1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-01-19 04:52:12 +01:00
LibrePilot/flight/pios/common/pios_hmc5x83.c
2016-09-30 23:24:09 +02:00

785 lines
24 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/**
******************************************************************************
* @addtogroup PIOS PIOS Core hardware abstraction layer
* @{
* @addtogroup PIOS_HMC5x83 HMC5x83 Functions
* @brief Deals with the hardware interface to the magnetometers
* @{
* @file pios_hmc5x83.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012.
* @brief HMC5x83 Magnetic Sensor Functions from AHRS
* @see The GNU Public License (GPL) Version 3
*
******************************************************************************
*/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "pios.h"
#include <pios_hmc5x83.h>
#include <pios_mem.h>
#ifdef PIOS_INCLUDE_HMC5X83
#define PIOS_HMC5X83_MAGIC 0x4d783833
/* Global Variables */
/* Local Types */
typedef struct {
uint32_t magic;
const struct pios_hmc5x83_cfg *cfg;
uint32_t port_id;
uint8_t slave_num;
uint8_t CTRLB;
uint16_t magCountMax;
uint16_t magCount;
volatile bool data_ready;
int16_t magData[3];
bool hw_error;
uint32_t lastConfigTime;
} pios_hmc5x83_dev_data_t;
static int32_t PIOS_HMC5x83_Config(pios_hmc5x83_dev_data_t *dev);
// sensor driver interface
bool PIOS_HMC5x83_driver_Test(uintptr_t context);
void PIOS_HMC5x83_driver_Reset(uintptr_t context);
void PIOS_HMC5x83_driver_get_scale(float *scales, uint8_t size, uintptr_t context);
void PIOS_HMC5x83_driver_fetch(void *, uint8_t size, uintptr_t context);
bool PIOS_HMC5x83_driver_poll(uintptr_t context);
const PIOS_SENSORS_Driver PIOS_HMC5x83_Driver = {
.test = PIOS_HMC5x83_driver_Test,
.poll = PIOS_HMC5x83_driver_poll,
.fetch = PIOS_HMC5x83_driver_fetch,
.reset = PIOS_HMC5x83_driver_Reset,
.get_queue = NULL,
.get_scale = PIOS_HMC5x83_driver_get_scale,
.is_polled = true,
};
/**
* Allocate the device setting structure
* @return pios_hmc5x83_dev_data_t pointer to newly created structure
*/
pios_hmc5x83_dev_data_t *dev_alloc()
{
pios_hmc5x83_dev_data_t *dev = (pios_hmc5x83_dev_data_t *)pios_malloc(sizeof(pios_hmc5x83_dev_data_t));
PIOS_DEBUG_Assert(dev);
memset(dev, 0x00, sizeof(pios_hmc5x83_dev_data_t));
dev->magic = PIOS_HMC5X83_MAGIC;
return dev;
}
/**
* Validate a pios_hmc5x83_dev_t handler and return the related pios_hmc5x83_dev_data_t pointer
* @param dev device handler
* @return the device data structure
*/
pios_hmc5x83_dev_data_t *dev_validate(pios_hmc5x83_dev_t dev)
{
pios_hmc5x83_dev_data_t *dev_data = (pios_hmc5x83_dev_data_t *)dev;
PIOS_DEBUG_Assert(dev_data->magic == PIOS_HMC5X83_MAGIC);
return dev_data;
}
/**
* @brief Initialize the HMC5x83 magnetometer sensor.
