1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-01-06 17:46:07 +01:00
LibrePilot/flight/Modules/Attitude/revolution/attitude.c
2012-03-26 04:16:54 +02:00

630 lines
18 KiB
C

/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup Attitude Copter Control Attitude Estimation
* @brief Acquires sensor data and computes attitude estimate
* Specifically updates the the @ref AttitudeActual "AttitudeActual" and @ref AttitudeRaw "AttitudeRaw" settings objects
* @{
*
* @file attitude.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief Module to handle all comms to the AHRS on a periodic basis.
*
* @see The GNU Public License (GPL) Version 3
*
******************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/**
* Input objects: None, takes sensor data via pios
* Output objects: @ref AttitudeRaw @ref AttitudeActual
*
* This module computes an attitude estimate from the sensor data
*
* The module executes in its own thread.
*
* UAVObjects are automatically generated by the UAVObjectGenerator from
* the object definition XML file.
*
* Modules have no API, all communication to other modules is done through UAVObjects.
* However modules may use the API exposed by shared libraries.
* See the OpenPilot wiki for more details.
* http://www.openpilot.org/OpenPilot_Application_Architecture
*
*/
#include "pios.h"
#include "attitude.h"
#include "magnetometer.h"
#include "accels.h"
#include "gyros.h"
#include "gyrosbias.h"
#include "attitudeactual.h"
#include "attitudesettings.h"
#include "positionactual.h"
#include "velocityactual.h"
#include "gpsposition.h"
#include "baroaltitude.h"
#include "flightstatus.h"
#include "homelocation.h"
#include "CoordinateConversions.h"
// Private constants
#define STACK_SIZE_BYTES 5540
#define TASK_PRIORITY (tskIDLE_PRIORITY+3)
#define FAILSAFE_TIMEOUT_MS 10
#define F_PI 3.14159265358979323846f
#define PI_MOD(x) (fmodf(x + F_PI, F_PI * 2) - F_PI)
// Private types
// Private variables
static xTaskHandle attitudeTaskHandle;
static xQueueHandle gyroQueue;
static xQueueHandle accelQueue;
static xQueueHandle magQueue;
static xQueueHandle baroQueue;
static xQueueHandle gpsQueue;
const uint32_t SENSOR_QUEUE_SIZE = 10;
// Private functions
static void AttitudeTask(void *parameters);
static int32_t updateAttitudeComplimentary(bool first_run);
static int32_t updateAttitudeINSGPS(bool first_run);
static void settingsUpdatedCb(UAVObjEvent * objEv);
static float accelKi = 0;
static float accelKp = 0;
static float yawBiasRate = 0;
static float gyroGain = 0.42;
static int16_t accelbias[3];
static float R[3][3];
static int8_t rotate = 0;
static bool zero_during_arming = false;
/**
* API for sensor fusion algorithms:
* Configure(xQueueHandle gyro, xQueueHandle accel, xQueueHandle mag, xQueueHandle baro)
* Stores all the queues the algorithm will pull data from
* FinalizeSensors() -- before saving the sensors modifies them based on internal state (gyro bias)
* Update() -- queries queues and updates the attitude estiamte
*/
/**
* Initialise the module. Called before the start function
* \returns 0 on success or -1 if initialisation failed
*/
int32_t AttitudeInitialize(void)
{
AttitudeActualInitialize();
AttitudeSettingsInitialize();
PositionActualInitialize();
VelocityActualInitialize();
// Initialize this here while we aren't setting the homelocation in GPS
HomeLocationInitialize();
// Initialize quaternion
AttitudeActualData attitude;
AttitudeActualGet(&attitude);
attitude.q1 = 1;
attitude.q2 = 0;
attitude.q3 = 0;
attitude.q4 = 0;
AttitudeActualSet(&attitude);
// Cannot trust the values to init right above if BL runs
GyrosBiasData gyrosBias;
GyrosBiasGet(&gyrosBias);
gyrosBias.x = 0;
gyrosBias.y = 0;
gyrosBias.z = 0;
GyrosBiasSet(&gyrosBias);
for(uint8_t i = 0; i < 3; i++)
for(uint8_t j = 0; j < 3; j++)
R[i][j] = 0;
AttitudeSettingsConnectCallback(&settingsUpdatedCb);
return 0;
}
/**
* Start the task. Expects all objects to be initialized by this point.
