1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-01-22 07:52:12 +01:00
Alessio Morale 9350bd65d9 OP-1535 - change sensor rate to 1KHz with software downsample to 500Hz
Allow per board SPI prescaler settings
2014-10-10 22:33:49 +02:00

532 lines
18 KiB
C

/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup Sensors
* @brief Acquires sensor data
* Specifically updates the the @ref GyroSensor, @ref AccelSensor, and @ref MagSensor objects
* @{
*
* @file sensors.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief Module to handle all comms to the AHRS on a periodic basis.
*
* @see The GNU Public License (GPL) Version 3
*
******************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/**
* Input objects: None, takes sensor data via pios
* Output objects: @ref GyroSensor @ref AccelSensor @ref MagSensor
*
* The module executes in its own thread.
*
* UAVObjects are automatically generated by the UAVObjectGenerator from
* the object definition XML file.
*
* Modules have no API, all communication to other modules is done through UAVObjects.
* However modules may use the API exposed by shared libraries.
* See the OpenPilot wiki for more details.
* http://www.openpilot.org/OpenPilot_Application_Architecture
*
*/
#include <openpilot.h>
#include <homelocation.h>
#include <magsensor.h>
#include <accelsensor.h>
#include <gyrosensor.h>
#include <attitudestate.h>
#include <attitudesettings.h>
#include <revocalibration.h>
#include <accelgyrosettings.h>
#include <flightstatus.h>
#include <taskinfo.h>
#include <CoordinateConversions.h>
#include <pios_board_info.h>
// Private constants
#define STACK_SIZE_BYTES 1000
#define TASK_PRIORITY (tskIDLE_PRIORITY + 3)
#define SENSOR_PERIOD 2
// Interval in number of sample to recalculate temp bias
#define TEMP_CALIB_INTERVAL 30
#define TEMP_ALPHA 0.9f
#define ZERO_ROT_ANGLE 0.00001f
// Private types
#define PIOS_INSTRUMENT_MODULE
#include <pios_instrumentation_helper.h>
PERF_DEFINE_COUNTER(counterGyroSamples);
PERF_DEFINE_COUNTER(counterSensorPeriod);
// Counters:
// - 0x53000001 Sensor fetch rate(period)
// - 0x53000002 number of gyro samples read for each loop
// Private functions
static void SensorsTask(void *parameters);
static void settingsUpdatedCb(UAVObjEvent *objEv);
// Private variables
static xTaskHandle sensorsTaskHandle;
RevoCalibrationData cal;
AccelGyroSettingsData agcal;
#ifdef PIOS_INCLUDE_HMC5X83
#include <pios_hmc5x83.h>
extern pios_hmc5x83_dev_t onboard_mag;
#endif
// These values are initialized by settings but can be updated by the attitude algorithm
static float mag_bias[3] = { 0, 0, 0 };
static float mag_transform[3][3] = {
{ 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 }
};
// temp coefficient to calculate gyro bias
static volatile bool gyro_temp_calibrated = false;
static volatile bool accel_temp_calibrated = false;
static float accel_temperature = 0;
static float gyro_temperature = 0;
static float accel_temp_bias[3] = { 0 };
static float gyro_temp_bias[3] = { 0 };
static uint8_t temp_calibration_count = 0;
static float R[3][3] = {
{ 0 }
};
static int8_t rotate = 0;
/**
* API for sensor fusion algorithms:
* Configure(xQueueHandle gyro, xQueueHandle accel, xQueueHandle mag, xQueueHandle baro)
* Stores all the queues the algorithm will pull data from
* FinalizeSensors() -- before saving the sensors modifies them based on internal state (gyro bias)
* Update() -- queries queues and updates the attitude estiamte
*/
/**
* Initialise the module. Called before the start function
* \returns 0 on success or -1 if initialisation failed
*/
int32_t SensorsInitialize(void)
{
GyroSensorInitialize();
AccelSensorInitialize();
MagSensorInitialize();
RevoCalibrationInitialize();
AttitudeSettingsInitialize();
AccelGyroSettingsInitialize();
rotate = 0;
RevoCalibrationConnectCallback(&settingsUpdatedCb);
AttitudeSettingsConnectCallback(&settingsUpdatedCb);
AccelGyroSettingsConnectCallback(&settingsUpdatedCb);
return 0;
}
/**
* Start the task. Expects all objects to be initialized by this point.
