b_dev->packet_start_time = 0;
// disable interrupts
rfm22_write(RFM22_interrupt_enable1, 0x00);
@ -1125,33 +1214,15 @@ void rfm22_setRxMode(uint8_t mode, bool multi_packet_mode)
RX_LED_OFF;
TX_LED_OFF;
if (rf_mode == TX_CARRIER_MODE || rf_mode == TX_PN_MODE)
{
// FIFO mode, GFSK modulation
uint8_t fd_bit = rfm22_read(RFM22_modulation_mode_control2) & RFM22_mmc2_fd;
rfm22_write(RFM22_modulation_mode_control2, fd_bit | RFM22_mmc2_dtmod_fifo |
RFM22_mmc2_modtyp_gfsk);
}
// empty the rx buffer
rx_buffer_wr = 0;
// reset the timer
rfm22_int_timer = 0;
rf_mode = mode;
rfm22b_dev->rx_buffer_wr = 0;
// Clear the TX buffer.
tx_data_rd = tx_data_wr = 0;
rfm22b_dev->tx_data_rd = rfm22b_dev->tx_data_wr = 0;
// clear FIFOs
if (!multi_packet_mode)
{
rfm22_write(RFM22_op_and_func_ctrl2, RFM22_opfc2_ffclrrx | RFM22_opfc2_ffclrtx);
rfm22_write(RFM22_op_and_func_ctrl2, 0x00);
} else {
rfm22_write(RFM22_op_and_func_ctrl2, RFM22_opfc2_rxmpk | RFM22_opfc2_ffclrrx |
RFM22_opfc2_ffclrtx);
rfm22_write(RFM22_op_and_func_ctrl2, RFM22_opfc2_rxmpk);
}
rfm22_write(RFM22_op_and_func_ctrl2, RFM22_opfc2_ffclrrx | RFM22_opfc2_ffclrtx);
rfm22_write(RFM22_op_and_func_ctrl2, 0x00);
// enable RX interrupts
rfm22_write(RFM22_interrupt_enable1, RFM22_ie1_encrcerror | RFM22_ie1_enpkvalid |
@ -1162,24 +1233,26 @@ void rfm22_setRxMode(uint8_t mode, bool multi_packet_mode)
// enable the receiver
rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon | RFM22_opfc1_rxon);
exec_using_spi = false;
// No event generated
return RFM22B_EVENT_NUM_EVENTS;
}
// ************************************
uint8_t rfm22_txStart()
static enum pios_rfm22b_event rfm22_txStart(struct pios_rfm22b_dev *rfm22b_dev)
{
if((tx_pre_buffer_size == 0) || (exec_using_spi == true))
// See if there's a packet on the packet queue.
PHPacketHandle p;
if (xQueueReceive(rfm22b_dev->packetQueue, &p, 0) != pdTRUE)
{
// Clear the TX buffer.
tx_data_rd = tx_data_wr = 0;
return 0;
rfm22b_dev->tx_data_rd = rfm22b_dev->tx_data_wr = 0;
return RFM22B_EVENT_RX_MODE;
}
exec_using_spi = true;
// Initialize the supervisor timer.
rfm22b_dev_g->supv_timer = PIOS_RFM22B_SUPERVISOR_TIMEOUT;
rfm22b_dev->tx_packet = p;
rfm22b_dev->packet_start_time = xTaskGetTickCount();
if (rfm22b_dev->packet_start_time == 0)
rfm22b_dev->packet_start_time = 1;
// disable interrupts
rfm22_write(RFM22_interrupt_enable1, 0x00);
@ -1189,15 +1262,13 @@ uint8_t rfm22_txStart()
rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon);
// Queue the data up for sending
memcpy(tx_buffer, tx_pre_buffer, tx_pre_buffer_size);
tx_data_rd = 0;
tx_data_wr = tx_pre_buffer_size;
tx_pre_buffer_size = 0;
rfm22b_dev->tx_data_wr = PH_PACKET_SIZE(rfm22b_dev->tx_packet);
RX_LED_OFF;
// Set the destination address in the transmit header.
// The destination address is the first 4 bytes of the message.
uint8_t *tx_buffer = (uint8_t*)(rfm22b_dev->tx_packet);
rfm22_write(RFM22_transmit_header0, tx_buffer[0]);
rfm22_write(RFM22_transmit_header1, tx_buffer[1]);
rfm22_write(RFM22_transmit_header2, tx_buffer[2]);
@ -1210,7 +1281,7 @@ uint8_t rfm22_txStart()
// set the tx power
rfm22_write(RFM22_tx_power, RFM22_tx_pwr_papeaken | RFM22_tx_pwr_papeaklvl_1 |
RFM22_tx_pwr_papeaklvl_0 | RFM22_tx_pwr_lna_sw | tx_power);
RFM22_tx_pwr_papeaklvl_0 | RFM22_tx_pwr_lna_sw | g_rfm22b_dev->tx_power);
// clear FIFOs
rfm22_write(RFM22_op_and_func_ctrl2, RFM22_opfc2_ffclrrx | RFM22_opfc2_ffclrtx);
@ -1220,26 +1291,19 @@ uint8_t rfm22_txStart()
// add some data to the chips TX FIFO before enabling the transmitter
// set the total number of data bytes we are going to transmit
rfm22_write(RFM22_transmit_packet_length, tx_data_wr);
rfm22_write(RFM22_transmit_packet_length, rfm22b_dev->tx_data_wr);
// add some data
rfm22_claimBus();
rfm22_assertCs();
PIOS_SPI_TransferByte(g_rfm22b_dev->spi_id, RFM22_fifo_access | 0x80);
int bytes_to_write = (tx_data_wr - tx_data_rd);
int bytes_to_write = (rfm22b_dev->tx_data_wr - rfm22b_dev->tx_data_rd);
bytes_to_write = (bytes_to_write > FIFO_SIZE) ? FIFO_SIZE: bytes_to_write;
PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, &tx_buffer[tx_data_rd], NULL, bytes_to_write, NULL);
tx_data_rd += bytes_to_write;
PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, &tx_buffer[rfm22b_dev->tx_data_rd], NULL, bytes_to_write, NULL);
rfm22b_dev->tx_data_rd += bytes_to_write;
rfm22_deassertCs();
rfm22_releaseBus();
// *******************
// reset the timer
rfm22_int_timer = 0;
rf_mode = TX_DATA_MODE;
// enable TX interrupts
rfm22_write(RFM22_interrupt_enable1, RFM22_ie1_enpksent | RFM22_ie1_entxffaem);
@ -1248,330 +1312,17 @@ uint8_t rfm22_txStart()
TX_LED_ON;
exec_using_spi = false;
return 1;
}
static void rfm22_setTxMode(uint8_t mode)
{
if (mode != TX_DATA_MODE && mode != TX_STREAM_MODE && mode != TX_CARRIER_MODE && mode != TX_PN_MODE)
return; // invalid mode
rfm22_claimBus();
rfm22_assertCs();
// Disaable interrupts (IE1, IE2 = 0)
uint8_t out_buf[3] = {RFM22_interrupt_enable1 | 0x80, 0x00, 0x00};
PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, out_buf, NULL, sizeof(out_buf), NULL);
rfm22_deassertCs();
// TUNE mode
