1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-11-29 07:24:13 +01:00

OP-156 AHRS_ADC: Make the ADC system use a callback to better separate ADC code

from the AHRS code (which will facilitate code integration with new INS) and
also will help set up a fifo queue for the downsampled data to allow gyro data
output from AHRS faster than EKF output.  Also decreased ADC interrupt priority
so the SPI comms don't drop out.

git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@2190 ebee16cc-31ac-478f-84a7-5cbb03baadba
This commit is contained in:
peabody124 2010-12-04 17:34:27 +00:00 committed by peabody124
parent 6f1e7b4e41
commit 45e3ed27a7
4 changed files with 136 additions and 124 deletions

View File

@ -39,7 +39,6 @@
#include "insgps.h"
#include "CoordinateConversions.h"
#define MAX_OVERSAMPLING 50 /* cannot have more than 50 samples */
#define INSGPS_GPS_TIMEOUT 2 /* 2 seconds triggers reinit of position */
#define INSGPS_GPS_MINSAT 6 /* 2 seconds triggers reinit of position */
#define INSGPS_GPS_MINPDOP 3.5 /* minimum PDOP for postition updates */
@ -59,7 +58,7 @@ void ins_indoor_update();
void simple_update();
/* Data accessors */
void downsample_data(void);
void adc_callback(float *);
void process_mag_data();
void reset_values();
void calibrate_sensors(void);
@ -80,8 +79,6 @@ void settings_callback(AhrsObjHandle obj);
* @{
* Public data. Used by both EKF and the sender
*/
//! Filter coefficients used in decimation. Limited order so filter can't run between samples
int16_t fir_coeffs[MAX_OVERSAMPLING];
//! Contains the data from the mag sensor chip
struct mag_sensor mag_data;
@ -107,6 +104,12 @@ static uint8_t adc_oversampling = 30;
//! Offset correction of barometric alt, to match gps data
static float baro_offset = 0;
typedef enum { AHRS_IDLE, AHRS_DATA_READY, AHRS_PROCESSING } states;
volatile states ahrs_state;
volatile int32_t ekf_too_slow;
volatile int32_t total_conversion_blocks;
/**
* @}
*/
@ -389,7 +392,7 @@ void print_ekf_binary() {}
*/
void print_ahrs_raw()
{
int result;
/*int result;
static int previous_conversion = 0;
uint8_t framing[16] =
@ -420,7 +423,7 @@ void print_ahrs_raw()
PIOS_LED_Off(LED1);
else {
PIOS_LED_On(LED1);
}
} */
}
/**
@ -451,6 +454,7 @@ int main()
/* ADC system */
AHRS_ADC_Config(adc_oversampling);
AHRS_ADC_SetCallback(adc_callback);
/* Setup the Accelerometer FS (Full-Scale) GPIO */
PIOS_GPIO_Enable(0);
@ -472,12 +476,6 @@ int main()
ahrs_state = AHRS_IDLE;
while(!AhrsLinkReady()) {
AhrsPoll();
while(ahrs_state != AHRS_DATA_READY) ;
ahrs_state = AHRS_PROCESSING;
downsample_data();
ahrs_state = AHRS_IDLE;
if((total_conversion_blocks % 10) == 0)
PIOS_LED_Toggle(LED1);
}
/* we didn't connect the callbacks before because we have to wait
for all data to be up to date before doing anything*/
@ -490,12 +488,6 @@ for all data to be up to date before doing anything*/
calibration_callback(AHRSCalibrationHandle()); //force an update
/* Use simple averaging filter for now */
for (int i = 0; i < adc_oversampling; i++)
fir_coeffs[i] = 1;