* @return none
*/
pios_hmc5x83_dev_t PIOS_HMC5x83_Init(const struct pios_hmc5x83_cfg *cfg, uint32_t port_id, uint8_t slave_num)
{
pios_hmc5x83_dev_data_t *dev = dev_alloc();
dev->cfg = cfg; // store config before enabling interrupt
dev->port_id = port_id;
dev->slave_num = slave_num;
#ifdef PIOS_HMC5X83_HAS_GPIOS
if (cfg->exti_cfg) {
PIOS_EXTI_Init(cfg->exti_cfg);
} else
#endif /* PIOS_HMC5X83_HAS_GPIOS */
{
// if PIOS_SENSOR_RATE is defined, there is a sensor loop that is called at that frequency
// and "is data available" can simply return false a few times to save some CPU
#ifdef PIOS_SENSOR_RATE
// for external mags that have no interrupt line, just poll them with a timer
// use the configured Output Data Rate to calculate the number of interations (of the main sensor task loop)
// to return false, before returning true
uint16_t rate100;
switch (cfg->M_ODR) {
case PIOS_HMC5x83_ODR_0_75:
rate100 = 75;
break;
case PIOS_HMC5x83_ODR_1_5:
rate100 = 150;
break;
case PIOS_HMC5x83_ODR_3:
rate100 = 300;
break;
case PIOS_HMC5x83_ODR_7_5:
rate100 = 750;
break;
case PIOS_HMC5x83_ODR_15:
rate100 = 1500;
break;
case PIOS_HMC5x83_ODR_30:
rate100 = 3000;
break;
default:
case PIOS_HMC5x83_ODR_75:
rate100 = 7500;
break;
}
// if the application sensor rate is fast enough to warrant skipping some slow hardware sensor reads
if ((PIOS_SENSOR_RATE * 100.0f / 3.0f) > rate100) {
// count the number of "return false" up to this number
dev->magCountMax = ((uint16_t)PIOS_SENSOR_RATE * 100 / rate100) + 1;
} else {
// return true every time (do a hardware sensor poll every time)
dev->magCountMax = 1;
}
#else /* PIOS_SENSOR_RATE */
// return true every time (do a hardware sensor poll every time)
dev->magCountMax = 1;
#endif /* PIOS_SENSOR_RATE */
// with this counter
dev->magCount = 0;
}
if (PIOS_HMC5x83_Config(dev) != 0) {
dev->hw_error = true;
}
dev->data_ready = false;
return (pios_hmc5x83_dev_t)dev;
}
void PIOS_HMC5x83_Register(pios_hmc5x83_dev_t handler, PIOS_SENSORS_TYPE sensortype)
{
if (handler) {
PIOS_SENSORS_Register(&PIOS_HMC5x83_Driver, sensortype, handler);
}
}
/**
* @brief Initialize the HMC5x83 magnetometer sensor
* \return none
* \param[in] pios_hmc5x83_dev_data_t device config to be used.
* \param[in] PIOS_HMC5x83_ConfigTypeDef struct to be used to configure sensor.
*
* CTRL_REGA: Control Register A
* Read Write
* Default value: 0x10
* 7:5 0 These bits must be cleared for correct operation.
* 4:2 DO2-DO0: Data Output Rate Bits
* DO2 | DO1 | DO0 | Minimum Data Output Rate (Hz)
* ------------------------------------------------------
* 0 | 0 | 0 | 0.75
* 0 | 0 | 1 | 1.5
* 0 | 1 | 0 | 3
* 0 | 1 | 1 | 7.5
* 1 | 0 | 0 | 15 (default)
* 1 | 0 | 1 | 30
* 1 | 1 | 0 | 75
* 1 | 1 | 1 | Not Used
* 1:0 MS1-MS0: Measurement Configuration Bits
* MS1 | MS0 | MODE
* ------------------------------
* 0 | 0 | Normal
* 0 | 1 | Positive Bias
* 1 | 0 | Negative Bias
* 1 | 1 | Not Used
*
* CTRL_REGB: Control RegisterB
* Read Write
* Default value: 0x20
* 7:5 GN2-GN0: Gain Configuration Bits.
* GN2 | GN1 | GN0 | Mag Input | Gain | Output Range
* | | | Range[Ga] | [LSB/mGa] |
* ------------------------------------------------------
* 0 | 0 | 0 | ±0.88Ga | 1370 | 0xF800–0x07FF (-2048:2047)
* 0 | 0 | 1 | ±1.3Ga (def) | 1090 | 0xF800–0x07FF (-2048:2047)
* 0 | 1 | 0 | ±1.9Ga | 820 | 0xF800–0x07FF (-2048:2047)
* 0 | 1 | 1 | ±2.5Ga | 660 | 0xF800–0x07FF (-2048:2047)
* 1 | 0 | 0 | ±4.0Ga | 440 | 0xF800–0x07FF (-2048:2047)
* 1 | 0 | 1 | ±4.7Ga | 390 | 0xF800–0x07FF (-2048:2047)
* 1 | 1 | 0 | ±5.6Ga | 330 | 0xF800–0x07FF (-2048:2047)
* 1 | 1 | 1 | ±8.1Ga | 230 | 0xF800–0x07FF (-2048:2047)
* |Not recommended|
*
* 4:0 CRB4-CRB: 0 This bit must be cleared for correct operation.