* \returns 0 on success or -1 if initialisation failed
*/
int32_t SensorsStart(void)
{
// Start main task
xTaskCreate(SensorsTask, "Sensors", STACK_SIZE_BYTES / 4, NULL, TASK_PRIORITY, &sensorsTaskHandle);
PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_SENSORS, sensorsTaskHandle);
#ifdef PIOS_INCLUDE_WDG
PIOS_WDG_RegisterFlag(PIOS_WDG_SENSORS);
#endif
return 0;
}
MODULE_INITCALL(SensorsInitialize, SensorsStart);
int32_t accel_test;
int32_t gyro_test;
int32_t mag_test;
// int32_t pressure_test;
/**
* The sensor task. This polls the gyros at 500 Hz and pumps that data to
* stabilization and to the attitude loop
*
* This function has a lot of if/defs right now to allow these configurations:
* 1. BMA180 accel and MPU6000 gyro
* 2. MPU6000 gyro and accel
* 3. BMA180 accel and L3GD20 gyro
*/
uint32_t sensor_dt_us;
static void SensorsTask(__attribute__((unused)) void *parameters)
{
portTickType lastSysTime;
uint32_t accel_samples = 0;
uint32_t gyro_samples = 0;
int32_t accel_accum[3] = { 0, 0, 0 };
int32_t gyro_accum[3] = { 0, 0, 0 };
float gyro_scaling = 0;
float accel_scaling = 0;
static int32_t timeval;
AlarmsClear(SYSTEMALARMS_ALARM_SENSORS);
UAVObjEvent ev;
settingsUpdatedCb(&ev);
const struct pios_board_info *bdinfo = &pios_board_info_blob;
switch (bdinfo->board_rev) {
case 0x01:
#if defined(PIOS_INCLUDE_L3GD20)
gyro_test = PIOS_L3GD20_Test();
#endif
#if defined(PIOS_INCLUDE_BMA180)
accel_test = PIOS_BMA180_Test();
#endif
break;
case 0x02:
#if defined(PIOS_INCLUDE_MPU6000)
gyro_test = PIOS_MPU6000_Test();
accel_test = gyro_test;
#endif
break;
default:
PIOS_DEBUG_Assert(0);
}
#if defined(PIOS_INCLUDE_HMC5X83)
mag_test = PIOS_HMC5x83_Test(onboard_mag);
#else
mag_test = 0;
#endif
if (accel_test < 0 || gyro_test < 0 || mag_test < 0) {
AlarmsSet(SYSTEMALARMS_ALARM_SENSORS, SYSTEMALARMS_ALARM_CRITICAL);
while (1) {
#ifdef PIOS_INCLUDE_WDG
PIOS_WDG_UpdateFlag(PIOS_WDG_SENSORS);
#endif
vTaskDelay(10);
}
}
PERF_INIT_COUNTER(counterGyroSamples, 0x53000001);
PERF_INIT_COUNTER(counterSensorPeriod, 0x53000002);
// Main task loop
lastSysTime = xTaskGetTickCount();
bool error = false;
uint32_t mag_update_time = PIOS_DELAY_GetRaw();
while (1) {
// TODO: add timeouts to the sensor reads and set an error if the fail
sensor_dt_us = PIOS_DELAY_DiffuS(timeval);
timeval = PIOS_DELAY_GetRaw();
if (error) {
#ifdef PIOS_INCLUDE_WDG
PIOS_WDG_UpdateFlag(PIOS_WDG_SENSORS);
#endif
lastSysTime = xTaskGetTickCount();
vTaskDelayUntil(&lastSysTime, SENSOR_PERIOD / portTICK_RATE_MS);
AlarmsSet(SYSTEMALARMS_ALARM_SENSORS, SYSTEMALARMS_ALARM_CRITICAL);
error = false;
} else {
AlarmsClear(SYSTEMALARMS_ALARM_SENSORS);
}
for (int i = 0; i < 3; i++) {
accel_accum[i] = 0;
gyro_accum[i] = 0;
}
accel_samples = 0;
gyro_samples = 0;
AccelSensorData accelSensorData;
GyroSensorData gyroSensorData;
switch (bdinfo->board_rev) {
case 0x01: // L3GD20 + BMA180 board
#if defined(PIOS_INCLUDE_BMA180)
{
struct pios_bma180_data accel;
int32_t read_good;
int32_t count;
count = 0;
while ((read_good = PIOS_BMA180_ReadFifo(&accel)) != 0 && !error) {
error = ((xTaskGetTickCount() - lastSysTime) > SENSOR_PERIOD) ? true : error;
}
if (error) {
// Unfortunately if the BMA180 ever misses getting read, then it will not
// trigger more interrupts. In this case we must force a read to kickstarts
// it.