rfm22_write_noclaim(RFM22_op_and_func_ctrl1,RFM22_opfc1_pllon);
RX_LED_OFF;
// Set the tx power
rfm22_write_noclaim(RFM22_tx_power,RFM22_tx_pwr_papeaken | RFM22_tx_pwr_papeaklvl_1 |
RFM22_tx_pwr_papeaklvl_0 | RFM22_tx_pwr_lna_sw | tx_power);
uint8_t fd_bit = rfm22_read_noclaim(RFM22_modulation_mode_control2) & RFM22_mmc2_fd;
if (mode == TX_CARRIER_MODE)
// blank carrier mode - for testing
rfm22_write_noclaim(RFM22_modulation_mode_control2, fd_bit | RFM22_mmc2_dtmod_pn9 |
RFM22_mmc2_modtyp_none); // FIFO mode, Blank carrier
else if (mode == TX_PN_MODE)
// psuedo random data carrier mode - for testing
rfm22_write_noclaim(RFM22_modulation_mode_control2, fd_bit | RFM22_mmc2_dtmod_pn9 |
RFM22_mmc2_modtyp_gfsk); // FIFO mode, PN9 carrier
else
// data transmission
// FIFO mode, GFSK modulation
rfm22_write_noclaim(RFM22_modulation_mode_control2, fd_bit | RFM22_mmc2_dtmod_fifo |
RFM22_mmc2_modtyp_gfsk);
// clear FIFOs
rfm22_write_noclaim(RFM22_op_and_func_ctrl2, RFM22_opfc2_ffclrrx | RFM22_opfc2_ffclrtx);
rfm22_write_noclaim(RFM22_op_and_func_ctrl2, 0x00);
// add some data to the chips TX FIFO before enabling the transmitter
{
uint16_t rd = 0;
uint16_t wr = tx_data_wr;
if (mode == TX_DATA_MODE)
// set the total number of data bytes we are going to transmit
rfm22_write_noclaim(RFM22_transmit_packet_length, wr);
uint16_t i = 0;
rfm22_assertCs();
PIOS_SPI_TransferByte(g_rfm22b_dev->spi_id, 0x80 | RFM22_fifo_access); // Initiate burst write
if (mode == TX_STREAM_MODE) {
if (rd >= wr)
i += PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, FULL_PREAMBLE, NULL, sizeof(FULL_PREAMBLE), NULL);
else // add the RF heaader
i += PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, HEADER, NULL, sizeof(HEADER), NULL);
}
// Send data if there is any and there is space in the buffer available
// Bytes available to send minus how many we have sent
int32_t bytes_to_send = wr - rd;
bytes_to_send = ((bytes_to_send + i)> FIFO_SIZE) ? (FIFO_SIZE - i) : bytes_to_send;
if (bytes_to_send > 0)
rd += PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, &tx_buffer[rd], NULL, bytes_to_send, NULL);
rfm22_deassertCs();
tx_data_rd = rd;
}
// reset the timer
rfm22_int_timer = 0;
rf_mode = mode;
// enable TX interrupts
// rfm22_write(RFM22_interrupt_enable1, RFM22_ie1_enpksent | RFM22_ie1_entxffaem | RFM22_ie1_enfferr);
rfm22_write_noclaim(RFM22_interrupt_enable1, RFM22_ie1_enpksent | RFM22_ie1_entxffaem);
// read interrupt status - clear interrupts
rfm22_read_noclaim(RFM22_interrupt_status1);
rfm22_read_noclaim(RFM22_interrupt_status2);
// enable the transmitter
// rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_xton | RFM22_opfc1_txon);
rfm22_write_noclaim(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon | RFM22_opfc1_txon);
rfm22_releaseBus();
TX_LED_ON;
return RFM22B_EVENT_TX_STARTED;
}
// ************************************
// external interrupt line triggered (or polled) from the rf chip
void rfm22_processRxInt(void)
/**
* Read the RFM22B interrupt and device status registers
* \param[in] rfm22b_dev The device structure
*/
static bool rfm22_readStatus(struct pios_rfm22b_dev *rfm22b_dev)
{
register uint8_t int_stat1 = int_status1;
register uint8_t int_stat2 = int_status2;
// FIFO under/over flow error. Restart RX mode.
if (device_status & (RFM22_ds_ffunfl | RFM22_ds_ffovfl))
{
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
return;
}
// Valid preamble detected
if (int_stat2 & RFM22_is2_ipreaval && (rf_mode == RX_WAIT_PREAMBLE_MODE))
{
rf_mode = RX_WAIT_SYNC_MODE;
RX_LED_ON;
}
// Sync word detected
if (int_stat2 & RFM22_is2_iswdet && ((rf_mode == RX_WAIT_PREAMBLE_MODE || rf_mode == RX_WAIT_SYNC_MODE)))
{
rf_mode = RX_DATA_MODE;
RX_LED_ON;
// read the 10-bit signed afc correction value
// bits 9 to 2
afc_correction = (uint16_t)rfm22_read(RFM22_afc_correction_read) << 8;
// bits 1 & 0
afc_correction |= (uint16_t)rfm22_read(RFM22_ook_counter_value1) & 0x00c0;
afc_correction >>= 6;
// convert the afc value to Hz
afc_correction_Hz = (int32_t)(frequency_step_size * afc_correction + 0.5f);
// remember the rssi for this packet
rx_packet_start_rssi_dBm = rssi_dBm;
// remember the afc value for this packet
rx_packet_start_afc_Hz = afc_correction_Hz;
}
// RX FIFO almost full, it needs emptying
if (int_stat1 & RFM22_is1_irxffafull)
{
if (rf_mode == RX_DATA_MODE)
{
// read data from the rf chips FIFO buffer
// read the total length of the packet data
uint16_t len = rfm22_read(RFM22_received_packet_length);
// The received packet is going to be larger than the specified length
if ((rx_buffer_wr + RX_FIFO_HI_WATERMARK) > len)
{
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
return;
}
// Another packet length error.
if (((rx_buffer_wr + RX_FIFO_HI_WATERMARK) >= len) && !(int_stat1 & RFM22_is1_ipkvalid))
{
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
return;
}
// Fetch the data from the RX FIFO
rfm22_claimBus();
rfm22_assertCs();
PIOS_SPI_TransferByte(rfm22b_dev_g->spi_id,RFM22_fifo_access & 0x7F);
rx_buffer_wr += (PIOS_SPI_TransferBlock(rfm22b_dev_g->spi_id,OUT_FF,
(uint8_t *) &rx_buffer[rx_buffer_wr],RX_FIFO_HI_WATERMARK,NULL) == 0) ?