fir_coeffs[adc_oversampling] = adc_oversampling;
#ifdef DUMP_RAW
while (1) {
AhrsPoll();
@ -543,7 +535,6 @@ for all data to be up to date before doing anything*/
idle_counts = counter_val - last_counter_idle_start;
last_counter_idle_end = counter_val;
downsample_data();
process_mag_data();
print_ekf_binary();
@ -584,68 +575,33 @@ for all data to be up to date before doing anything*/
* The accel_data values are converted into a coordinate system where X is forwards along
* the fuselage, Y is along right the wing, and Z is down.
*/
void downsample_data()
void adc_callback(float * downsampled_data)
{
uint16_t i;
// Accel data is (y,x,z) in first third and fifth byte. Convert to m/s
accel_data.filtered.y = (downsampled_data[0] * accel_data.calibration.scale[1]) + accel_data.calibration.bias[1];
accel_data.filtered.x = (downsampled_data[2] * accel_data.calibration.scale[0]) + accel_data.calibration.bias[0];
accel_data.filtered.z = (downsampled_data[4] * accel_data.calibration.scale[2]) + accel_data.calibration.bias[2];
// Get the Y data. Third byte in. Convert to m/s
accel_data.filtered.y = 0;
for (i = 0; i < adc_oversampling; i++)
accel_data.filtered.y += valid_data_buffer[0 + i * PIOS_ADC_NUM_PINS] * fir_coeffs[i];
accel_data.filtered.y /= (float) fir_coeffs[adc_oversampling];
accel_data.filtered.y = (accel_data.filtered.y * accel_data.calibration.scale[1]) + accel_data.calibration.bias[1];
// Get the X data which projects forward/backwards. Fifth byte in. Convert to m/s
accel_data.filtered.x = 0;
for (i = 0; i < adc_oversampling; i++)
accel_data.filtered.x += valid_data_buffer[2 + i * PIOS_ADC_NUM_PINS] * fir_coeffs[i];
accel_data.filtered.x /= (float) fir_coeffs[adc_oversampling];
accel_data.filtered.x = (accel_data.filtered.x * accel_data.calibration.scale[0]) + accel_data.calibration.bias[0];
// Get the Z data. Third byte in. Convert to m/s
accel_data.filtered.z = 0;
for (i = 0; i < adc_oversampling; i++)
accel_data.filtered.z += valid_data_buffer[4 + i * PIOS_ADC_NUM_PINS] * fir_coeffs[i];
accel_data.filtered.z /= (float) fir_coeffs[adc_oversampling];
accel_data.filtered.z = (accel_data.filtered.z * accel_data.calibration.scale[2]) + accel_data.calibration.bias[2];
// Get the X gyro data. Seventh byte in. Convert to deg/s.
gyro_data.filtered.x = 0;
for (i = 0; i < adc_oversampling; i++)
gyro_data.filtered.x += valid_data_buffer[1 + i * PIOS_ADC_NUM_PINS] * fir_coeffs[i];
gyro_data.filtered.x /= fir_coeffs[adc_oversampling];
gyro_data.filtered.x = (gyro_data.filtered.x * gyro_data.calibration.scale[0]) + gyro_data.calibration.bias[0];
// Get the Y gyro data. Second byte in. Convert to deg/s.
gyro_data.filtered.y = 0;
for (i = 0; i < adc_oversampling; i++)
gyro_data.filtered.y += valid_data_buffer[3 + i * PIOS_ADC_NUM_PINS] * fir_coeffs[i];
gyro_data.filtered.y /= fir_coeffs[adc_oversampling];
gyro_data.filtered.y = (gyro_data.filtered.y * gyro_data.calibration.scale[1]) + gyro_data.calibration.bias[1];
// Get the Z gyro data. Fifth byte in. Convert to deg/s.