* \returns 0 on success or -1 if initialisation failed
*/
int32_t AttitudeStart(void)
{
// Create the queues for the sensors
gyroQueue = xQueueCreate(1, sizeof(UAVObjEvent));
accelQueue = xQueueCreate(1, sizeof(UAVObjEvent));
magQueue = xQueueCreate(1, sizeof(UAVObjEvent));
baroQueue = xQueueCreate(1, sizeof(UAVObjEvent));
gpsQueue = xQueueCreate(1, sizeof(UAVObjEvent));
// Start main task
xTaskCreate(AttitudeTask, (signed char *)"Attitude", STACK_SIZE_BYTES/4, NULL, TASK_PRIORITY, &attitudeTaskHandle);
TaskMonitorAdd(TASKINFO_RUNNING_ATTITUDE, attitudeTaskHandle);
PIOS_WDG_RegisterFlag(PIOS_WDG_ATTITUDE);
GyrosConnectQueue(gyroQueue);
AccelsConnectQueue(accelQueue);
MagnetometerConnectQueue(magQueue);
BaroAltitudeConnectQueue(baroQueue);
GPSPositionConnectQueue(gpsQueue);
return 0;
}
MODULE_INITCALL(AttitudeInitialize, AttitudeStart)
/**
* Module thread, should not return.
*/
static void AttitudeTask(void *parameters)
{
AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE);
// Force settings update to make sure rotation loaded
settingsUpdatedCb(AttitudeSettingsHandle());
bool first_run = true;
// Wait for all the sensors be to read
vTaskDelay(100);
// Main task loop
while (1) {
// This function blocks on data queue
if(1)
updateAttitudeComplimentary(first_run);
else
updateAttitudeINSGPS(first_run);
if (first_run)
first_run = false;
PIOS_WDG_UpdateFlag(PIOS_WDG_ATTITUDE);
}
}
float accel_mag;
float qmag;
float attitudeDt;
float mag_err[3];
float magKi = 0.000001f;
float magKp = 0.0001f;
static int32_t updateAttitudeComplimentary(bool first_run)
{
UAVObjEvent ev;
GyrosData gyrosData;
AccelsData accelsData;
static int32_t timeval;
float dT;
static uint8_t init = 0;
// Wait until the AttitudeRaw object is updated, if a timeout then go to failsafe
if ( xQueueReceive(gyroQueue, &ev, FAILSAFE_TIMEOUT_MS / portTICK_RATE_MS) != pdTRUE )
{
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE,SYSTEMALARMS_ALARM_WARNING);
return -1;
}
if ( xQueueReceive(accelQueue, &ev, 0) != pdTRUE )
{
// When one of these is updated so should the other
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE,SYSTEMALARMS_ALARM_WARNING);
return -1;
}
// During initialization and
FlightStatusData flightStatus;
FlightStatusGet(&flightStatus);
if(first_run)
init = 0;
if((init == 0 && xTaskGetTickCount() < 7000) && (xTaskGetTickCount() > 1000)) {
// For first 7 seconds use accels to get gyro bias
accelKp = 1;
accelKi = 0.9;
yawBiasRate = 0.23;
} else if (zero_during_arming && (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMING)) {
accelKp = 1;
accelKi = 0.9;
yawBiasRate = 0.23;
init = 0;
} else if (init == 0) {
// Reload settings (all the rates)
AttitudeSettingsAccelKiGet(&accelKi);
AttitudeSettingsAccelKpGet(&accelKp);
AttitudeSettingsYawBiasRateGet(&yawBiasRate);
init = 1;
}
GyrosGet(&gyrosData);
AccelsGet(&accelsData);
// Compute the dT using the cpu clock
dT = PIOS_DELAY_DiffuS(timeval) / 1000000.0f;