RX_FIFO_HI_WATERMARK : 0;
rfm22_deassertCs();
rfm22_releaseBus();
} else {
// Clear the RX FIFO
rfm22_claimBus();
rfm22_assertCs();
PIOS_SPI_TransferByte(rfm22b_dev_g->spi_id,RFM22_fifo_access & 0x7F);
PIOS_SPI_TransferBlock(rfm22b_dev_g->spi_id,OUT_FF,NULL,RX_FIFO_HI_WATERMARK,NULL);
rfm22_deassertCs();
rfm22_releaseBus();
}
}
// CRC error .. discard the received data
if (int_stat1 & RFM22_is1_icrerror)
{
rfm22_int_timer = 0; // reset the timer
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
return;
}
// Valid packet received
if (int_stat1 & RFM22_is1_ipkvalid)
{
// read the total length of the packet data
uint32_t len = rfm22_read(RFM22_received_packet_length);
// their must still be data in the RX FIFO we need to get
if (rx_buffer_wr < len)
{
int32_t bytes_to_read = len - rx_buffer_wr;
// Fetch the data from the RX FIFO
rfm22_claimBus();
rfm22_assertCs();
PIOS_SPI_TransferByte(rfm22b_dev_g->spi_id,RFM22_fifo_access & 0x7F);
rx_buffer_wr += (PIOS_SPI_TransferBlock(rfm22b_dev_g->spi_id,OUT_FF,
(uint8_t *) &rx_buffer[rx_buffer_wr],bytes_to_read,NULL) == 0) ?
bytes_to_read : 0;
rfm22_deassertCs();
rfm22_releaseBus();
}
if (rx_buffer_wr != len)
{
// we have a packet length error .. discard the packet
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
return;
}
// we have a valid received packet
if (rx_buffer_wr > 0)
{
// remember the rssi for this packet
rx_packet_rssi_dBm = rx_packet_start_rssi_dBm;
// remember the afc offset for this packet
rx_packet_afc_Hz = rx_packet_start_afc_Hz;
// Add the rssi and afc to the end of the packet.
rx_buffer[rx_buffer_wr++] = rx_packet_start_rssi_dBm;
rx_buffer[rx_buffer_wr++] = rx_packet_start_afc_Hz;
// Pass this packet on
bool need_yield = false;
if (rfm22b_dev_g->rx_in_cb)
(rfm22b_dev_g->rx_in_cb)(rfm22b_dev_g->rx_in_context, (uint8_t*)rx_buffer,
rx_buffer_wr, NULL, &need_yield);
rx_buffer_wr = 0;
}
// Send a packet if it's available.
if(!rfm22_txStart())
{
// Switch to RX mode
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
}
}
}
void rfm22_processTxInt(void)
{
register uint8_t int_stat1 = int_status1;
// reset the timer
rfm22_int_timer = 0;
// FIFO under/over flow error. Back to RX mode.
if (device_status & (RFM22_ds_ffunfl | RFM22_ds_ffovfl))
{
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
return;
}
// Transmit timeout. Abort the transmit.
if (rfm22_int_timer >= timeout_data_ms)
{
rfm22_int_time_outs++;
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
return;
}
// the rf module is not in tx mode
if ((device_status & RFM22_ds_cps_mask) != RFM22_ds_cps_tx)
{
if (rfm22_int_timer >= 100)
{
rfm22_int_time_outs++;
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); // back to rx mode
return;
}
}
// TX FIFO almost empty, it needs filling up
if (int_stat1 & RFM22_is1_ixtffaem)
{
// top-up the rf chips TX FIFO buffer
uint16_t max_bytes = FIFO_SIZE - TX_FIFO_LO_WATERMARK - 1;
rfm22_claimBus();
rfm22_assertCs();
PIOS_SPI_TransferByte(g_rfm22b_dev->spi_id, RFM22_fifo_access | 0x80);
int bytes_to_write = (tx_data_wr - tx_data_rd);
bytes_to_write = (bytes_to_write > max_bytes) ? max_bytes: bytes_to_write;
PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, &tx_buffer[tx_data_rd], NULL, bytes_to_write, NULL);
tx_data_rd += bytes_to_write;
rfm22_deassertCs();
rfm22_releaseBus();
}
// Packet has been sent
if (int_stat1 & RFM22_is1_ipksent)
{
// Send another packet if it's available.
if(!rfm22_txStart())
{
// Switch to RX mode
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
return;
}
}
}
static void rfm22_processInt(void)
{
// we haven't yet been initialized
if (!initialized || power_on_reset || !PIOS_RFM22B_validate(rfm22b_dev_g))
return;
exec_using_spi = true;
// Reset the supervisor timer.
rfm22b_dev_g->supv_timer = PIOS_RFM22B_SUPERVISOR_TIMEOUT;
// 1. Read the interrupt statuses with burst read
rfm22_claimBus(); // Set RC and the semaphore
@ -1580,159 +1331,236 @@ static void rfm22_processInt(void)
rfm22_assertCs();
PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, write_buf, read_buf, sizeof(write_buf), NULL);
rfm22_deassertCs();
int_status1 = read_buf[1];
int_status2 = read_buf[2];
rfm22b_dev->int_status1 = read_buf[1];
rfm22b_dev->int_status2 = read_buf[2];
// Device status
device_status = rfm22_read_noclaim(RFM22_device_status);
rfm22b_dev->device_status = rfm22_read_noclaim(RFM22_device_status);
// EzMAC status
ezmac_status = rfm22_read_noclaim(RFM22_ezmac_status);
rfm22b_dev->ezmac_status = rfm22_read_noclaim(RFM22_ezmac_status);
// Release the bus
rfm22_releaseBus();
// Read the RSSI if we're in RX mode
if (rf_mode != TX_DATA_MODE && rf_mode != TX_STREAM_MODE &&
rf_mode != TX_CARRIER_MODE && rf_mode != TX_PN_MODE)
{
// read rx signal strength .. 45 = -100dBm, 205 = -20dBm
rssi = rfm22_read(RFM22_rssi);
// convert to dBm
rssi_dBm = (int8_t)(rssi >> 1) - 122;
}
else
// read the tx power register
tx_pwr = rfm22_read(RFM22_tx_power);
// the RF module has gone and done a reset - we need to re-initialize the rf module
if (int_status2 & RFM22_is2_ipor)
if (rfm22b_dev->int_status2 & RFM22_is2_ipor)
return false;
return true;
}
static enum pios_rfm22b_event rfm22_detectPreamble(struct pios_rfm22b_dev *rfm22b_dev)
{
// Read the device status registers
if (!rfm22_readStatus(rfm22b_dev))
return RFM22B_EVENT_ERROR;
// Valid preamble detected
if (rfm22b_dev->int_status2 & RFM22_is2_ipreaval)
{
initialized = false;
power_on_reset = true;
// Need to do something here!