*
* _MODE_REG: Mode Register
* Read Write
* Default value: 0x02
* 7:2 0 These bits must be cleared for correct operation.
* 1:0 MD1-MD0: Mode Select Bits
* MS1 | MS0 | MODE
* ------------------------------
* 0 | 0 | Continuous-Conversion Mode.
* 0 | 1 | Single-Conversion Mode
* 1 | 0 | Negative Bias
* 1 | 1 | Sleep Mode
*/
static int32_t PIOS_HMC5x83_Config(pios_hmc5x83_dev_data_t *dev)
{
uint8_t CTRLA = 0x00;
uint8_t MODE = 0x00;
dev->lastConfigTime = PIOS_DELAY_GetRaw();
const struct pios_hmc5x83_cfg *cfg = dev->cfg;
dev->CTRLB = 0;
CTRLA |= (uint8_t)(cfg->M_ODR | cfg->Meas_Conf);
CTRLA |= cfg->TempCompensation ? PIOS_HMC5x83_CTRLA_TEMP : 0;
dev->CTRLB |= (uint8_t)(cfg->Gain);
MODE |= (uint8_t)(cfg->Mode);
// CRTL_REGA
if (cfg->Driver->Write((pios_hmc5x83_dev_t)dev, PIOS_HMC5x83_CONFIG_REG_A, CTRLA) != 0) {
return -1;
}
// CRTL_REGB
if (cfg->Driver->Write((pios_hmc5x83_dev_t)dev, PIOS_HMC5x83_CONFIG_REG_B, dev->CTRLB) != 0) {
return -1;
}
// Mode register
if (cfg->Driver->Write((pios_hmc5x83_dev_t)dev, PIOS_HMC5x83_MODE_REG, MODE) != 0) {
return -1;
}
#ifdef PIOS_INCLUDE_WDG
// give HMC5x83 on I2C some extra time
PIOS_WDG_Clear();
#endif /* PIOS_INCLUDE_WDG */
if (PIOS_HMC5x83_Test((pios_hmc5x83_dev_t)dev) != 0) {
return -1;
}
return 0;
}
static void PIOS_HMC5x83_Orient(enum PIOS_HMC5X83_ORIENTATION orientation, int16_t in[3], int16_t out[3])
{
switch (orientation) {
case PIOS_HMC5X83_ORIENTATION_EAST_NORTH_UP:
out[0] = in[2];
out[1] = in[0];
out[2] = -in[1];
break;
case PIOS_HMC5X83_ORIENTATION_SOUTH_EAST_UP:
out[0] = -in[0];
out[1] = in[2];
out[2] = -in[1];
break;
case PIOS_HMC5X83_ORIENTATION_WEST_SOUTH_UP:
out[0] = -in[2];
out[1] = -in[0];
out[2] = -in[1];
break;
case PIOS_HMC5X83_ORIENTATION_NORTH_WEST_UP:
out[0] = in[0];
out[1] = -in[2];
out[2] = -in[1];
break;
case PIOS_HMC5X83_ORIENTATION_EAST_SOUTH_DOWN:
out[0] = in[2];
out[1] = -in[0];
out[2] = in[1];
break;
case PIOS_HMC5X83_ORIENTATION_SOUTH_WEST_DOWN:
out[0] = -in[0];
out[1] = -in[2];
out[2] = in[1];
break;
case PIOS_HMC5X83_ORIENTATION_WEST_NORTH_DOWN:
out[0] = -in[2];
out[1] = in[0];
out[2] = in[1];
break;
case PIOS_HMC5X83_ORIENTATION_NORTH_EAST_DOWN:
out[0] = in[0];
out[1] = in[2];
out[2] = in[1];
break;
}
}
/**
* @brief Read current X, Z, Y values (in that order)
* \param[in] dev device handler
* \param[out] int16_t array of size 3 to store X, Z, and Y magnetometer readings
* \return 0 for success or -1 for failure
*/
int32_t PIOS_HMC5x83_ReadMag(pios_hmc5x83_dev_t handler, int16_t out[3])
{
pios_hmc5x83_dev_data_t *dev = dev_validate(handler);
dev->data_ready = false;
uint8_t buffer[6];
int16_t temp[3];
int32_t sensitivity;