timeval = PIOS_DELAY_GetRaw();
float q[4];
AttitudeActualData attitudeActual;
AttitudeActualGet(&attitudeActual);
float grot[3];
float accel_err[3];
// Get the current attitude estimate
quat_copy(&attitudeActual.q1, q);
// Rotate gravity to body frame and cross with accels
grot[0] = -(2 * (q[1] * q[3] - q[0] * q[2]));
grot[1] = -(2 * (q[2] * q[3] + q[0] * q[1]));
grot[2] = -(q[0] * q[0] - q[1]*q[1] - q[2]*q[2] + q[3]*q[3]);
CrossProduct((const float *) &accelsData.x, (const float *) grot, accel_err);
// Account for accel magnitude
accel_mag = accelsData.x*accelsData.x + accelsData.y*accelsData.y + accelsData.z*accelsData.z;
accel_mag = sqrtf(accel_mag);
accel_err[0] /= accel_mag;
accel_err[1] /= accel_mag;
accel_err[2] /= accel_mag;
if ( xQueueReceive(magQueue, &ev, 0) != pdTRUE )
{
// Rotate gravity to body frame and cross with accels
float brot[3];
float Rbe[3][3];
MagnetometerData mag;
HomeLocationData home;
Quaternion2R(q, Rbe);
MagnetometerGet(&mag);
HomeLocationGet(&home);
rot_mult(Rbe, home.Be, brot);
float mag_len = sqrtf(mag.x * mag.x + mag.y * mag.y + mag.z * mag.z);
mag.x /= mag_len;
mag.y /= mag_len;
mag.z /= mag_len;
float bmag = sqrtf(brot[0] * brot[0] + brot[1] * brot[1] + brot[2] * brot[2]);
brot[0] /= bmag;
brot[1] /= bmag;
brot[2] /= bmag;
// Only compute if neither vector is null
if (bmag < 1 || mag_len < 1)
mag_err[0] = mag_err[1] = mag_err[2] = 0;
else
CrossProduct((const float *) &mag.x, (const float *) brot, mag_err);
} else {
mag_err[0] = mag_err[1] = mag_err[2] = 0;
}
// Accumulate integral of error. Scale here so that units are (deg/s) but Ki has units of s
GyrosBiasData gyrosBias;
GyrosBiasGet(&gyrosBias);
gyrosBias.x += accel_err[0] * accelKi;
gyrosBias.y += accel_err[1] * accelKi;
gyrosBias.z += mag_err[2] * magKi;
GyrosBiasSet(&gyrosBias);
// Correct rates based on error, integral component dealt with in updateSensors
gyrosData.x += accel_err[0] * accelKp / dT;
gyrosData.y += accel_err[1] * accelKp / dT;
gyrosData.z += accel_err[2] * accelKp / dT + mag_err[2] * magKp / dT;
// Work out time derivative from INSAlgo writeup
// Also accounts for the fact that gyros are in deg/s
float qdot[4];
qdot[0] = (-q[1] * gyrosData.x - q[2] * gyrosData.y - q[3] * gyrosData.z) * dT * F_PI / 180 / 2;
qdot[1] = (q[0] * gyrosData.x - q[3] * gyrosData.y + q[2] * gyrosData.z) * dT * F_PI / 180 / 2;
qdot[2] = (q[3] * gyrosData.x + q[0] * gyrosData.y - q[1] * gyrosData.z) * dT * F_PI / 180 / 2;
qdot[3] = (-q[2] * gyrosData.x + q[1] * gyrosData.y + q[0] * gyrosData.z) * dT * F_PI / 180 / 2;
// Take a time step
q[0] = q[0] + qdot[0];
q[1] = q[1] + qdot[1];
q[2] = q[2] + qdot[2];
q[3] = q[3] + qdot[3];
if(q[0] < 0) {
q[0] = -q[0];
q[1] = -q[1];
q[2] = -q[2];
q[3] = -q[3];
}
// Renomalize
qmag = sqrtf(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
q[0] = q[0] / qmag;
q[1] = q[1] / qmag;
q[2] = q[2] / qmag;
q[3] = q[3] / qmag;
// If quaternion has become inappropriately short or is nan reinit.