return;
rfm22b_dev->packet_start_time = xTaskGetTickCount();
if (rfm22b_dev->packet_start_time == 0)
rfm22b_dev->packet_start_time = 1;
RX_LED_ON;
return RFM22B_EVENT_PREAMBLE_DETECTED;
}
switch (rf_mode)
return RFM22B_EVENT_NUM_EVENTS;
}
static enum pios_rfm22b_event rfm22_detectSync(struct pios_rfm22b_dev *rfm22b_dev)
{
// Read the device status registers
if (!rfm22_readStatus(rfm22b_dev))
return RFM22B_EVENT_ERROR;
// Sync word detected
if (rfm22b_dev->int_status2 & RFM22_is2_iswdet)
{
case RX_SCAN_SPECTRUM:
break;
RX_LED_ON;
case RX_WAIT_PREAMBLE_MODE:
case RX_WAIT_SYNC_MODE:
case RX_DATA_MODE:
// read the 10-bit signed afc correction value
// bits 9 to 2
uint16_t afc_correction = (uint16_t)rfm22_read(RFM22_afc_correction_read) << 8;
// bits 1 & 0
afc_correction |= (uint16_t)rfm22_read(RFM22_ook_counter_value1) & 0x00c0;
afc_correction >>= 6;
// convert the afc value to Hz
rfm22b_dev->afc_correction_Hz = (int32_t)(rfm22b_dev->frequency_step_size * afc_correction + 0.5f);
rfm22_processRxInt();
break;
// read rx signal strength .. 45 = -100dBm, 205 = -20dBm
rfm22b_dev->rssi = rfm22_read(RFM22_rssi);
// convert to dBm
rfm22b_dev->rssi_dBm = (int8_t)(rfm22b_dev->rssi >> 1) - 122;
case TX_DATA_MODE:
case TX_STREAM_MODE:
// remember the afc value for this packet
rfm22b_dev->rx_packet_start_afc_Hz = rfm22b_dev->afc_correction_Hz;
rfm22_processTxInt();
break;
case TX_CARRIER_MODE:
case TX_PN_MODE:
// if (rfm22_int_timer >= TX_TEST_MODE_TIMELIMIT_MS) // 'nn'ms limit
// {
// rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); // back to rx mode
// tx_data_rd = tx_data_wr = 0; // wipe TX buffer
// break;
// }
break;
default: // unknown mode - this should NEVER happen, maybe we should do a complete CPU reset here
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); // to rx mode
break;
return RFM22B_EVENT_SYNC_DETECTED;
}
else if (rfm22b_dev->int_status2 & !RFM22_is2_ipreaval)
{
// Waiting for sync timed out.
return RFM22B_EVENT_TX_START;
}
exec_using_spi = false;
return RFM22B_EVENT_NUM_EVENTS;
}
// ************************************
int8_t rfm22_getRSSI(void)
static enum pios_rfm22b_event rfm22_rxData(struct pios_rfm22b_dev *rfm22b_dev)
{
exec_using_spi = true;
rssi = rfm22_read(RFM22_rssi); // read rx signal strength .. 45 = -100dBm, 205 = -20dBm
rssi_dBm = (int8_t)(rssi >> 1) - 122; // convert to dBm
exec_using_spi = false;
return rssi_dBm;
}
int8_t rfm22_receivedRSSI(void)
{ // return the packets signal strength
if (!initialized)
return -127;
else
return rx_packet_rssi_dBm;
}
int32_t rfm22_receivedAFCHz(void)
{ // return the packets offset frequency
if (!initialized)
return 0;
else
return rx_packet_afc_Hz;
}
// ************************************
// ************************************
void rfm22_setTxStream(void) // TEST ONLY
{
if (!initialized)
return;
tx_data_rd = tx_data_wr = 0;
rfm22_setTxMode(TX_STREAM_MODE);
}
// ************************************
void rfm22_setTxNormal(void)
{
if (!initialized)
return;
// if (rf_mode == TX_CARRIER_MODE || rf_mode == TX_PN_MODE)
if (rf_mode != RX_SCAN_SPECTRUM)
// Swap in the next packet buffer if required.
if (rfm22b_dev->rx_packet == NULL)
{
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
tx_data_rd = tx_data_wr = 0;
rx_packet_start_rssi_dBm = 0;
rx_packet_start_afc_Hz = 0;
rx_packet_rssi_dBm = 0;
rx_packet_afc_Hz = 0;
if (rfm22b_dev->rx_packet_next != NULL)
rfm22b_dev->rx_packet = rfm22b_dev->rx_packet_next;
else
return RFM22B_EVENT_ERROR;
}
uint8_t *rx_buffer = (uint8_t*)(rfm22b_dev->rx_packet);
// Read the device status registers
if (!rfm22_readStatus(rfm22b_dev))
return RFM22B_EVENT_ERROR;
// FIFO under/over flow error. Restart RX mode.
if (rfm22b_dev->device_status & (RFM22_ds_ffunfl | RFM22_ds_ffovfl))
return RFM22B_EVENT_ERROR;
// RX FIFO almost full, it needs emptying
if (rfm22b_dev->int_status1 & RFM22_is1_irxffafull)
{
// read data from the rf chips FIFO buffer
// read the total length of the packet data
uint16_t len = rfm22_read(RFM22_received_packet_length);
// The received packet is going to be larger than the specified length
if ((rfm22b_dev->rx_buffer_wr + RX_FIFO_HI_WATERMARK) > len)
return RFM22B_EVENT_ERROR;
// Another packet length error.