gyro_data.filtered.z = 0;
for (i = 0; i < adc_oversampling; i++)
gyro_data.filtered.z += valid_data_buffer[5 + i * PIOS_ADC_NUM_PINS] * fir_coeffs[i];
gyro_data.filtered.z /= fir_coeffs[adc_oversampling];
gyro_data.filtered.z = (gyro_data.filtered.z * gyro_data.calibration.scale[2]) + gyro_data.calibration.bias[2];
// Gyro data is (x,y,z) in second, fifth and seventh byte. Convert to rad/s
gyro_data.filtered.x = (downsampled_data[1] * gyro_data.calibration.scale[0]) + gyro_data.calibration.bias[0];
gyro_data.filtered.y = (downsampled_data[3] * gyro_data.calibration.scale[1]) + gyro_data.calibration.bias[1];
gyro_data.filtered.z = (downsampled_data[5] * gyro_data.calibration.scale[2]) + gyro_data.calibration.bias[2];
AttitudeRawData raw;
raw.gyros[0] = valid_data_buffer[1];
raw.gyros[1] = valid_data_buffer[3];
raw.gyros[2] = valid_data_buffer[5];
raw.gyrotemp[0] = valid_data_buffer[6];
raw.gyrotemp[1] = valid_data_buffer[7];
raw.accels[0] = downsampled_data[2];
raw.accels[1] = downsampled_data[0];
raw.accels[2] = downsampled_data[4];
raw.gyros[0] = downsampled_data[1];
raw.gyros[1] = downsampled_data[3];
raw.gyros[2] = downsampled_data[5];
raw.gyrotemp[0] = downsampled_data[6];
raw.gyrotemp[1] = downsampled_data[7];
raw.gyros_filtered[0] = gyro_data.filtered.x * 180 / M_PI;
raw.gyros_filtered[1] = gyro_data.filtered.y * 180 / M_PI;
raw.gyros_filtered[2] = gyro_data.filtered.z * 180 / M_PI;
raw.accels[0] = valid_data_buffer[2];
raw.accels[1] = valid_data_buffer[0];
raw.accels[2] = valid_data_buffer[4];
raw.accels_filtered[0] = accel_data.filtered.x;
raw.accels_filtered[1] = accel_data.filtered.y;
raw.accels_filtered[2] = accel_data.filtered.z;
@ -666,6 +622,14 @@ void downsample_data()
}
AttitudeRawSet(&raw);
if (ahrs_state == AHRS_IDLE) {
ahrs_state = AHRS_DATA_READY;
} else {
// Track how many times an interrupt occurred before EKF finished processing
ekf_too_slow++;
}
total_conversion_blocks++;
}
#if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C)
@ -729,7 +693,7 @@ void calibrate_sensors()
for (i = 0, j = 0; i < NBIAS; i++) {
while (ahrs_state != AHRS_DATA_READY) ;
ahrs_state = AHRS_PROCESSING;
downsample_data();
gyro_bias[0] += gyro_data.filtered.x / NBIAS;
gyro_bias[1] += gyro_data.filtered.y / NBIAS;
gyro_bias[2] += gyro_data.filtered.z / NBIAS;
@ -769,7 +733,7 @@ void calibrate_sensors()
for (i = 0, j = 0; j < NVAR; j++) {
while (ahrs_state != AHRS_DATA_READY) ;
ahrs_state = AHRS_PROCESSING;
downsample_data();
gyro_data.calibration.variance[0] += pow(gyro_data.filtered.x-gyro_bias[0],2) / NVAR;
gyro_data.calibration.variance[1] += pow(gyro_data.filtered.y-gyro_bias[1],2) / NVAR;
gyro_data.calibration.variance[2] += pow(gyro_data.filtered.z-gyro_bias[2],2) / NVAR;
@ -989,12 +953,6 @@ void settings_callback(AhrsObjHandle obj)
AHRSSettingsSet(&settings);
}
AHRS_ADC_Config(adc_oversampling);
/* Use simple averaging filter for now */
for (int i = 0; i < adc_oversampling; i++)
fir_coeffs[i] = 1;
fir_coeffs[adc_oversampling] = adc_oversampling;
}
}