// THIS SHOULD NEVER ACTUALLY HAPPEN
if((fabs(qmag) < 1.0e-3f) || (qmag != qmag)) {
q[0] = 1;
q[1] = 0;
q[2] = 0;
q[3] = 0;
}
quat_copy(q, &attitudeActual.q1);
// Convert into eueler degrees (makes assumptions about RPY order)
Quaternion2RPY(&attitudeActual.q1,&attitudeActual.Roll);
AttitudeActualSet(&attitudeActual);
// Flush these queues for avoid errors
if ( xQueueReceive(baroQueue, &ev, 0) != pdTRUE )
{
}
if ( xQueueReceive(gpsQueue, &ev, 0) != pdTRUE )
{
}
AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE);
return 0;
}
#include "insgps.h"
int32_t ins_failed = 0;
extern struct NavStruct Nav;
static int32_t updateAttitudeINSGPS(bool first_run)
{
UAVObjEvent ev;
GyrosData gyrosData;
AccelsData accelsData;
MagnetometerData magData;
BaroAltitudeData baroData;
static uint32_t ins_last_time = 0;
static bool inited;
if (first_run)
inited = false;
// Wait until the gyro and accel object is updated, if a timeout then go to failsafe
if ( (xQueueReceive(gyroQueue, &ev, 10 / portTICK_RATE_MS) != pdTRUE) ||
(xQueueReceive(accelQueue, &ev, 10 / portTICK_RATE_MS) != pdTRUE) )
{
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE,SYSTEMALARMS_ALARM_WARNING);
return -1;
}
// Get most recent data
// TODO: Acquire all data in a queue
GyrosGet(&gyrosData);
AccelsGet(&accelsData);
MagnetometerGet(&magData);
BaroAltitudeGet(&baroData);
bool mag_updated;
bool baro_updated;
bool gps_updated;
if (inited) {
mag_updated = 0;
baro_updated = 0;
}
mag_updated |= xQueueReceive(magQueue, &ev, 0 / portTICK_RATE_MS) == pdTRUE;
baro_updated |= xQueueReceive(baroQueue, &ev, 0 / portTICK_RATE_MS) == pdTRUE;
gps_updated |= xQueueReceive(gpsQueue, &ev, 0 / portTICK_RATE_MS) == pdTRUE;
if (!inited && (!mag_updated || !baro_updated || !gps_updated)) {
// Don't initialize until all sensors are read
return -1;
} else if (!inited ) {
inited = true;
float Rbe[3][3], q[4];
float ge[3]={0.0f,0.0f,-9.81f};
float zeros[3]={0.0f,0.0f,0.0f};
float Pdiag[16]={25.0f,25.0f,25.0f,5.0f,5.0f,5.0f,1e-5f,1e-5f,1e-5f,1e-5f,1e-5f,1e-5f,1e-5f,1e-4f,1e-4f,1e-4f};
float vel[3], NED[3];
INSGPSInit();
HomeLocationData home;
HomeLocationGet(&home);
GPSPositionData gpsPosition;
GPSPositionGet(&gpsPosition);
vel[0] = gpsPosition.Groundspeed * cosf(gpsPosition.Heading * F_PI / 180.0f);
vel[1] = gpsPosition.Groundspeed * sinf(gpsPosition.Heading * F_PI / 180.0f);
vel[2] = 0;
// convert from cm back to meters
float LLA[3] = {(float) gpsPosition.Latitude / 1e7f, (float) gpsPosition.Longitude / 1e7f, (float) (gpsPosition.GeoidSeparation + gpsPosition.Altitude)};
// put in local NED frame
float ECEF[3] = {(float) (home.ECEF[0] / 100.0f), (float) (home.ECEF[1] / 100.0f), (float) (home.ECEF[2] / 100.0f)};
LLA2Base(LLA, ECEF, (float (*)[3]) home.RNE, NED);
RotFrom2Vectors(&accelsData.x, ge, &magData.x, home.Be, Rbe);
R2Quaternion(Rbe,q);
INSSetState(NED, vel, q, &gyrosData.x, zeros);
INSSetGyroBias(&gyrosData.x);
INSResetP(Pdiag);
ins_last_time = PIOS_DELAY_GetRaw();
return 0;
}
// Perform the update
uint16_t sensors = 0;
float dT;
dT = PIOS_DELAY_DiffuS(ins_last_time) / 1.0e6f;
ins_last_time = PIOS_DELAY_GetRaw();
// This should only happen at start up or at mode switches
if(dT > 0.01f)
dT = 0.01f;
else if(dT <= 0.001f)
dT = 0.001f;
GyrosBiasData gyrosBias;
GyrosBiasGet(&gyrosBias);
float gyros[3] = {(gyrosData.x + gyrosBias.x) * F_PI / 180.0f,
(gyrosData.y + gyrosBias.y) * F_PI / 180.0f,
(gyrosData.z + gyrosBias.z) * F_PI / 180.0f};
// Advance the state estimate
INSStatePrediction(gyros, &accelsData.x, dT);
// Copy the attitude into the UAVO
AttitudeActualData attitude;
AttitudeActualGet(&attitude);
attitude.q1 = Nav.q[0];