if (((rfm22b_dev->rx_buffer_wr + RX_FIFO_HI_WATERMARK) >= len) && !(rfm22b_dev->int_status1 & RFM22_is1_ipkvalid))
return RFM22B_EVENT_ERROR;
// Fetch the data from the RX FIFO
rfm22_claimBus();
rfm22_assertCs();
PIOS_SPI_TransferByte(rfm22b_dev->spi_id,RFM22_fifo_access & 0x7F);
rfm22b_dev->rx_buffer_wr += (PIOS_SPI_TransferBlock(rfm22b_dev->spi_id ,OUT_FF, (uint8_t *)&rx_buffer[rfm22b_dev->rx_buffer_wr], RX_FIFO_HI_WATERMARK, NULL) == 0) ? RX_FIFO_HI_WATERMARK : 0;
rfm22_deassertCs();
rfm22_releaseBus();
}
// CRC error .. discard the received data
if (rfm22b_dev->int_status1 & RFM22_is1_icrerror)
return RFM22B_EVENT_ERROR;
// Valid packet received
if (rfm22b_dev->int_status1 & RFM22_is1_ipkvalid)
{
// read the total length of the packet data
uint32_t len = rfm22_read(RFM22_received_packet_length);
// their must still be data in the RX FIFO we need to get
if (rfm22b_dev->rx_buffer_wr < len)
{
int32_t bytes_to_read = len - rfm22b_dev->rx_buffer_wr;
// Fetch the data from the RX FIFO
rfm22_claimBus();
rfm22_assertCs();
PIOS_SPI_TransferByte(rfm22b_dev->spi_id,RFM22_fifo_access & 0x7F);
rfm22b_dev->rx_buffer_wr += (PIOS_SPI_TransferBlock(rfm22b_dev->spi_id,OUT_FF, (uint8_t *)&rx_buffer[rfm22b_dev->rx_buffer_wr], bytes_to_read, NULL) == 0) ? bytes_to_read : 0;
rfm22_deassertCs();
rfm22_releaseBus();
}
if (rfm22b_dev->rx_buffer_wr != len)
return RFM22B_EVENT_ERROR;
// we have a valid received packet
if (rfm22b_dev->rx_buffer_wr > 0)
{
// Add the rssi and afc to the end of the packet.
rx_buffer[rfm22b_dev->rx_buffer_wr++] = rfm22b_dev->rssi_dBm;
rx_buffer[rfm22b_dev->rx_buffer_wr++] = rfm22b_dev->rx_packet_start_afc_Hz;
// Swap the Rx packets.
if (rfm22b_dev->rx_packet_prev == NULL)
{
rfm22b_dev->rx_packet_prev = rfm22b_dev->rx_packet;
rfm22b_dev->rx_packet = rfm22b_dev->rx_packet_next;
rfm22b_dev->rx_packet_len = rfm22b_dev->rx_buffer_wr;
// Signal the receive thread.
xSemaphoreGive(rfm22b_dev->rxsem);
}
rfm22b_dev->rx_buffer_wr = 0;
}
// Start a new transaction
rfm22b_dev->packet_start_time = 0;
return RFM22B_EVENT_RX_COMPLETE;
}
return RFM22B_EVENT_NUM_EVENTS;
}
// enable a blank tx carrier (for frequency alignment)
void rfm22_setTxCarrierMode(void)
static enum pios_rfm22b_event rfm22_txData(struct pios_rfm22b_dev *rfm22b_dev)
{
if (!initialized)
return;
if (rf_mode != TX_CARRIER_MODE && rf_mode != RX_SCAN_SPECTRUM)
rfm22_setTxMode(TX_CARRIER_MODE);
}
// Read the device status registers
if (!rfm22_readStatus(rfm22b_dev))
{
// Free the tx packet
PHReleaseTXPacket(pios_packet_handler, rfm22b_dev->tx_packet);
rfm22b_dev->tx_packet = 0;
rfm22b_dev->tx_data_wr = rfm22b_dev->tx_data_rd = 0;
return RFM22B_EVENT_ERROR;
}
// enable a psuedo random data tx carrier (for spectrum inspection)
void rfm22_setTxPNMode(void)
{
if (!initialized)
return;
// FIFO under/over flow error. Back to RX mode.
if (rfm22b_dev->device_status & (RFM22_ds_ffunfl | RFM22_ds_ffovfl))
{
// Free the tx packet
PHReleaseTXPacket(pios_packet_handler, rfm22b_dev->tx_packet);
rfm22b_dev->tx_packet = 0;
rfm22b_dev->tx_data_wr = rfm22b_dev->tx_data_rd = 0;
return RFM22B_EVENT_ERROR;
}
if (rf_mode != TX_PN_MODE && rf_mode != RX_SCAN_SPECTRUM)
rfm22_setTxMode(TX_PN_MODE);
// TX FIFO almost empty, it needs filling up
if (rfm22b_dev->int_status1 & RFM22_is1_ixtffaem)
{
// top-up the rf chips TX FIFO buffer
uint8_t *tx_buffer = (uint8_t*)(rfm22b_dev->tx_packet);
uint16_t max_bytes = FIFO_SIZE - TX_FIFO_LO_WATERMARK - 1;
rfm22_claimBus();
rfm22_assertCs();
PIOS_SPI_TransferByte(g_rfm22b_dev->spi_id, RFM22_fifo_access | 0x80);
int bytes_to_write = (rfm22b_dev->tx_data_wr - rfm22b_dev->tx_data_rd);
bytes_to_write = (bytes_to_write > max_bytes) ? max_bytes: bytes_to_write;
PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, &tx_buffer[rfm22b_dev->tx_data_rd], NULL, bytes_to_write, NULL);
rfm22b_dev->tx_data_rd += bytes_to_write;
rfm22_deassertCs();
rfm22_releaseBus();
}
// Packet has been sent
if (rfm22b_dev->int_status1 & RFM22_is1_ipksent)
{
// Free the tx packet
PHReleaseTXPacket(pios_packet_handler, rfm22b_dev->tx_packet);
rfm22b_dev->tx_packet = 0;
rfm22b_dev->tx_data_wr = rfm22b_dev->tx_data_rd = 0;
// Start a new transaction
rfm22b_dev->packet_start_time = 0;
return RFM22B_EVENT_TX_COMPLETE;
}
return RFM22B_EVENT_NUM_EVENTS;
}
// ************************************
@ -1740,104 +1568,45 @@ void rfm22_setTxPNMode(void)
// return the current mode
int8_t rfm22_currentMode(void)
{
return rf_mode;
return g_rfm22b_dev->state;
}
// return true if we are transmitting
bool rfm22_transmitting(void)
{
return (rf_mode == TX_DATA_MODE || rf_mode == TX_STREAM_MODE || rf_mode == TX_CARRIER_MODE || rf_mode == TX_PN_MODE);
return (g_rfm22b_dev->state == RFM22B_STATE_TX_DATA);
}
// return true if the channel is clear to transmit on
bool rfm22_channelIsClear(void)
{
if (!initialized)
// we haven't yet been initialized
return false;
if (rf_mode != RX_WAIT_PREAMBLE_MODE && rf_mode != RX_WAIT_SYNC_MODE)
if (g_rfm22b_dev->state != RFM22B_STATE_RX_MODE && g_rfm22b_dev->state != RFM22B_STATE_WAIT_PREAMBLE && g_rfm22b_dev->state != RFM22B_STATE_WAIT_SYNC)
// we are receiving something or we are transmitting or we are scanning the spectrum
return false;
return true;
}
// return true if the transmiter is ready for use