struct pios_bma180_data data;
PIOS_BMA180_ReadAccels(&data);
continue;
}
while (read_good == 0) {
count++;
accel_accum[1] += accel.x;
accel_accum[0] += accel.y;
accel_accum[2] -= accel.z;
read_good = PIOS_BMA180_ReadFifo(&accel);
}
accel_samples = count;
accel_scaling = PIOS_BMA180_GetScale();
// Get temp from last reading
accelSensorData.temperature = 25.0f + ((float)accel.temperature - 2.0f) / 2.0f;
}
#endif /* if defined(PIOS_INCLUDE_BMA180) */
#if defined(PIOS_INCLUDE_L3GD20)
{
struct pios_l3gd20_data gyro;
gyro_samples = 0;
xQueueHandle gyro_queue = PIOS_L3GD20_GetQueue();
if (xQueueReceive(gyro_queue, (void *)&gyro, 4) == errQUEUE_EMPTY) {
error = true;
continue;
}
gyro_samples = 1;
gyro_accum[1] += gyro.gyro_x;
gyro_accum[0] += gyro.gyro_y;
gyro_accum[2] -= gyro.gyro_z;
gyro_scaling = PIOS_L3GD20_GetScale();
// Get temp from last reading
gyroSensorData.temperature = gyro.temperature;
}
#endif /* if defined(PIOS_INCLUDE_L3GD20) */
break;
case 0x02: // MPU6000 board
case 0x03: // MPU6000 board
#if defined(PIOS_INCLUDE_MPU6000)
{
struct pios_mpu6000_data mpu6000_data;
xQueueHandle queue = PIOS_MPU6000_GetQueue();
while (xQueueReceive(queue, (void *)&mpu6000_data, gyro_samples == 0 ? 10 : 0) != errQUEUE_EMPTY) {
gyro_accum[0] += mpu6000_data.gyro_x;
gyro_accum[1] += mpu6000_data.gyro_y;
gyro_accum[2] += mpu6000_data.gyro_z;
accel_accum[0] += mpu6000_data.accel_x;
accel_accum[1] += mpu6000_data.accel_y;
accel_accum[2] += mpu6000_data.accel_z;
gyro_samples++;
accel_samples++;
}
PERF_MEASURE_PERIOD(counterSensorPeriod);
PERF_TRACK_VALUE(counterGyroSamples, gyro_samples);
if (gyro_samples == 0) {
PIOS_MPU6000_ReadGyros(&mpu6000_data);
error = true;
continue;
}
gyro_scaling = PIOS_MPU6000_GetScale();
accel_scaling = PIOS_MPU6000_GetAccelScale();
gyroSensorData.temperature = 35.0f + ((float)mpu6000_data.temperature + 512.0f) / 340.0f;
accelSensorData.temperature = 35.0f + ((float)mpu6000_data.temperature + 512.0f) / 340.0f;
}
#endif /* PIOS_INCLUDE_MPU6000 */
break;
default:
PIOS_DEBUG_Assert(0);
}
accel_temperature = TEMP_ALPHA * accelSensorData.temperature + (1 - TEMP_ALPHA) * accelSensorData.temperature;
gyro_temperature = TEMP_ALPHA * gyroSensorData.temperature + (1 - TEMP_ALPHA) * gyroSensorData.temperature;
if ((accel_temp_calibrated || gyro_temp_calibrated) && !temp_calibration_count) {
temp_calibration_count = TEMP_CALIB_INTERVAL;
if (accel_temp_calibrated) {