View File

@ -39,12 +39,18 @@ void DMA1_Channel1_IRQHandler()
//! Where the raw data is stored
volatile int16_t raw_data_buffer[MAX_SAMPLES]; // Double buffer that DMA just used
//! Swapped by interrupt handler to achieve double buffering
//! Various configuration settings
struct {
volatile int16_t *valid_data_buffer;
volatile int32_t total_conversion_blocks;
volatile int32_t ekf_too_slow;
volatile uint8_t adc_oversample;
volatile states ahrs_state;
int16_t fir_coeffs[MAX_OVERSAMPLING];
} adc_config;
//! Filter coefficients used in decimation. Limited order so filter can't run between samples
float downsampled_buffer[PIOS_ADC_NUM_PINS];
static ADCCallback callback_function = (ADCCallback) NULL;
/* Local Variables */
static GPIO_TypeDef *ADC_GPIO_PORT[PIOS_ADC_NUM_PINS] = PIOS_ADC_PORTS;
@ -69,6 +75,8 @@ uint8_t AHRS_ADC_Config(int32_t adc_oversample)
int32_t i;
adc_config.adc_oversample = adc_oversample;
ADC_DeInit(ADC1);
ADC_DeInit(ADC2);
@ -185,9 +193,66 @@ uint8_t AHRS_ADC_Config(int32_t adc_oversample)
/* Finally start initial conversion */
ADC_SoftwareStartConvCmd(ADC1, ENABLE);
/* Use simple averaging filter for now */
for (int i = 0; i < adc_oversample; i++)
adc_config.fir_coeffs[i] = 1;
adc_config.fir_coeffs[adc_oversample] = adc_oversample;
return 1;
}
/**
* @brief Set a callback function that is executed whenever
* the ADC double buffer swaps
*/
void AHRS_ADC_SetCallback(ADCCallback new_function)
{
callback_function = new_function;
}
/**
* @brief Return the address of the downsampled data buffer
*/
float * AHRS_ADC_GetBuffer()
{
return downsampled_buffer;
}
/**
* @brief Set the fir coefficients. Takes as many samples as the
* current filter order plus one (normalization)
*
* @param new_filter Array of adc_oversampling floats plus one for the
* filter coefficients
*/
void AHRS_ADC_SetFIRCoefficients(float * new_filter)
{
// Less than or equal to get normalization constant
for(int i = 0; i <= adc_config.adc_oversample; i++)
adc_config.fir_coeffs[i] = new_filter[i];
}
/**
* @brief Downsample the data for each of the channels then call
* callback function if installed
*/
void AHRS_ADC_downsample_data()
{
uint16_t chan;
uint16_t sample;
for (chan = 0; chan < PIOS_ADC_NUM_CHANNELS; chan++) {
downsampled_buffer[chan] = 0;
for (sample = 0; sample < adc_config.adc_oversample; sample++) {
downsampled_buffer[chan] += adc_config.valid_data_buffer[chan + sample * PIOS_ADC_NUM_CHANNELS] * adc_config.fir_coeffs[sample];
}
downsampled_buffer[chan] /= (float) adc_config.fir_coeffs[adc_config.adc_oversample];
}
if(callback_function != NULL)
callback_function(downsampled_buffer);
}
/**
* @brief Interrupt for half and full buffer transfer
*
@ -199,32 +264,22 @@ uint8_t AHRS_ADC_Config(int32_t adc_oversample)
*/
void AHRS_ADC_DMA_Handler(void)
{
if (ahrs_state == AHRS_IDLE) {
// Ideally this would have a mutex, but I think we can avoid it (and don't have RTOS features)
if (DMA_GetFlagStatus(DMA1_IT_TC1)) { // whole double buffer filled
valid_data_buffer =
adc_config.valid_data_buffer =
&raw_data_buffer[1 * PIOS_ADC_NUM_CHANNELS *
adc_oversample];
adc_config.adc_oversample];
DMA_ClearFlag(DMA1_IT_TC1);
AHRS_ADC_downsample_data();
}
else if (DMA_GetFlagStatus(DMA1_IT_HT1)) {
valid_data_buffer =
adc_config.valid_data_buffer =
&raw_data_buffer[0 * PIOS_ADC_NUM_CHANNELS *
adc_oversample];
adc_config.adc_oversample];
DMA_ClearFlag(DMA1_IT_HT1);
AHRS_ADC_downsample_data();
}
else {
// This should not happen, probably due to transfer errors
DMA_ClearFlag(DMA1_FLAG_GL1);
}
ahrs_state = AHRS_DATA_READY;
} else {
// Track how many times an interrupt occurred before EKF finished processing
ekf_too_slow++;
DMA_ClearFlag(DMA1_IT_GL1);
}
total_conversion_blocks++;
}

View File

@ -37,17 +37,16 @@
#include <pios.h>
// Maximum of 50 oversampled points
#define MAX_SAMPLES (8*50*2)
#define MAX_OVERSAMPLING 50 /* cannot have more than 50 samples */
#define MAX_SAMPLES (PIOS_ADC_NUM_CHANNELS*MAX_OVERSAMPLING*2)
typedef void (*ADCCallback) (float * data);
// Public API:
uint8_t AHRS_ADC_Config(int32_t adc_oversample);
void AHRS_ADC_DMA_Handler(void);
typedef enum { AHRS_IDLE, AHRS_DATA_READY, AHRS_PROCESSING } states;
extern volatile states ahrs_state;
extern volatile int16_t *valid_data_buffer;
//! Counts how many times the EKF wasn't idle when DMA handler called
extern volatile int32_t total_conversion_blocks;
//! Total number of data blocks converted
extern volatile int32_t ekf_too_slow;
void AHRS_ADC_SetCallback(ADCCallback);
void AHRS_ADC_SetFIRCoefficients(float * new_filter);
float * AHRS_ADC_GetBuffer();
#endif

View File

@ -222,7 +222,7 @@ TIM8 | | | |
/* With an ADCCLK = 14 MHz and a sampling time of 239.5 cycles: */
/* Tconv = 239.5 + 12.5 = 252 cycles = 18<31>s */
/* (1 / (ADCCLK / CYCLES)) = Sample Time (<28>S) */
#define PIOS_ADC_IRQ_PRIO PIOS_IRQ_PRIO_HIGH
#define PIOS_ADC_IRQ_PRIO PIOS_IRQ_PRIO_LOW
// Currently analog acquistion hard coded at 480 Hz
// PCKL2 = HCLK / 16