bool rfm22_txReady(void)
{
if (!initialized)
// we haven't yet been initialized
return false;
return (tx_data_rd == 0 && tx_data_wr == 0 && rf_mode != TX_DATA_MODE &&
rf_mode != TX_STREAM_MODE && rf_mode != TX_CARRIER_MODE && rf_mode != TX_PN_MODE &&
rf_mode != RX_SCAN_SPECTRUM);
}
// ************************************
// set/get the frequency calibration value
void rfm22_setFreqCalibration(uint8_t value)
{
osc_load_cap = value;
if (!initialized || power_on_reset)
return; // we haven't yet been initialized
uint8_t prev_rf_mode = rf_mode;
if (rf_mode == TX_CARRIER_MODE || rf_mode == TX_PN_MODE)
{
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
tx_data_rd = tx_data_wr = 0;
}
exec_using_spi = true;
rfm22_write(RFM22_xtal_osc_load_cap, osc_load_cap);
exec_using_spi = false;
if (prev_rf_mode == TX_CARRIER_MODE || prev_rf_mode == TX_PN_MODE)
rfm22_setTxMode(prev_rf_mode);
}
uint8_t rfm22_getFreqCalibration(void)
{
return osc_load_cap;
rfm22_write(RFM22_xtal_osc_load_cap, value);
}
// ************************************
// can be called from an interrupt if you wish
// Initialise this hardware layer module and the rf module
void rfm22_1ms_tick(void)
{ // call this once every ms
if (!initialized) return; // we haven't yet been initialized
if (rf_mode != RX_SCAN_SPECTRUM)
{
if (rfm22_int_timer < 0xffff) rfm22_int_timer++;
}
}
// ************************************
// reset the RF module
int rfm22_resetModule(uint8_t mode, uint32_t min_frequency_hz, uint32_t max_frequency_hz)
static enum pios_rfm22b_event rfm22_init(struct pios_rfm22b_dev *rfm22b_dev)
{
initialized = false;
uint32_t id = rfm22b_dev->deviceID;
uint32_t min_frequency_hz = rfm22b_dev->cfg.minFrequencyHz;
uint32_t max_frequency_hz = rfm22b_dev->cfg.maxFrequencyHz;
uint32_t freq_hop_step_size = 50000;
power_on_reset = false;
// ****************
exec_using_spi = true;
// ****************
// software reset the RF chip .. following procedure according to Si4x3x Errata (rev. B)
rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_swres); // software reset the radio
rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_swres);
// wait 26ms
PIOS_DELAY_WaitmS(26);
@ -1848,18 +1617,18 @@ int rfm22_resetModule(uint8_t mode, uint32_t min_frequency_hz, uint32_t max_freq
PIOS_DELAY_WaitmS(1);
// read the status registers
int_status1 = rfm22_read(RFM22_interrupt_status1);
int_status2 = rfm22_read(RFM22_interrupt_status2);
if (int_status2 & RFM22_is2_ichiprdy) break;
rfm22b_dev->int_status1 = rfm22_read(RFM22_interrupt_status1);
rfm22b_dev->int_status2 = rfm22_read(RFM22_interrupt_status2);
if (rfm22b_dev->int_status2 & RFM22_is2_ichiprdy) break;
}
// ****************
// read status - clears interrupt
device_status = rfm22_read(RFM22_device_status);
int_status1 = rfm22_read(RFM22_interrupt_status1);
int_status2 = rfm22_read(RFM22_interrupt_status2);
ezmac_status = rfm22_read(RFM22_ezmac_status);
rfm22b_dev->device_status = rfm22_read(RFM22_device_status);
rfm22b_dev->int_status1 = rfm22_read(RFM22_interrupt_status1);
rfm22b_dev->int_status2 = rfm22_read(RFM22_interrupt_status2);
rfm22b_dev->ezmac_status = rfm22_read(RFM22_ezmac_status);
// disable all interrupts
rfm22_write(RFM22_interrupt_enable1, 0x00);
@ -1867,54 +1636,25 @@ int rfm22_resetModule(uint8_t mode, uint32_t min_frequency_hz, uint32_t max_freq
// ****************
exec_using_spi = false;
rfm22b_dev->device_status = rfm22b_dev->int_status1 = rfm22b_dev->int_status2 = rfm22b_dev->ezmac_status = 0;
// ****************
rfm22b_dev->rx_buffer_wr = 0;
rf_mode = mode;
rfm22b_dev->tx_data_rd = rfm22b_dev->tx_data_wr = 0;
device_status = int_status1 = int_status2 = ezmac_status = 0;
rfm22b_dev->frequency_hop_channel = 0;
rssi = 0;
rssi_dBm = -127;
rfm22b_dev->afc_correction_Hz = 0;
rx_buffer_current = 0;
rx_buffer_wr = 0;
rx_packet_rssi_dBm = -127;
rx_packet_afc_Hz = 0;
tx_data_rd = tx_data_wr = 0;
lookup_index = 0;
ss_lookup_index = 0;
rf_bandwidth_used = 0;
ss_rf_bandwidth_used = 0;
rfm22_int_timer = 0;
rfm22_int_time_outs = 0;
prev_rfm22_int_time_outs = 0;
hbsel = 0;
frequency_step_size = 0.0f;
frequency_hop_channel = 0;
afc_correction = 0;
afc_correction_Hz = 0;
temperature_reg = 0;
// set the TX power
tx_power = RFM22_DEFAULT_RF_POWER;
tx_pwr = 0;
rfm22b_dev->packet_start_time = 0;
// ****************
// read the RF chip ID bytes
device_type = rfm22_read(RFM22_DEVICE_TYPE) & RFM22_DT_MASK; // read the device type
device_version = rfm22_read(RFM22_DEVICE_VERSION) & RFM22_DV_MASK; // read the device version
// read the device type
uint8_t device_type = rfm22_read(RFM22_DEVICE_TYPE) & RFM22_DT_MASK;
// read the device version
uint8_t device_version = rfm22_read(RFM22_DEVICE_VERSION) & RFM22_DV_MASK;
#if defined(RFM22_DEBUG)
DEBUG_PRINTF(2, "rf device type: %d\n\r", device_type);
@ -1926,19 +1666,16 @@ int rfm22_resetModule(uint8_t mode, uint32_t min_frequency_hz, uint32_t max_freq
#if defined(RFM22_DEBUG)
DEBUG_PRINTF(2, "rf device type: INCORRECT - should be 0x08\n\r");
#endif
return -1; // incorrect RF module type
// incorrect RF module type
return RFM22B_EVENT_FATAL_ERROR;
}
// if (device_version != RFM22_DEVICE_VERSION_V2) // V2
// return -2; // incorrect RF module version
// if (device_version != RFM22_DEVICE_VERSION_A0) // A0
// return -2; // incorrect RF module version