float ctemp = boundf(accel_temperature, agcal.temp_calibrated_extent.max, agcal.temp_calibrated_extent.min);
accel_temp_bias[0] = agcal.accel_temp_coeff.X * ctemp;
accel_temp_bias[1] = agcal.accel_temp_coeff.Y * ctemp;
accel_temp_bias[2] = agcal.accel_temp_coeff.Z * ctemp;
}
if (gyro_temp_calibrated) {
float ctemp = boundf(gyro_temperature, agcal.temp_calibrated_extent.max, agcal.temp_calibrated_extent.min);
gyro_temp_bias[0] = (agcal.gyro_temp_coeff.X + agcal.gyro_temp_coeff.X2 * ctemp) * ctemp;
gyro_temp_bias[1] = (agcal.gyro_temp_coeff.Y + agcal.gyro_temp_coeff.Y2 * ctemp) * ctemp;
gyro_temp_bias[2] = (agcal.gyro_temp_coeff.Z + agcal.gyro_temp_coeff.Z2 * ctemp) * ctemp;
}
}
temp_calibration_count--;
// Scale the accels
float accels[3] = { (float)accel_accum[0] / accel_samples,
(float)accel_accum[1] / accel_samples,
(float)accel_accum[2] / accel_samples };
float accels_out[3] = { accels[0] * accel_scaling * agcal.accel_scale.X - agcal.accel_bias.X - accel_temp_bias[0],
accels[1] * accel_scaling * agcal.accel_scale.Y - agcal.accel_bias.Y - accel_temp_bias[1],
accels[2] * accel_scaling * agcal.accel_scale.Z - agcal.accel_bias.Z - accel_temp_bias[2] };
if (rotate) {
rot_mult(R, accels_out, accels);
accelSensorData.x = accels[0];
accelSensorData.y = accels[1];
accelSensorData.z = accels[2];
} else {
accelSensorData.x = accels_out[0];
accelSensorData.y = accels_out[1];
accelSensorData.z = accels_out[2];
}
AccelSensorSet(&accelSensorData);
// Scale the gyros
float gyros[3] = { (float)gyro_accum[0] / gyro_samples,
(float)gyro_accum[1] / gyro_samples,
(float)gyro_accum[2] / gyro_samples };
float gyros_out[3] = { gyros[0] * gyro_scaling * agcal.gyro_scale.X - agcal.gyro_bias.X - gyro_temp_bias[0],
gyros[1] * gyro_scaling * agcal.gyro_scale.Y - agcal.gyro_bias.Y - gyro_temp_bias[1],
gyros[2] * gyro_scaling * agcal.gyro_scale.Z - agcal.gyro_bias.Z - gyro_temp_bias[2] };
if (rotate) {
rot_mult(R, gyros_out, gyros);
gyroSensorData.x = gyros[0];
gyroSensorData.y = gyros[1];
gyroSensorData.z = gyros[2];
} else {
gyroSensorData.x = gyros_out[0];
gyroSensorData.y = gyros_out[1];
gyroSensorData.z = gyros_out[2];
}
GyroSensorSet(&gyroSensorData);
// Because most crafts wont get enough information from gravity to zero yaw gyro, we try
// and make it average zero (weakly)
#if defined(PIOS_INCLUDE_HMC5X83)
MagSensorData mag;
if (PIOS_HMC5x83_NewDataAvailable(onboard_mag) || PIOS_DELAY_DiffuS(mag_update_time) > 150000) {
int16_t values[3];