attitude.q2 = Nav.q[1];
attitude.q3 = Nav.q[2];
attitude.q4 = Nav.q[3];
Quaternion2RPY(&attitude.q1,&attitude.Roll);
AttitudeActualSet(&attitude);
// Copy the gyro bias into the UAVO
gyrosBias.x = Nav.gyro_bias[0];
gyrosBias.y = Nav.gyro_bias[1];
gyrosBias.z = Nav.gyro_bias[2];
GyrosBiasSet(&gyrosBias);
// Advance the covariance estimate
INSCovariancePrediction(dT);
if(mag_updated)
sensors |= MAG_SENSORS;
if(baro_updated)
sensors |= BARO_SENSOR;
float NED[3] = {0,0,0};
float vel[3] = {0,0,0};
if(gps_updated)
{
sensors = HORIZ_SENSORS | VERT_SENSORS;
GPSPositionData gpsPosition;
GPSPositionGet(&gpsPosition);
vel[0] = gpsPosition.Groundspeed * cosf(gpsPosition.Heading * F_PI / 180.0f);
vel[1] = gpsPosition.Groundspeed * sinf(gpsPosition.Heading * F_PI / 180.0f);
vel[2] = 0;
HomeLocationData home;
HomeLocationGet(&home);
// convert from cm back to meters
float LLA[3] = {(float) gpsPosition.Latitude / 1e7f, (float) gpsPosition.Longitude / 1e7f, (float) (gpsPosition.GeoidSeparation + gpsPosition.Altitude)};
// put in local NED frame
float ECEF[3] = {(float) (home.ECEF[0] / 100.0f), (float) (home.ECEF[1] / 100.0f), (float) (home.ECEF[2] / 100.0f)};
LLA2Base(LLA, ECEF, (float (*)[3]) home.RNE, NED);
}
/*
* TODO: Need to add a general sanity check for all the inputs to make sure their kosher
* although probably should occur within INS itself
*/
INSCorrection(&magData.x, NED, vel, baroData.Altitude, sensors);
// Copy the position and velocity into the UAVO
PositionActualData positionActual;
PositionActualGet(&positionActual);
positionActual.North = Nav.Pos[0];
positionActual.East = Nav.Pos[1];
positionActual.Down = Nav.Pos[2];
PositionActualSet(&positionActual);
VelocityActualData velocityActual;
VelocityActualGet(&velocityActual);
velocityActual.North = Nav.Vel[0];
velocityActual.East = Nav.Vel[1];
velocityActual.Down = Nav.Vel[2];
VelocityActualSet(&velocityActual);
if(fabs(Nav.gyro_bias[0]) > 0.1f || fabs(Nav.gyro_bias[1]) > 0.1f || fabs(Nav.gyro_bias[2]) > 0.1f) {
float zeros[3] = {0.0f,0.0f,0.0f};
INSSetGyroBias(zeros);
}
return 0;
}
static void settingsUpdatedCb(UAVObjEvent * objEv)
{
AttitudeSettingsData attitudeSettings;
AttitudeSettingsGet(&attitudeSettings);
accelKp = attitudeSettings.AccelKp;
accelKi = attitudeSettings.AccelKi;
yawBiasRate = attitudeSettings.YawBiasRate;
gyroGain = attitudeSettings.GyroGain;
zero_during_arming = attitudeSettings.ZeroDuringArming == ATTITUDESETTINGS_ZERODURINGARMING_TRUE;
accelbias[0] = attitudeSettings.AccelBias[ATTITUDESETTINGS_ACCELBIAS_X];
accelbias[1] = attitudeSettings.AccelBias[ATTITUDESETTINGS_ACCELBIAS_Y];
accelbias[2] = attitudeSettings.AccelBias[ATTITUDESETTINGS_ACCELBIAS_Z];
GyrosBiasData gyrosBias;
GyrosBiasGet(&gyrosBias);
gyrosBias.x = attitudeSettings.GyroBias[ATTITUDESETTINGS_GYROBIAS_X] / 100.0f;
gyrosBias.y = attitudeSettings.GyroBias[ATTITUDESETTINGS_GYROBIAS_Y] / 100.0f;
gyrosBias.z = attitudeSettings.GyroBias[ATTITUDESETTINGS_GYROBIAS_Z] / 100.0f;
GyrosBiasSet(&gyrosBias);
// Indicates not to expend cycles on rotation
if(attitudeSettings.BoardRotation[0] == 0 && attitudeSettings.BoardRotation[1] == 0 &&
attitudeSettings.BoardRotation[2] == 0) {
rotate = 0;
// Shouldn't be used but to be safe
float rotationQuat[4] = {1,0,0,0};
Quaternion2R(rotationQuat, R);
} else {
float rotationQuat[4];
const float rpy[3] = {attitudeSettings.BoardRotation[ATTITUDESETTINGS_BOARDROTATION_ROLL],
attitudeSettings.BoardRotation[ATTITUDESETTINGS_BOARDROTATION_PITCH],
attitudeSettings.BoardRotation[ATTITUDESETTINGS_BOARDROTATION_YAW]};
RPY2Quaternion(rpy, rotationQuat);
Quaternion2R(rotationQuat, R);
rotate = 1;
}
}
/**
* @}
* @}
*/