if (device_version != RFM22_DEVICE_VERSION_B1) // B1
if (device_version != RFM22_DEVICE_VERSION_B1)
{
#if defined(RFM22_DEBUG)
DEBUG_PRINTF(2, "rf device version: INCORRECT\n\r");
#endif
return -2; // incorrect RF module version
// incorrect RF module version
return RFM22B_EVENT_FATAL_ERROR;
}
// ****************
@ -1959,28 +1696,25 @@ int rfm22_resetModule(uint8_t mode, uint32_t min_frequency_hz, uint32_t max_freq
max_frequency_hz = tmp;
}
lower_carrier_frequency_limit_Hz = min_frequency_hz;
upper_carrier_frequency_limit_Hz = max_frequency_hz;
// ****************
// calibrate our RF module to be exactly on frequency .. different for every module
osc_load_cap = OSC_LOAD_CAP; // default
rfm22_write(RFM22_xtal_osc_load_cap, osc_load_cap);
rfm22_write(RFM22_xtal_osc_load_cap, OSC_LOAD_CAP);
// ****************
// disable Low Duty Cycle Mode
rfm22_write(RFM22_op_and_func_ctrl2, 0x00);
rfm22_write(RFM22_cpu_output_clk, RFM22_coc_1MHz); // 1MHz clock output
// 1MHz clock output
rfm22_write(RFM22_cpu_output_clk, RFM22_coc_1MHz);
rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_xton); // READY mode
// rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon); // TUNE mode
// READY mode
rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_xton);
// choose the 3 GPIO pin functions
rfm22_write(RFM22_io_port_config, RFM22_io_port_default); // GPIO port use default value
if (rfm22b_dev_g->cfg.gpio_direction == GPIO0_TX_GPIO1_RX) {
// GPIO port use default value
rfm22_write(RFM22_io_port_config, RFM22_io_port_default);
if (rfm22b_dev->cfg.gpio_direction == GPIO0_TX_GPIO1_RX) {
rfm22_write(RFM22_gpio0_config, RFM22_gpio0_config_drv3 | RFM22_gpio0_config_txstate); // GPIO0 = TX State (to control RF Switch)
rfm22_write(RFM22_gpio1_config, RFM22_gpio1_config_drv3 | RFM22_gpio1_config_rxstate); // GPIO1 = RX State (to control RF Switch)
} else {
@ -1991,22 +1725,10 @@ int rfm22_resetModule(uint8_t mode, uint32_t min_frequency_hz, uint32_t max_freq
// ****************
return 0; // OK
}
// ************************************
// Initialise this hardware layer module and the rf module
int rfm22_init_normal(uint32_t id, uint32_t min_frequency_hz, uint32_t max_frequency_hz, uint32_t freq_hop_step_size)
{
int res = rfm22_resetModule(RX_WAIT_PREAMBLE_MODE, min_frequency_hz, max_frequency_hz);
if (res < 0)
return res;
// initialize the frequency hopping step size
freq_hop_step_size /= 10000; // in 10kHz increments
if (freq_hop_step_size > 255) freq_hop_step_size = 255;
frequency_hop_step_size_reg = freq_hop_step_size;
rfm22b_dev->frequency_hop_step_size_reg = freq_hop_step_size;
// set the RF datarate
rfm22_setDatarate(RFM22_DEFAULT_RF_DATARATE, true);
@ -2018,7 +1740,7 @@ int rfm22_init_normal(uint32_t id, uint32_t min_frequency_hz, uint32_t max_frequ
// setup to read the internal temperature sensor
// ADC used to sample the temperature sensor
adc_config = RFM22_ac_adcsel_temp_sensor | RFM22_ac_adcref_bg;
uint8_t adc_config = RFM22_ac_adcsel_temp_sensor | RFM22_ac_adcref_bg;
rfm22_write(RFM22_adc_config, adc_config);
// adc offset
@ -2079,7 +1801,7 @@ int rfm22_init_normal(uint32_t id, uint32_t min_frequency_hz, uint32_t max_frequ
((TX_PREAMBLE_NIBBLES >> 8) & 0x01));
#endif
// sync word
// sync word
rfm22_write(RFM22_sync_word3, SYNC_BYTE_1);
rfm22_write(RFM22_sync_word2, SYNC_BYTE_2);
rfm22_write(RFM22_sync_word1, SYNC_BYTE_3);
@ -2088,14 +1810,13 @@ int rfm22_init_normal(uint32_t id, uint32_t min_frequency_hz, uint32_t max_frequ
rfm22_write(RFM22_agc_override1, RFM22_agc_ovr1_agcen);
// set frequency hopping channel step size (multiples of 10kHz)
rfm22_write(RFM22_frequency_hopping_step_size, frequency_hop_step_size_reg);
rfm22_write(RFM22_frequency_hopping_step_size, rfm22b_dev->frequency_hop_step_size_reg);
// set our nominal carrier frequency
rfm22_setNominalCarrierFrequency((min_frequency_hz + max_frequency_hz) / 2);
rfm22_setNominalCarrierFrequency(rfm22b_dev, (min_frequency_hz + max_frequency_hz) / 2);
// set the tx power
rfm22_write(RFM22_tx_power, RFM22_tx_pwr_papeaken | RFM22_tx_pwr_papeaklvl_0 |
RFM22_tx_pwr_lna_sw | tx_power);
rfm22_write(RFM22_tx_power, RFM22_tx_pwr_papeaken | RFM22_tx_pwr_papeaklvl_0 | RFM22_tx_pwr_lna_sw | rfm22b_dev->tx_power);
// TX FIFO Almost Full Threshold (0 - 63)
rfm22_write(RFM22_tx_fifo_control1, TX_FIFO_HI_WATERMARK);
@ -2106,11 +1827,59 @@ int rfm22_init_normal(uint32_t id, uint32_t min_frequency_hz, uint32_t max_frequ
// RX FIFO Almost Full Threshold (0 - 63)
rfm22_write(RFM22_rx_fifo_control, RX_FIFO_HI_WATERMARK);
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
rfm22_setFreqCalibration(rfm22b_dev->cfg.RFXtalCap);
rfm22_setNominalCarrierFrequency(rfm22b_dev, rfm22b_dev->cfg.frequencyHz);
rfm22_setDatarate(rfm22b_dev->cfg.maxRFBandwidth, true);
initialized = true;
return RFM22B_EVENT_INITIALIZED;
}
return 0; // ok
static enum pios_rfm22b_event rfm22_timeout(struct pios_rfm22b_dev *rfm22b_dev)
{
rfm22b_dev->resets++;
rfm22b_dev->packet_start_time = 0;
return RFM22B_EVENT_TX_START;
}
static enum pios_rfm22b_event rfm22_error(struct pios_rfm22b_dev *rfm22b_dev)
{
rfm22b_dev->resets++;
rfm22b_dev->packet_start_time = 0;
return RFM22B_EVENT_INITIALIZE;
}
/**
* A fatal error has occured in the state machine.