if (dev->cfg->Driver->Read(handler, PIOS_HMC5x83_DATAOUT_XMSB_REG, buffer, 6) != 0) {
return -1;
}
switch (dev->CTRLB & 0xE0) {
case 0x00:
sensitivity = PIOS_HMC5x83_Sensitivity_0_88Ga;
break;
case 0x20:
sensitivity = PIOS_HMC5x83_Sensitivity_1_3Ga;
break;
case 0x40:
sensitivity = PIOS_HMC5x83_Sensitivity_1_9Ga;
break;
case 0x60:
sensitivity = PIOS_HMC5x83_Sensitivity_2_5Ga;
break;
case 0x80:
sensitivity = PIOS_HMC5x83_Sensitivity_4_0Ga;
break;
case 0xA0:
sensitivity = PIOS_HMC5x83_Sensitivity_4_7Ga;
break;
case 0xC0:
sensitivity = PIOS_HMC5x83_Sensitivity_5_6Ga;
break;
case 0xE0:
sensitivity = PIOS_HMC5x83_Sensitivity_8_1Ga;
break;
default:
PIOS_Assert(0);
}
for (int i = 0; i < 3; i++) {
int16_t v = ((int16_t)((uint16_t)buffer[2 * i] << 8)
+ buffer[2 * i + 1]) * 1000 / sensitivity;
temp[i] = v;
}
PIOS_HMC5x83_Orient(dev->cfg->Orientation, temp, out);
// "This should not be necessary but for some reason it is coming out of continuous conversion mode"
//
// By default the chip is in single read mode meaning after reading from it once, it will go idle to save power.
// Once idle, we have write to it to turn it on before we can read from it again.
// To conserve current between measurements, the device is placed in a state similar to idle mode, but the
// Mode Register is not changed to Idle Mode. That is, MD[n] bits are unchanged.
dev->cfg->Driver->Write(handler, PIOS_HMC5x83_MODE_REG, PIOS_HMC5x83_MODE_CONTINUOUS);
return 0;
}
/**
* @brief Read the identification bytes from the HMC5x83 sensor
* \param[out] uint8_t array of size 4 to store HMC5x83 ID.
* \return 0 if successful, -1 if not
*/
uint8_t PIOS_HMC5x83_ReadID(pios_hmc5x83_dev_t handler, uint8_t out[4])
{
pios_hmc5x83_dev_data_t *dev = dev_validate(handler);
uint8_t retval = dev->cfg->Driver->Read(handler, PIOS_HMC5x83_DATAOUT_IDA_REG, out, 3);
out[3] = '\0';
return retval;
}
/**
* @brief Tells whether new magnetometer readings are available
* \return true if new data is available
* \return false if new data is not available
*/
bool PIOS_HMC5x83_NewDataAvailable(__attribute__((unused)) pios_hmc5x83_dev_t handler)
{
pios_hmc5x83_dev_data_t *dev = dev_validate(handler);
#ifdef PIOS_HMC5X83_HAS_GPIOS
if (dev->cfg->exti_cfg) { // if this device has an interrupt line attached, then wait for interrupt to say data is ready
return dev->data_ready;
} else
#endif /* PIOS_HMC5X83_HAS_GPIOS */
{ // else poll to see if data is ready or just say "true" and set polling interval elsewhere
if (++(dev->magCount) >= dev->magCountMax) {
dev->magCount = 0;
return true;
} else {
return false;
}
}
}
/**
* @brief Run self-test operation. Do not call this during operational use!!
