1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-01-19 04:52:12 +01:00
LibrePilot/flight/modules/PathFollower/grounddrivecontroller.cpp

302 lines
11 KiB
C++

/*
******************************************************************************
*
* @file grounddrivecontroller.cpp
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2015.
* @brief Ground drive controller
* the required PathDesired LAND mode.
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
extern "C" {
#include <openpilot.h>
#include <math.h>
#include <pid.h>
#include <CoordinateConversions.h>
#include <sin_lookup.h>
#include <pathdesired.h>
#include <paths.h>
#include "plans.h"
#include <sanitycheck.h>
#include <homelocation.h>
#include <accelstate.h>
#include <groundpathfollowersettings.h>
#include <flightstatus.h>
#include <flightmodesettings.h>
#include <pathstatus.h>
#include <positionstate.h>
#include <velocitystate.h>
#include <velocitydesired.h>
#include <stabilizationdesired.h>
#include <airspeedstate.h>
#include <attitudestate.h>
#include <takeofflocation.h>
#include <poilocation.h>
#include <manualcontrolcommand.h>
#include <systemsettings.h>
#include <stabilizationbank.h>
#include <stabilizationdesired.h>
#include <pathsummary.h>
#include <statusgrounddrive.h>
}
// C++ includes
#include "grounddrivecontroller.h"
// Private constants
// pointer to a singleton instance
GroundDriveController *GroundDriveController::p_inst = 0;
GroundDriveController::GroundDriveController()
: groundSettings(0), mActive(false), mMode(0)
{}
// Called when mode first engaged
void GroundDriveController::Activate(void)
{
if (!mActive) {
mActive = true;
SettingsUpdated();
controlNE.Activate();
mMode = pathDesired->Mode;
}
}
uint8_t GroundDriveController::IsActive(void)
{
return mActive;
}
uint8_t GroundDriveController::Mode(void)
{
return mMode;
}
// Objective updated in pathdesired
void GroundDriveController::ObjectiveUpdated(void)
{}
void GroundDriveController::Deactivate(void)
{
if (mActive) {
mActive = false;
controlNE.Deactivate();
}
}
void GroundDriveController::SettingsUpdated(void)
{
const float dT = groundSettings->UpdatePeriod / 1000.0f;
controlNE.UpdatePositionalParameters(groundSettings->HorizontalPosP);
controlNE.UpdateParameters(groundSettings->SpeedPI.Kp,
groundSettings->SpeedPI.Ki,
groundSettings->SpeedPI.Kd,
groundSettings->SpeedPI.Beta,
dT,
groundSettings->HorizontalVelMax);
// max/min are NE command values equivalent to thrust but must be symmetrical as this is NE not forward/reverse.
controlNE.UpdateCommandParameters(-groundSettings->ThrustLimit.Max, groundSettings->ThrustLimit.Max, groundSettings->VelocityFeedForward);
}
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
int32_t GroundDriveController::Initialize(GroundPathFollowerSettingsData *ptr_groundSettings)
{
PIOS_Assert(ptr_groundSettings);
groundSettings = ptr_groundSettings;
return 0;
}
void GroundDriveController::UpdateAutoPilot()
{
uint8_t result = updateAutoPilotGround();
if (result) {
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
} else {
pathStatus->Status = PATHSTATUS_STATUS_CRITICAL;
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_WARNING);
}
PathStatusSet(pathStatus);
}
/**
* fixed wing autopilot:
* straight forward:
* 1. update path velocity for limited motion crafts
* 2. update attitude according to default fixed wing pathfollower algorithm
*/
uint8_t GroundDriveController::updateAutoPilotGround()
{
updatePathVelocity(groundSettings->CourseFeedForward);
return updateGroundDesiredAttitude();
}
/**
* Compute desired velocity from the current position and path
*/
void GroundDriveController::updatePathVelocity(float kFF)
{
PositionStateData positionState;
PositionStateGet(&positionState);
VelocityStateData velocityState;
VelocityStateGet(&velocityState);
VelocityDesiredData velocityDesired;
controlNE.UpdateVelocityState(velocityState.North, velocityState.East);
// look ahead kFF seconds
float cur[3] = { positionState.North + (velocityState.North * kFF),
positionState.East + (velocityState.East * kFF),
positionState.Down + (velocityState.Down * kFF) };
struct path_status progress;
path_progress(pathDesired, cur, &progress, false);
// GOTOENDPOINT: correction_vector is distance array to endpoint, path_vector is velocity vector
// FOLLOWVECTOR: correct_vector is distance to vector path, path_vector is the desired velocity vector
// Calculate the desired velocity from the lateral vector path errors (correct_vector) and the desired velocity vector (path_vector)
controlNE.ControlPositionWithPath(&progress);
float north, east;
controlNE.GetVelocityDesired(&north, &east);
velocityDesired.North = north;
velocityDesired.East = east;
velocityDesired.Down = 0.0f;
// update pathstatus
pathStatus->error = progress.error;
pathStatus->fractional_progress = progress.fractional_progress;
// FOLLOWVECTOR: desired velocity vector
pathStatus->path_direction_north = progress.path_vector[0];
pathStatus->path_direction_east = progress.path_vector[1];
pathStatus->path_direction_down = progress.path_vector[2];
// FOLLOWVECTOR: correction distance to vector path
pathStatus->correction_direction_north = progress.correction_vector[0];
pathStatus->correction_direction_east = progress.correction_vector[1];
pathStatus->correction_direction_down = progress.correction_vector[2];
VelocityDesiredSet(&velocityDesired);
}
/**
* Compute desired attitude for ground vehicles
*/
uint8_t GroundDriveController::updateGroundDesiredAttitude()
{
StatusGroundDriveData statusGround;
VelocityStateData velocityState;
VelocityStateGet(&velocityState);
AttitudeStateData attitudeState;
AttitudeStateGet(&attitudeState);
statusGround.State.Yaw = attitudeState.Yaw;
statusGround.State.Velocity = sqrtf(velocityState.North * velocityState.North + velocityState.East * velocityState.East);
StabilizationDesiredData stabDesired;
StabilizationDesiredGet(&stabDesired);
// estimate a north/east command value to control the velocity error.
