1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-01-06 17:46:07 +01:00
LibrePilot/flight/libraries/paths.c
2016-04-25 18:45:35 +02:00

277 lines
11 KiB
C

/**
******************************************************************************
*
* @file paths.c
* @author The LibrePilot Project, http://www.librepilot.org Copyright (C) 2016.
* The OpenPilot Team, http://www.openpilot.org Copyright (C) 2015.
*
* @brief Library path manipulation
*
* @see The GNU Public License (GPL) Version 3
*
* @addtogroup LibrePilotLibraries LibrePilot Libraries Navigation
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <pios.h>
#include <pios_math.h>
#include <mathmisc.h>
#include "uavobjectmanager.h" // <--.
#include "pathdesired.h" // <-- needed only for correct ENUM macro usage with path modes (PATHDESIRED_MODE_xxx,
#include "paths.h"
// no direct UAVObject usage allowed in this file
// private functions
static void path_endpoint(PathDesiredData *path, float *cur_point, struct path_status *status, bool mode);
static void path_vector(PathDesiredData *path, float *cur_point, struct path_status *status, bool mode);
static void path_circle(PathDesiredData *path, float *cur_point, struct path_status *status, bool clockwise);
/**
* @brief Compute progress along path and deviation from it
* @param[in] path PathDesired structure
* @param[in] cur_point Current location
* @param[out] status Structure containing progress along path and deviation
*/
void path_progress(PathDesiredData *path, float *cur_point, struct path_status *status, bool mode3D)
{
switch (path->Mode) {
case PATHDESIRED_MODE_BRAKE:
case PATHDESIRED_MODE_FOLLOWVECTOR:
return path_vector(path, cur_point, status, mode3D);
break;
case PATHDESIRED_MODE_CIRCLERIGHT:
return path_circle(path, cur_point, status, true);
break;
case PATHDESIRED_MODE_CIRCLELEFT:
return path_circle(path, cur_point, status, false);
break;
case PATHDESIRED_MODE_GOTOENDPOINT:
case PATHDESIRED_MODE_AUTOTAKEOFF: // needed for pos hold at end of takeoff
return path_endpoint(path, cur_point, status, mode3D);
break;
case PATHDESIRED_MODE_LAND:
default:
// use the endpoint as default failsafe if called in unknown modes
return path_endpoint(path, cur_point, status, false);
break;
}
}
/**
* @brief Compute progress towards endpoint. Deviation equals distance
* @param[in] path PathDesired
* @param[in] cur_point Current location
* @param[out] status Structure containing progress along path and deviation
* @param[in] mode3D set true to include altitude in distance and progress calculation
*/
static void path_endpoint(PathDesiredData *path, float *cur_point, struct path_status *status, bool mode3D)
{
float diff[3];
float dist_path, dist_diff;
// Distance to go
status->path_vector[0] = path->End.North - path->Start.North;
status->path_vector[1] = path->End.East - path->Start.East;
status->path_vector[2] = mode3D ? path->End.Down - path->Start.Down : 0.0f;
// Current progress location relative to end
diff[0] = path->End.North - cur_point[0];
diff[1] = path->End.East - cur_point[1];
diff[2] = mode3D ? path->End.Down - cur_point[2] : 0.0f;
dist_diff = vector_lengthf(diff, 3);
dist_path = vector_lengthf(status->path_vector, 3);
if (dist_diff < 1e-6f) {
status->fractional_progress = 1;
status->error = 0.0f;
status->correction_vector[0] = status->correction_vector[1] = status->correction_vector[2] = 0.0f;
// we have no base movement direction in this mode
status->path_vector[0] = status->path_vector[1] = status->path_vector[2] = 0.0f;
return;
}
if (fmaxf(dist_path, 1.0f) > dist_diff) {
status->fractional_progress = 1 - dist_diff / fmaxf(dist_path, 1.0f);
} else {
status->fractional_progress = 0; // we don't want fractional_progress to become negative
}
status->error = dist_diff;
// Compute correction vector
status->correction_vector[0] = diff[0];
status->correction_vector[1] = diff[1];
status->correction_vector[2] = diff[2];
// base movement direction in this mode is a constant velocity offset on top of correction in the same direction
status->path_vector[0] = path->EndingVelocity * status->correction_vector[0] / dist_diff;
status->path_vector[1] = path->EndingVelocity * status->correction_vector[1] / dist_diff;
status->path_vector[2] = path->EndingVelocity * status->correction_vector[2] / dist_diff;
}
/**
* @brief Compute progress along path and deviation from it
* @param[in] path PathDesired
* @param[in] cur_point Current location
* @param[out] status Structure containing progress along path and deviation
* @param[in] mode3D set true to include altitude in distance and progress calculation
*/
static void path_vector(PathDesiredData *path, float *cur_point, struct path_status *status, bool mode3D)
{
float diff[3];
float dist_path;
float dot;
float velocity;
float track_point[3];
// Distance to go
status->path_vector[0] = path->End.North - path->Start.North;
status->path_vector[1] = path->End.East - path->Start.East;
status->path_vector[2] = mode3D ? path->End.Down - path->Start.Down : 0.0f;
// Current progress location relative to start
diff[0] = cur_point[0] - path->Start.North;
diff[1] = cur_point[1] - path->Start.East;
diff[2] = mode3D ? cur_point[2] - path->Start.Down : 0.0f;
dot = status->path_vector[0] * diff[0] + status->path_vector[1] * diff[1] + status->path_vector[2] * diff[2];
dist_path = vector_lengthf(status->path_vector, 3);
if (dist_path > 1e-6f) {
// Compute direction to travel & progress
status->fractional_progress = dot / (dist_path * dist_path);
} else {
// Fly towards the endpoint to prevent flying away,
// but assume progress=1 either way.