* \return 0 if success, -1 if test failed
*/
int32_t PIOS_HMC5x83_Test(pios_hmc5x83_dev_t handler)
{
int32_t failed = 0;
uint8_t registers[3] = { 0, 0, 0 };
uint8_t status;
uint8_t ctrl_a_read;
uint8_t ctrl_b_read;
uint8_t mode_read;
int16_t values[3];
pios_hmc5x83_dev_data_t *dev = dev_validate(handler);
#ifdef PIOS_INCLUDE_WDG
// give HMC5x83 on I2C some extra time to allow for reset, etc. if needed
// this is not in a loop, so it is safe
PIOS_WDG_Clear();
#endif /* PIOS_INCLUDE_WDG */
/* Verify that ID matches (HMC5x83 ID is null-terminated ASCII string "H43") */
char id[4];
PIOS_HMC5x83_ReadID(handler, (uint8_t *)id);
if ((id[0] != 'H') || (id[1] != '4') || (id[2] != '3')) { // Expect H43
return -1;
}
/* Backup existing configuration */
if (dev->cfg->Driver->Read(handler, PIOS_HMC5x83_CONFIG_REG_A, registers, 3) != 0) {
return -1;
}
/* Stop the device and read out last value */
PIOS_DELAY_WaitmS(10);
if (dev->cfg->Driver->Write(handler, PIOS_HMC5x83_MODE_REG, PIOS_HMC5x83_MODE_IDLE) != 0) {
return -1;
}
if (dev->cfg->Driver->Read(handler, PIOS_HMC5x83_DATAOUT_STATUS_REG, &status, 1) != 0) {
return -1;
}
if (PIOS_HMC5x83_ReadMag(handler, values) != 0) {
return -1;
}
/*
* Put HMC5x83 into self test mode
* This is done by placing measurement config into positive (0x01) or negative (0x10) bias
* and then placing the mode register into single-measurement mode. This causes the HMC5x83
* to create an artificial magnetic field of ~1.1 Gauss.
*
* If gain were PIOS_HMC5x83_GAIN_2_5, for example, X and Y will read around +766 LSB
* (1.16 Ga * 660 LSB/Ga) and Z would read around +713 LSB (1.08 Ga * 660 LSB/Ga)
*
* Changing measurement config back to PIOS_HMC5x83_MEASCONF_NORMAL will leave self-test mode.
*/
PIOS_DELAY_WaitmS(10);
if (dev->cfg->Driver->Write(handler, PIOS_HMC5x83_CONFIG_REG_A, PIOS_HMC5x83_MEASCONF_BIAS_POS | PIOS_HMC5x83_ODR_15) != 0) {
return -1;
}
PIOS_DELAY_WaitmS(10);
if (dev->cfg->Driver->Write(handler, PIOS_HMC5x83_CONFIG_REG_B, PIOS_HMC5x83_GAIN_8_1) != 0) {
return -1;
}
PIOS_DELAY_WaitmS(10);
if (dev->cfg->Driver->Write(handler, PIOS_HMC5x83_MODE_REG, PIOS_HMC5x83_MODE_SINGLE) != 0) {
return -1;
}
/* Must wait for value to be updated */
PIOS_DELAY_WaitmS(200);
if (PIOS_HMC5x83_ReadMag(handler, values) != 0) {
return -1;
}
dev->cfg->Driver->Read(handler, PIOS_HMC5x83_CONFIG_REG_A, &ctrl_a_read, 1);
dev->cfg->Driver->Read(handler, PIOS_HMC5x83_CONFIG_REG_B, &ctrl_b_read, 1);
dev->cfg->Driver->Read(handler, PIOS_HMC5x83_MODE_REG, &mode_read, 1);
dev->cfg->Driver->Read(handler, PIOS_HMC5x83_DATAOUT_STATUS_REG, &status, 1);
/* Restore backup configuration */
PIOS_DELAY_WaitmS(10);
if (dev->cfg->Driver->Write(handler, PIOS_HMC5x83_CONFIG_REG_A, registers[0]) != 0) {
return -1;
}
PIOS_DELAY_WaitmS(10);
if (dev->cfg->Driver->Write(handler, PIOS_HMC5x83_CONFIG_REG_B, registers[1]) != 0) {
return -1;
}
PIOS_DELAY_WaitmS(10);
if (dev->cfg->Driver->Write(handler, PIOS_HMC5x83_MODE_REG, registers[2]) != 0) {
return -1;
}
return failed;
}
#ifdef PIOS_HMC5X83_HAS_GPIOS
/**
* @brief IRQ Handler
*/