// ThrustLimits.Max(+-) limits the range. Think of this as a command unit vector
// of the ultimate direction to reduce lateral error and achieve the target direction (desired angle).
float northCommand, eastCommand;
controlNE.GetNECommand(&northCommand, &eastCommand);
// Get current vehicle orientation
float angle_radians = DEG2RAD(attitudeState.Yaw); // (+-pi)
float cos_angle = cosf(angle_radians);
float sine_angle = sinf(angle_radians);
float courseCommand = 0.0f;
float speedCommand = 0.0f;
float lateralCommand = boundf(-northCommand * sine_angle + eastCommand * cos_angle, -groundSettings->ThrustLimit.Max, groundSettings->ThrustLimit.Max);
float forwardCommand = boundf(northCommand * cos_angle + eastCommand * sine_angle, -groundSettings->ThrustLimit.Max, groundSettings->ThrustLimit.Max);
// +ve facing correct direction, lateral command should just correct angle,
if (forwardCommand > 0.0f) {
// if +ve forward command, -+ lateralCommand drives steering to manage lateral error and angular error
courseCommand = boundf(lateralCommand, -1.0f, 1.0f);
speedCommand = boundf(forwardCommand, groundSettings->ThrustLimit.SlowForward, groundSettings->ThrustLimit.Max);
// reinstate max thrust
controlNE.UpdateCommandParameters(-groundSettings->ThrustLimit.Max, groundSettings->ThrustLimit.Max, groundSettings->VelocityFeedForward);
statusGround.ControlState = STATUSGROUNDDRIVE_CONTROLSTATE_ONTRACK;
} else {
// -ve facing opposite direction, lateral command irrelevant, need to turn to change direction and do so slowly.
// Reduce steering angle based on current velocity
float steeringReductionFactor = 1.0f;
if (stabDesired.Thrust > 0.3f) {
steeringReductionFactor = (groundSettings->HorizontalVelMax - statusGround.State.Velocity) / groundSettings->HorizontalVelMax;
steeringReductionFactor = boundf(steeringReductionFactor, 0.05f, 1.0f);
}
// should we turn left or right?
if (lateralCommand >= 0.1f) {
courseCommand = 1.0f * steeringReductionFactor;
statusGround.ControlState = STATUSGROUNDDRIVE_CONTROLSTATE_TURNAROUNDRIGHT;
} else {
courseCommand = -1.0f * steeringReductionFactor;
statusGround.ControlState = STATUSGROUNDDRIVE_CONTROLSTATE_TURNAROUNDLEFT;
}
// Impose limits to slow down.
controlNE.UpdateCommandParameters(-groundSettings->ThrustLimit.SlowForward, groundSettings->ThrustLimit.SlowForward, 0.0f);
speedCommand = groundSettings->ThrustLimit.SlowForward;
}
stabDesired.Roll = 0.0f;
stabDesired.Pitch = 0.0f;
stabDesired.Yaw = courseCommand;
// Mix yaw into thrust limit TODO
stabDesired.Thrust = boundf(speedCommand, groundSettings->ThrustLimit.Min, groundSettings->ThrustLimit.Max);
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
StabilizationDesiredSet(&stabDesired);
statusGround.NECommand.North = northCommand;
statusGround.NECommand.East = eastCommand;
statusGround.State.Thrust = stabDesired.Thrust;
statusGround.BodyCommand.Forward = forwardCommand;
statusGround.BodyCommand.Right = lateralCommand;
statusGround.ControlCommand.Course = courseCommand;
statusGround.ControlCommand.Speed = speedCommand;
StatusGroundDriveSet(&statusGround);
return 1;
}