1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-01-10 20:52:11 +01:00

255 lines
8.3 KiB
C++

/*
******************************************************************************
*
* @file vtolbrakefsm.cpp
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2015.
* @brief Vtol brake finate state machine to regulate behaviour of the
* brake controller.
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
extern "C" {
#include <openpilot.h>
#include <math.h>
#include <pid.h>
#include <CoordinateConversions.h>
#include <sin_lookup.h>
#include <pathdesired.h>
#include <paths.h>
#include "plans.h"
#include <sanitycheck.h>
#include <vtolpathfollowersettings.h>
#include <flightstatus.h>
#include <flightmodesettings.h>
#include <pathstatus.h>
#include <positionstate.h>
#include <velocitystate.h>
#include <velocitydesired.h>
#include <stabilizationdesired.h>
#include <attitudestate.h>
#include <manualcontrolcommand.h>
#include <systemsettings.h>
#include <stabilizationbank.h>
#include <stabilizationdesired.h>
#include <vtolselftuningstats.h>
#include <pathsummary.h>
}
// C++ includes
#include <vtolbrakefsm.h>
// Private constants
#define TIMER_COUNT_PER_SECOND (1000 / vtolPathFollowerSettings->UpdatePeriod)
#define BRAKE_FRACTIONALPROGRESS_STARTVELOCITYCHECK 0.95f
#define BRAKE_EXIT_VELOCITY_LIMIT 0.15f
VtolBrakeFSM::PathFollowerFSM_BrakeStateHandler_T VtolBrakeFSM::sBrakeStateTable[BRAKE_STATE_SIZE] = {
[BRAKE_STATE_INACTIVE] = { .setup = 0, .run = 0 },
[BRAKE_STATE_BRAKE] = { .setup = &VtolBrakeFSM::setup_brake, .run = &VtolBrakeFSM::run_brake },
[BRAKE_STATE_HOLD] = { .setup = 0, .run = 0 }
};
// pointer to a singleton instance
VtolBrakeFSM *VtolBrakeFSM::p_inst = 0;
VtolBrakeFSM::VtolBrakeFSM()
: mBrakeData(0), vtolPathFollowerSettings(0), pathDesired(0), flightStatus(0)
{}
// Private types
// Private functions
// Public API methods
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
int32_t VtolBrakeFSM::Initialize(VtolPathFollowerSettingsData *ptr_vtolPathFollowerSettings,
PathDesiredData *ptr_pathDesired,
FlightStatusData *ptr_flightStatus,
PathStatusData *ptr_pathStatus)
{
PIOS_Assert(ptr_vtolPathFollowerSettings);
PIOS_Assert(ptr_pathDesired);
PIOS_Assert(ptr_flightStatus);
// allow for Initialize being called more than once.
if (!mBrakeData) {
mBrakeData = (VtolBrakeFSMData_T *)pios_malloc(sizeof(VtolBrakeFSMData_T));
PIOS_Assert(mBrakeData);
}
memset(mBrakeData, 0, sizeof(VtolBrakeFSMData_T));
vtolPathFollowerSettings = ptr_vtolPathFollowerSettings;
pathDesired = ptr_pathDesired;
flightStatus = ptr_flightStatus;
pathStatus = ptr_pathStatus;
initFSM();
return 0;
}
void VtolBrakeFSM::Inactive(void)
{
memset(mBrakeData, 0, sizeof(VtolBrakeFSMData_T));
initFSM();
}
// Initialise the FSM
void VtolBrakeFSM::initFSM(void)
{
mBrakeData->currentState = BRAKE_STATE_INACTIVE;
}
void VtolBrakeFSM::Activate()
{
memset(mBrakeData, 0, sizeof(VtolBrakeFSMData_T));
mBrakeData->currentState = BRAKE_STATE_INACTIVE;
setState(BRAKE_STATE_BRAKE, FSMBRAKESTATUS_STATEEXITREASON_NONE);
}
PathFollowerFSMState_T VtolBrakeFSM::GetCurrentState(void)
{
switch (mBrakeData->currentState) {
case BRAKE_STATE_INACTIVE:
return PFFSM_STATE_INACTIVE;
break;
default:
return PFFSM_STATE_ACTIVE;
break;
}
}
void VtolBrakeFSM::Update()
{
runState();
}
int32_t VtolBrakeFSM::runState(void)
{
uint8_t flTimeout = false;
mBrakeData->stateRunCount++;
if (mBrakeData->stateTimeoutCount > 0 && mBrakeData->stateRunCount > mBrakeData->stateTimeoutCount) {
flTimeout = true;
}
// If the current state has a static function, call it
if (sBrakeStateTable[mBrakeData->currentState].run) {
(this->*sBrakeStateTable[mBrakeData->currentState].run)(flTimeout);
}
return 0;
}
// Set the new state and perform setup for subsequent state run calls
// This is called by state run functions on event detection that drive
// state transitions.