bool PIOS_HMC5x83_IRQHandler(pios_hmc5x83_dev_t handler)
{
if (!handler) { // handler is not set on first call
return false;
}
pios_hmc5x83_dev_data_t *dev = dev_validate(handler);
dev->data_ready = true;
return false;
}
#endif /* PIOS_HMC5X83_HAS_GPIOS */
#ifdef PIOS_INCLUDE_SPI
int32_t PIOS_HMC5x83_SPI_Read(pios_hmc5x83_dev_t handler, uint8_t address, uint8_t *buffer, uint8_t len);
int32_t PIOS_HMC5x83_SPI_Write(pios_hmc5x83_dev_t handler, uint8_t address, uint8_t buffer);
const struct pios_hmc5x83_io_driver PIOS_HMC5x83_SPI_DRIVER = {
.Read = PIOS_HMC5x83_SPI_Read,
.Write = PIOS_HMC5x83_SPI_Write,
};
static int32_t pios_hmc5x83_spi_claim_bus(pios_hmc5x83_dev_data_t *dev)
{
if (PIOS_SPI_ClaimBus(dev->port_id) < 0) {
return -1;
}
PIOS_SPI_SetClockSpeed(dev->port_id, SPI_BaudRatePrescaler_16);
PIOS_SPI_RC_PinSet(dev->port_id, dev->slave_num, 0);
return 0;
}
static void pios_hmc5x83_spi_release_bus(pios_hmc5x83_dev_data_t *dev)
{
PIOS_SPI_RC_PinSet(dev->port_id, dev->slave_num, 1);
PIOS_SPI_ReleaseBus(dev->port_id);
}
/**
* @brief Reads one or more bytes into a buffer
* \param[in] address HMC5x83 register address (depends on size)
* \param[out] buffer destination buffer
* \param[in] len number of bytes which should be read
* \return 0 if operation was successful
* \return -1 if error during I2C transfer
* \return -2 if unable to claim i2c device
*/
int32_t PIOS_HMC5x83_SPI_Read(pios_hmc5x83_dev_t handler, uint8_t address, uint8_t *buffer, uint8_t len)
{
pios_hmc5x83_dev_data_t *dev = dev_validate(handler);
if (pios_hmc5x83_spi_claim_bus(dev) < 0) {
return -1;
}
memset(buffer, 0xA5, len);
PIOS_SPI_TransferByte(dev->port_id, address | PIOS_HMC5x83_SPI_AUTOINCR_FLAG | PIOS_HMC5x83_SPI_READ_FLAG);
// buffer[0] = address | PIOS_HMC5x83_SPI_AUTOINCR_FLAG | PIOS_HMC5x83_SPI_READ_FLAG;
/* Copy the transfer data to the buffer */
if (PIOS_SPI_TransferBlock(dev->port_id, NULL, buffer, len, NULL) < 0) {
pios_hmc5x83_spi_release_bus(dev);
return -3;
}
pios_hmc5x83_spi_release_bus(dev);
return 0;
}
/**
* @brief Writes one or more bytes to the HMC5x83
* \param[in] address Register address
* \param[in] buffer source buffer
* \return 0 if operation was successful
* \return -1 if error during I2C transfer
* \return -2 if unable to claim spi device
*/
int32_t PIOS_HMC5x83_SPI_Write(pios_hmc5x83_dev_t handler, uint8_t address, uint8_t buffer)
{
pios_hmc5x83_dev_data_t *dev = dev_validate(handler);
if (pios_hmc5x83_spi_claim_bus(dev) < 0) {
return -1;
}
uint8_t data[] = {
address | PIOS_HMC5x83_SPI_AUTOINCR_FLAG,
buffer,
};
if (PIOS_SPI_TransferBlock(dev->port_id, data, NULL, sizeof(data), NULL) < 0) {
pios_hmc5x83_spi_release_bus(dev);
return -2;
}
pios_hmc5x83_spi_release_bus(dev);
return 0;
}
#endif /* PIOS_INCLUDE_SPI */
#ifdef PIOS_INCLUDE_I2C
int32_t PIOS_HMC5x83_I2C_Read(pios_hmc5x83_dev_t handler, uint8_t address, uint8_t *buffer, uint8_t len);
int32_t PIOS_HMC5x83_I2C_Write(pios_hmc5x83_dev_t handler, uint8_t address, uint8_t buffer);
const struct pios_hmc5x83_io_driver PIOS_HMC5x83_I2C_DRIVER = {
.Read = PIOS_HMC5x83_I2C_Read,
.Write = PIOS_HMC5x83_I2C_Write,
};