PIOS_HMC5x83_ReadMag(onboard_mag, values);
float mags[3] = { (float)values[1] - mag_bias[0],
(float)values[0] - mag_bias[1],
-(float)values[2] - mag_bias[2] };
float mag_out[3];
rot_mult(mag_transform, mags, mag_out);
mag.x = mag_out[0];
mag.y = mag_out[1];
mag.z = mag_out[2];
MagSensorSet(&mag);
mag_update_time = PIOS_DELAY_GetRaw();
}
#endif /* if defined(PIOS_INCLUDE_HMC5X83) */
#ifdef PIOS_INCLUDE_WDG
PIOS_WDG_UpdateFlag(PIOS_WDG_SENSORS);
#endif
vTaskDelayUntil(&lastSysTime, SENSOR_PERIOD / portTICK_RATE_MS);
lastSysTime = xTaskGetTickCount();
}
}
/**
* Locally cache some variables from the AtttitudeSettings object
*/
static void settingsUpdatedCb(__attribute__((unused)) UAVObjEvent *objEv)
{
RevoCalibrationGet(&cal);
AccelGyroSettingsGet(&agcal);
mag_bias[0] = cal.mag_bias.X;
mag_bias[1] = cal.mag_bias.Y;
mag_bias[2] = cal.mag_bias.Z;
accel_temp_calibrated = (agcal.temp_calibrated_extent.max - agcal.temp_calibrated_extent.min > .1f) &&
(fabsf(agcal.accel_temp_coeff.X) > 1e-9f || fabsf(agcal.accel_temp_coeff.Y) > 1e-9f || fabsf(agcal.accel_temp_coeff.Z) > 1e-9f);
gyro_temp_calibrated = (agcal.temp_calibrated_extent.max - agcal.temp_calibrated_extent.min > .1f) &&
(fabsf(agcal.gyro_temp_coeff.X) > 1e-9f || fabsf(agcal.gyro_temp_coeff.Y) > 1e-9f ||
fabsf(agcal.gyro_temp_coeff.Z) > 1e-9f || fabsf(agcal.gyro_temp_coeff.Z2) > 1e-9f);
AttitudeSettingsData attitudeSettings;
AttitudeSettingsGet(&attitudeSettings);
// Indicates not to expend cycles on rotation
if (fabsf(attitudeSettings.BoardRotation.Roll) < ZERO_ROT_ANGLE
&& fabsf(attitudeSettings.BoardRotation.Pitch) < ZERO_ROT_ANGLE &&
fabsf(attitudeSettings.BoardRotation.Yaw) < ZERO_ROT_ANGLE) {
rotate = 0;
} else {
rotate = 1;
}
const float rpy[3] = { attitudeSettings.BoardRotation.Roll,
attitudeSettings.BoardRotation.Pitch,
attitudeSettings.BoardRotation.Yaw };
float rotationQuat[4];
RPY2Quaternion(rpy, rotationQuat);
if (fabsf(attitudeSettings.BoardLevelTrim.Roll) > ZERO_ROT_ANGLE ||
fabsf(attitudeSettings.BoardLevelTrim.Pitch) > ZERO_ROT_ANGLE) {
float trimQuat[4];
float sumQuat[4];
rotate = 1;
const float trimRpy[3] = { attitudeSettings.BoardLevelTrim.Roll, attitudeSettings.BoardLevelTrim.Pitch, 0.0f };
RPY2Quaternion(trimRpy, trimQuat);
quat_mult(rotationQuat, trimQuat, sumQuat);
Quaternion2R(sumQuat, R);
} else {
Quaternion2R(rotationQuat, R);
}
matrix_mult_3x3f((float(*)[3])RevoCalibrationmag_transformToArray(cal.mag_transform), R, mag_transform);
}
/**
* @}
* @}
*/