* this should not happen.
* \parem [in] rfm22b_dev The device structure
* \return enum pios_rfm22b_event The next event to inject
*/
static enum pios_rfm22b_event rfm22_fatal_error(struct pios_rfm22b_dev *rfm22b_dev)
{
// RF module error .. flash the LED's
for(unsigned int j = 0; j < 16; j++)
{
USB_LED_ON;
LINK_LED_ON;
RX_LED_OFF;
TX_LED_OFF;
PIOS_DELAY_WaitmS(200);
USB_LED_OFF;
LINK_LED_OFF;
RX_LED_ON;
TX_LED_ON;
PIOS_DELAY_WaitmS(200);
}
PIOS_DELAY_WaitmS(1000);
PIOS_Assert(0);
return RFM22B_EVENT_FATAL_ERROR;
}
// ************************************

View File

@ -31,6 +31,8 @@
#ifndef PIOS_RFM22B_H
#define PIOS_RFM22B_H
#include <packet_handler.h>
enum gpio_direction {GPIO0_TX_GPIO1_RX, GPIO0_RX_GPIO1_TX};
/* Global Types */
@ -49,10 +51,11 @@ struct pios_rfm22b_cfg {
/* Public Functions */
extern int32_t PIOS_RFM22B_Init(uint32_t *rfb22b_id, uint32_t spi_id, uint32_t slave_num, const struct pios_rfm22b_cfg *cfg);
extern void PIOS_RFM22B_SetTxPower(uint32_t rfm22b_id, uint8_t tx_pwr);
extern uint32_t PIOS_RFM22B_DeviceID(uint32_t rfb22b_id);
extern int8_t PIOS_RFM22B_RSSI(uint32_t rfm22b_id);
extern int16_t PIOS_RFM22B_Resets(uint32_t rfm22b_id);
extern void PIOS_RFM22_processPendingISR(uint32_t wait_ms);
extern bool PIOS_RFM22B_Send_Packet(uint32_t rfm22b_id, PHPacketHandle p, uint32_t max_delay);
extern uint32_t PIOS_RFM22B_Receive_Packet(uint32_t rfm22b_id, PHPacketHandle *p, uint32_t max_delay);
#endif /* PIOS_RFM22B_H */

View File

@ -50,17 +50,6 @@ extern const struct pios_com_driver pios_rfm22b_com_driver;
// ************************************
enum { RX_SCAN_SPECTRUM = 0,
RX_WAIT_PREAMBLE_MODE,
RX_WAIT_SYNC_MODE,
RX_DATA_MODE,
TX_DATA_MODE,
TX_STREAM_MODE,
TX_CARRIER_MODE,
TX_PN_MODE};
// ************************************
#define BIT0 (1u << 0)
#define BIT1 (1u << 1)
#define BIT2 (1u << 2)
@ -593,63 +582,6 @@ typedef bool ( *t_rfm22_RxDataCallback ) (void *data, uint8_t len);
void PIOS_RFM22_EXT_Int(void);
uint32_t rfm22_minFrequency(void);
uint32_t rfm22_maxFrequency(void);
void rfm22_setNominalCarrierFrequency(uint32_t frequency_hz);
uint32_t rfm22_getNominalCarrierFrequency(void);
float rfm22_getFrequencyStepSize(void);
void rfm22_setFreqHopChannel(uint8_t channel);
uint8_t rfm22_freqHopChannel(void);
uint32_t rfm22_freqHopSize(void);
void rfm22_setDatarate(uint32_t datarate_bps, bool data_whitening);
uint32_t rfm22_getDatarate(void);
void rfm22_setRxMode(uint8_t mode, bool multi_packet_mode);
int8_t rfm22_getRSSI(void);
int8_t rfm22_receivedRSSI(void);
int32_t rfm22_receivedAFCHz(void);
uint16_t rfm22_receivedLength(void);
uint8_t * rfm22_receivedPointer(void);
void rfm22_receivedDone(void);
int32_t rfm22_sendData(void *data, uint16_t length, bool send_immediately);
void rfm22_setFreqCalibration(uint8_t value);
uint8_t rfm22_getFreqCalibration(void);
void rfm22_setTxPower(uint8_t tx_pwr);
uint8_t rfm22_getTxPower(void);
void rfm22_setTxStream(void); // TEST ONLY
void rfm22_setTxNormal(void);
void rfm22_setTxCarrierMode(void);
void rfm22_setTxPNMode(void);
int8_t rfm22_currentMode(void);
bool rfm22_transmitting(void);
bool rfm22_channelIsClear(void);
bool rfm22_txReady(void);
void rfm22_1ms_tick(void);
void rfm22_TxDataByte_SetCallback(t_rfm22_TxDataByteCallback new_function);
void rfm22_RxData_SetCallback(t_rfm22_RxDataCallback new_function);
int rfm22_init_scan_spectrum(uint32_t min_frequency_hz, uint32_t max_frequency_hz);
int rfm22_init_tx_stream(uint32_t min_frequency_hz, uint32_t max_frequency_hz);
int rfm22_init_rx_stream(uint32_t min_frequency_hz, uint32_t max_frequency_hz);
int rfm22_init_normal(uint32_t id, uint32_t min_frequency_hz, uint32_t max_frequency_hz, uint32_t freq_hop_step_size);
#endif /* PIOS_RFM22B_PRIV_H */
/**