/**
* @brief Reads one or more bytes into a buffer
* \param[in] address HMC5x83 register address (depends on size)
* \param[out] buffer destination buffer
* \param[in] len number of bytes which should be read
* \return 0 if operation was successful
* \return -1 if error during I2C transfer
* \return -2 if unable to claim i2c device
*/
int32_t PIOS_HMC5x83_I2C_Read(pios_hmc5x83_dev_t handler, uint8_t address, uint8_t *buffer, uint8_t len)
{
pios_hmc5x83_dev_data_t *dev = dev_validate(handler);
uint8_t addr_buffer[] = {
address,
};
const struct pios_i2c_txn txn_list[] = {
{
.info = __func__,
.addr = PIOS_HMC5x83_I2C_ADDR,
.rw = PIOS_I2C_TXN_WRITE,
.len = sizeof(addr_buffer),
.buf = addr_buffer,
}
,
{
.info = __func__,
.addr = PIOS_HMC5x83_I2C_ADDR,
.rw = PIOS_I2C_TXN_READ,
.len = len,
.buf = buffer,
}
};
return PIOS_I2C_Transfer(dev->port_id, txn_list, NELEMENTS(txn_list));
}
/**
* @brief Writes one or more bytes to the HMC5x83
* \param[in] address Register address
* \param[in] buffer source buffer
* \return 0 if operation was successful
* \return -1 if error during I2C transfer
* \return -2 if unable to claim i2c device
*/
int32_t PIOS_HMC5x83_I2C_Write(pios_hmc5x83_dev_t handler, uint8_t address, uint8_t buffer)
{
pios_hmc5x83_dev_data_t *dev = dev_validate(handler);
uint8_t data[] = {
address,
buffer,
};
const struct pios_i2c_txn txn_list[] = {
{
.info = __func__,
.addr = PIOS_HMC5x83_I2C_ADDR,
.rw = PIOS_I2C_TXN_WRITE,
.len = sizeof(data),
.buf = data,
}
,
};
;
return PIOS_I2C_Transfer(dev->port_id, txn_list, NELEMENTS(txn_list));
}
#endif /* PIOS_INCLUDE_I2C */
/* PIOS sensor driver implementation */
bool PIOS_HMC5x83_driver_Test(__attribute__((unused)) uintptr_t context)
{
return true; // Do not do tests now, Sensors module takes this rather too seriously.
}
void PIOS_HMC5x83_driver_Reset(__attribute__((unused)) uintptr_t context) {}
void PIOS_HMC5x83_driver_get_scale(float *scales, uint8_t size, __attribute__((unused)) uintptr_t context)
{
PIOS_Assert(size > 0);
scales[0] = 1;
}
void PIOS_HMC5x83_driver_fetch(void *data, uint8_t size, uintptr_t context)
{
PIOS_Assert(size > 0);
pios_hmc5x83_dev_data_t *dev = dev_validate((pios_hmc5x83_dev_t)context);
PIOS_SENSORS_3Axis_SensorsWithTemp *tmp = data;
tmp->count = 1;
tmp->sample[0].x = dev->magData[0];
tmp->sample[0].y = dev->magData[1];
tmp->sample[0].z = dev->magData[2];
tmp->temperature = 0;
}
bool PIOS_HMC5x83_driver_poll(uintptr_t context)
{
pios_hmc5x83_dev_data_t *dev = dev_validate((pios_hmc5x83_dev_t)context);
if (dev->hw_error) {
if (PIOS_DELAY_DiffuS(dev->lastConfigTime) < 1000000) {
return false;
}
#ifdef PIOS_INCLUDE_WDG
// give HMC5x83 on I2C some extra time
PIOS_WDG_Clear();
#endif /* PIOS_INCLUDE_WDG */
if (PIOS_HMC5x83_Config(dev) == 0) {
dev->hw_error = false;
}
}
if (dev->hw_error) {
return false;
}
if (!PIOS_HMC5x83_NewDataAvailable((pios_hmc5x83_dev_t)context)) {
return false;
}
if (PIOS_HMC5x83_ReadMag((pios_hmc5x83_dev_t)context, dev->magData) != 0) {
dev->hw_error = true;
return false;
}
return true;
}
#endif /* PIOS_INCLUDE_HMC5x83 */
/**
* @}
* @}
*/