Every board has at least one LED (HEARTBEAT). Not all
users of LEDs need to be directly aware of which LED
configuration to choose when there may be more than one
possible configuration.
Hide the details of the differences between LEDs used in the
different HW revs for CC. This will allow generic code to
run on CC and CC3D without being exposed to the details of
the different pins used for the LEDs.
Use new PIOS_USB_UTIL_AsciiToUtf8() function to compose the
USB serial number rather than repeating that code for each
board.
All boards now append "+FW" or "+BL" to their USB serial numbers
to allow the descriptors to differ between FW and BL images.
Some versions of Windows will ignore the USB device serial number
if the string is not delivered with LANGID = English US 0x0409.
This is true regardless of the configured locale of the machine.
The serial number string descriptor was incorrectly null
terminated. The standard clearly states that there should
not be a null terminator.
Use new #defines to ensure that our strings are sized
properly.
BL images now always use hid-only.
FW images can use hid-only or hid+vcp but this is selected
ONLY at compile time based on whether PIOS_INCLUDE_USB_CDC
is defined.
CC uses HID+VCP by default now.
This makes the BL and FW images distinct devices with unique
serial numbers.
Windows (and maybe Mac) remembers the device descriptors and
the associated drivers based on this serial number. Providing
unique serial numbers for the BL and FW images allows us to
provide different sets of descriptors for the BL and FW images
without confusing these OSes.
BL version number is now also bumped to reflect the new
serial number generation algorithm.
Now that we have a USB descriptor for HID+VCP that works
on Ubuntu 11.10, MacOS 10.7.3, Win7-SP1-32bit,
WinXP-SP3-32bit, Win7-SP1-64bit.
VCP is known to not work on WinXP without service pack 3.
Removes hard-coding of JTAG interface config in the
<board>_program make macros.
This allows the use of STLINKv2 for F4 boards while
continuing to use the FOSS JTAG revB on F1 boards.
for sensing and then load different config for CC and CC3D. Updated the
bootloader as well. Also changed the PIOS_USB_CheckAvailability function to
only return the sense signal and not the transfer_possible flag as this is not
set in time for the bootloader on CC3D for some reason.
Board specific HW configuration is now collected in a single .c
file for each board. This HW configuration is #include'd into
the FW, BL and BU builds for each board.
These new .c files are found in:
flight/board_hw_defs/<board_name>/board_hw_defs.c
Parts of this information were previously duplicated between
the BL and FW builds. This commit cleans up the duplication.
Using a #include on a .c file is a bit ugly but it allows us
to ensure that all of the symbols in the board_hw_defs.c file
are *ONLY* used in the PIOS_Board_Init() function for each
software build.
The main purpose of this new COM implementation is that it is
much simpler, and requires less code space. This takes a bit
of the pressure off of the CC bootloader which was right at
the limit of available code space in the bootloader partition.
This is not intended to ever be used by the application.
This driver also formalizes the assumptions in the bootloader's
usage of the COM layer. All messages are assumed to arrive
in atomic chunks from the HID layer.
This can be used by the GCS firmware uploader widget to boot
the firmware with a (temporarily) defaulted hwsettings uavo
so that a user can easily recover from a bad/incompatible
hwsettings configuration without wiping all settings.
This uses the same mechanism that the BootFault auto-recovery
code already uses in the CC firmware. The auto-recovery is
triggered by setting the failed-boot counter to a maximum
value forcing recovery on the next FW init.
The PIOS_COM_ReceiveBufferUsed() function call is no longer
necessary since the same semantics can be achieved using calls
to PIOS_COM_ReceiveBuffer().
Summary of changes:
* USB CDC and HID drivers are completely split apart.
* This will allow different max buffer sizes for HID and CDC.
* USB descriptors have been overhauled:
* Proper structs/macros/enums declared for USB (see pios_usb_defs.h)
* Two common descriptor definitions. One for HID+CDC another for HID only.
See pios_usb_desc_{hid_cdc,hid_only}.c for details.