path_endpoint(path, cur_point, status, mode3D);
status->fractional_progress = 1;
return;
}
// Compute point on track that is closest to our current position.
track_point[0] = status->fractional_progress * status->path_vector[0] + path->Start.North;
track_point[1] = status->fractional_progress * status->path_vector[1] + path->Start.East;
track_point[2] = status->fractional_progress * status->path_vector[2] + path->Start.Down;
status->correction_vector[0] = track_point[0] - cur_point[0];
status->correction_vector[1] = track_point[1] - cur_point[1];
status->correction_vector[2] = track_point[2] - cur_point[2];
status->error = vector_lengthf(status->correction_vector, 3);
// correct movement vector to current velocity
velocity = path->StartingVelocity + boundf(status->fractional_progress, 0.0f, 1.0f) * (path->EndingVelocity - path->StartingVelocity);
status->path_vector[0] = velocity * status->path_vector[0] / dist_path;
status->path_vector[1] = velocity * status->path_vector[1] / dist_path;
status->path_vector[2] = velocity * status->path_vector[2] / dist_path;
}
/**
* @brief Compute progress along circular path and deviation from it
* @param[in] path PathDesired
* @param[in] cur_point Current location
* @param[out] status Structure containing progress along path and deviation
*/
static void path_circle(PathDesiredData *path, float *cur_point, struct path_status *status, bool clockwise)
{
float radius_north, radius_east, diff_north, diff_east, diff_down;
float radius, cradius;
float normal[2];
float progress;
float a_diff, a_radius;
// Radius
radius_north = path->End.North - path->Start.North;
radius_east = path->End.East - path->Start.East;
// Current location relative to center
diff_north = cur_point[0] - path->End.North;
diff_east = cur_point[1] - path->End.East;
diff_down = cur_point[2] - path->End.Down;
radius = sqrtf(squaref(radius_north) + squaref(radius_east));
cradius = sqrtf(squaref(diff_north) + squaref(diff_east));
// circles are always horizontal (for now - TODO: allow 3d circles - problem: clockwise/counterclockwise does no longer apply)
status->path_vector[2] = 0.0f;
// error is current radius minus wanted radius - positive if too close
status->error = radius - cradius;
if (cradius < 1e-6f) {
// cradius is zero, just fly somewhere
status->fractional_progress = 1;
status->correction_vector[0] = 0;
status->correction_vector[1] = 0;
status->path_vector[0] = path->EndingVelocity;
status->path_vector[1] = 0;
} else {
if (clockwise) {
// Compute the normal to the radius clockwise
normal[0] = -diff_east / cradius;
normal[1] = diff_north / cradius;
} else {
// Compute the normal to the radius counter clockwise
normal[0] = diff_east / cradius;
normal[1] = -diff_north / cradius;
}
// normalize progress to 0..1
a_diff = atan2f(diff_north, diff_east);
a_radius = atan2f(radius_north, radius_east);
if (a_diff < 0) {
a_diff += 2.0f * M_PI_F;
}
if (a_radius < 0) {
a_radius += 2.0f * M_PI_F;
}
progress = (a_diff - a_radius + M_PI_F) / (2.0f * M_PI_F);
if (progress < 0.0f) {
progress += 1.0f;
} else if (progress >= 1.0f) {
progress -= 1.0f;
}
if (clockwise) {
progress = 1.0f - progress;
}
status->fractional_progress = progress;
// Compute direction to travel
status->path_vector[0] = normal[0] * path->EndingVelocity;
status->path_vector[1] = normal[1] * path->EndingVelocity;
// Compute direction to correct error
status->correction_vector[0] = status->error * diff_north / cradius;
status->correction_vector[1] = status->error * diff_east / cradius;
}
status->correction_vector[2] = -diff_down;
status->error = fabs(status->error);
}