void VtolBrakeFSM::setState(PathFollowerFSM_BrakeState_T newState, __attribute__((unused)) VtolBrakeFSMStatusStateExitReasonOptions reason)
{
// mBrakeData->fsmBrakeStatus.StateExitReason[mBrakeData->currentState] = reason;
if (mBrakeData->currentState == newState) {
return;
}
mBrakeData->currentState = newState;
// Restart state timer counter
mBrakeData->stateRunCount = 0;
// Reset state timeout to disabled/zero
mBrakeData->stateTimeoutCount = 0;
if (sBrakeStateTable[mBrakeData->currentState].setup) {
(this->*sBrakeStateTable[mBrakeData->currentState].setup)();
}
}
// Timeout utility function for use by state init implementations
void VtolBrakeFSM::setStateTimeout(int32_t count)
{
mBrakeData->stateTimeoutCount = count;
}
// FSM Setup and Run method implementation
// State: WAITING FOR DESCENT RATE
void VtolBrakeFSM::setup_brake(void)
{
setStateTimeout(TIMER_COUNT_PER_SECOND * pathDesired->ModeParameters[PATHDESIRED_MODEPARAMETER_BRAKE_TIMEOUT]);
mBrakeData->observationCount = 0;
mBrakeData->observation2Count = 0;
}
void VtolBrakeFSM::run_brake(uint8_t flTimeout)
{
// Brake mode end condition checks
bool exit_brake = false;
VelocityStateData velocityState;
PathSummaryData pathSummary;
if (flTimeout) {
pathSummary.brake_exit_reason = PATHSUMMARY_BRAKE_EXIT_REASON_TIMEOUT;
exit_brake = true;
} else if (pathStatus->fractional_progress > BRAKE_FRACTIONALPROGRESS_STARTVELOCITYCHECK) {
VelocityStateGet(&velocityState);
if (fabsf(velocityState.East) < BRAKE_EXIT_VELOCITY_LIMIT && fabsf(velocityState.North) < BRAKE_EXIT_VELOCITY_LIMIT) {
pathSummary.brake_exit_reason = PATHSUMMARY_BRAKE_EXIT_REASON_PATHCOMPLETED;
exit_brake = true;
}
}
if (exit_brake) {
// Calculate the distance error between the originally desired
// stopping point and the actual brake-exit point.
PositionStateData p;
PositionStateGet(&p);
float north_offset = pathDesired->End.North - p.North;
float east_offset = pathDesired->End.East - p.East;
float down_offset = pathDesired->End.Down - p.Down;
pathSummary.brake_distance_offset = sqrtf(north_offset * north_offset + east_offset * east_offset + down_offset * down_offset);
pathSummary.time_remaining = pathDesired->ModeParameters[PATHDESIRED_MODEPARAMETER_BRAKE_TIMEOUT] - pathStatus->path_time;
pathSummary.fractional_progress = pathStatus->fractional_progress;
float cur_velocity = velocityState.North * velocityState.North + velocityState.East * velocityState.East + velocityState.Down * velocityState.Down;
cur_velocity = sqrtf(cur_velocity);
pathSummary.decelrate = (pathDesired->StartingVelocity - cur_velocity) / pathStatus->path_time;
pathSummary.brakeRateActualDesiredRatio = pathSummary.decelrate / vtolPathFollowerSettings->BrakeRate;
pathSummary.velocityIntoHold = cur_velocity;
pathSummary.Mode = PATHSUMMARY_MODE_BRAKE;
pathSummary.UID = pathStatus->UID;
PathSummarySet(&pathSummary);
setState(BRAKE_STATE_HOLD, FSMBRAKESTATUS_STATEEXITREASON_NONE);
}
}
uint8_t VtolBrakeFSM::PositionHoldState(void)
{
return mBrakeData->currentState == BRAKE_STATE_HOLD;
}