* Long standing bugs in OP USB descriptors became much more obvious with the
new struct definitions.
* Board specific USB initialization is now in pios_usb_board_data.h in each build target.
* Definition of USB descriptors is now entirely indpendent of STM32 libs.
Glue into STM32 libs is provided by pios_usbhook.c.
* Removed a lot of stale/irrelevant USB #defines throughout the tree.
* Improved naming consistency throughout USB code:
* PIOS_USB_HID_* now refers to the HID endpoint code.
* PIOS_USB_CDC_* now refers to the CDC endpoint code.
* PIOS_USB_* now refers to the low-level USB code.
* PIOS_USB_BOARD_* now refers to board-specific USB data
* PIOS_USBHOOK_* is glue between PIOS and STM32 USB libs.
* struct usb_* and enum usb_* and USB_* and HID_* are all types from the USB spec.
* Shrunk the buffer size on the CDC call mgmt endpoint to save some RAM.
* Made a few more USB related variables static to save some RAM.
Reduced scope of many variables since they were being
exposed unnecessarily.
Renamed pios_usb_hid_prop code to pios_usbhook to reflect
the fact that it implements all of the callout functions
that are hooked into the stm32 usb library.
The small bootloaders (CC and PipX) are out of flash space
so their stopwatch implementation has been swapped out for
one based on the DELAY clock that takes about 500 bytes less
of code space.
Identical functionality is preserved.
This allows the spektrum and sbus receiver drivers to bind
directly to the usart layer using a properly exported API
rather than overriding the interrupt handler.
Bytes are now pushed directly from the usart layer into the
com layer without any buffering. The com layer performs all
of the buffering.
A further benefit from this approach is that we can put all
blocking/non-blocking behaviour into the COM layer and not
in the underlying drivers.
Misc related changes:
- Remove obsolete .handler field from irq configs
- Adapt all users of PIOS_COM_* functions to new API
- Fixup callers of PIOS_USB_HID_Init()
Macros for JTAG program and wipe for each target are now
provided in firmware-defs.mk.
The _wipe target for each firmware and bootloader image will
erase either the bootloader (bl_*_wipe) or firmware (fw_*_wipe)
bank.
Now that every bootloader build has a board info blob,
make all fw and bl images use it.
The following MACROS are removed:
BOARD_TYPE, BOARD_REVISION, BOOTLOADER_VERSION,
START_OF_USER_CODE, HW_TYPE
These values are now ONLY available from the bootloader
flash via the pios_board_info_blob symbol. These values
must not be #defined or otherwise hard-coded into the
firmware in any way. The bootloader flash is the only
valid source for this information.
NOTE: To ensure that we have an upgrade path from an
old bootloader (without board_info_blob) to a
new bootloader (with board_info_blob), it is
essential that the bu_* targets do not depend
on (or validate) the board_info_blob being present
in the bootloader flash.
- New macros for fw, bl and bu rules in top-level make
- Per-board info factored into make/board/*/board-info.mk
- Per-board info now shared btw. fw, bl and blupd for each board
- BOARD_TYPE, BOARD_REVISION, BOOTLOADER_VERSION, HW_TYPE
- MCU, CHIP, BOARD, MODEL, MODEL_SUFFIX
- START_OF_BL_CODE, START_OF_FW_CODE
- blupd_* goals renamed to bu_*
- all_blupd goal renamed to all_bu
- firmware goals renamed to fw_*, board name goals are preserved
- bu_*_program now writes updater to correct address for all boards
- BL updater firmware builds now produce .opf format including
version info blob.
- BL updater firmware name now includes board name.
- INS makefile brought up to date w.r.t. linker scripts
The board info blob is stored in the last 128 bytes of the
bootloader's flash bank. You can access this data from the
application firmware like this:
#include <pios_board_info.h>
if (pios_board_info_blob.magic == PIOS_BOARD_INFO_BLOB_MAGIC) {
/* Check some other fields */
}
DO NOT link pios_board_info.c into your application firmware.
Only bootloaders should provide the content for the board info
structure. The application firmware is only a user of the data.