mirror of
https://bitbucket.org/librepilot/librepilot.git
synced 2025-01-09 20:46:07 +01:00
955 lines
31 KiB
C
955 lines
31 KiB
C
/**
|
|
******************************************************************************
|
|
* @addtogroup OpenPilotModules OpenPilot Modules
|
|
* @{
|
|
* @addtogroup Sensors
|
|
* @brief Acquires sensor data
|
|
* Specifically updates the the @ref Gyros, @ref Accels, and @ref Magnetometer objects
|
|
* @{
|
|
*
|
|
* @file sensors.c
|
|
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
|
|
* @brief Module to handle all comms to the AHRS on a periodic basis.
|
|
*
|
|
* @see The GNU Public License (GPL) Version 3
|
|
*
|
|
******************************************************************************/
|
|
/*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
/**
|
|
* Input objects: None, takes sensor data via pios
|
|
* Output objects: @ref Gyros @ref Accels @ref Magnetometer
|
|
*
|
|
* The module executes in its own thread.
|
|
*
|
|
* UAVObjects are automatically generated by the UAVObjectGenerator from
|
|
* the object definition XML file.
|
|
*
|
|
* Modules have no API, all communication to other modules is done through UAVObjects.
|
|
* However modules may use the API exposed by shared libraries.
|
|
* See the OpenPilot wiki for more details.
|
|
* http://www.openpilot.org/OpenPilot_Application_Architecture
|
|
*
|
|
*/
|
|
|
|
#include "pios.h"
|
|
#include "attitude.h"
|
|
|
|
#include "accels.h"
|
|
#include "actuatordesired.h"
|
|
#include "attitudeactual.h"
|
|
#include "attitudesimulated.h"
|
|
#include "attitudesettings.h"
|
|
#include "baroairspeed.h"
|
|
#include "baroaltitude.h"
|
|
#include "gyros.h"
|
|
#include "gyrosbias.h"
|
|
#include "flightstatus.h"
|
|
#include "gpsposition.h"
|
|
#include "gpsvelocity.h"
|
|
#include "homelocation.h"
|
|
#include "magnetometer.h"
|
|
#include "magbias.h"
|
|
#include "ratedesired.h"
|
|
#include "revocalibration.h"
|
|
#include "systemsettings.h"
|
|
|
|
#include "CoordinateConversions.h"
|
|
|
|
// Private constants
|
|
#define STACK_SIZE_BYTES 1540
|
|
#define TASK_PRIORITY (tskIDLE_PRIORITY+3)
|
|
#define SENSOR_PERIOD 2
|
|
|
|
#define F_PI 3.14159265358979323846f
|
|
#define PI_MOD(x) (fmod(x + F_PI, F_PI * 2) - F_PI)
|
|
// Private types
|
|
|
|
// Private variables
|
|
static xTaskHandle sensorsTaskHandle;
|
|
|
|
// Private functions
|
|
static void SensorsTask(void *parameters);
|
|
static void simulateConstant();
|
|
static void simulateModelAgnostic();
|
|
static void simulateModelQuadcopter();
|
|
static void simulateModelAirplane();
|
|
|
|
static void magOffsetEstimation(MagnetometerData *mag);
|
|
|
|
static float accel_bias[3];
|
|
|
|
static float rand_gauss();
|
|
|
|
enum sensor_sim_type {CONSTANT, MODEL_AGNOSTIC, MODEL_QUADCOPTER, MODEL_AIRPLANE} sensor_sim_type;
|
|
|
|
#define GRAV 9.81
|
|
/**
|
|
* Initialise the module. Called before the start function
|
|
* \returns 0 on success or -1 if initialisation failed
|
|
*/
|
|
int32_t SensorsInitialize(void)
|
|
{
|
|
|
|
accel_bias[0] = rand_gauss() / 10;
|
|
accel_bias[1] = rand_gauss() / 10;
|
|
accel_bias[2] = rand_gauss() / 10;
|
|
|
|
AccelsInitialize();
|
|
AttitudeSimulatedInitialize();
|
|
BaroAltitudeInitialize();
|
|
BaroAirspeedInitialize();
|
|
GyrosInitialize();
|
|
GyrosBiasInitialize();
|
|
GPSPositionInitialize();
|
|
GPSVelocityInitialize();
|
|
MagnetometerInitialize();
|
|
MagBiasInitialize();
|
|
RevoCalibrationInitialize();
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Start the task. Expects all objects to be initialized by this point.
|
|
*pick \returns 0 on success or -1 if initialisation failed
|
|
*/
|
|
int32_t SensorsStart(void)
|
|
{
|
|
// Start main task
|
|
xTaskCreate(SensorsTask, (signed char *)"Sensors", STACK_SIZE_BYTES/4, NULL, TASK_PRIORITY, &sensorsTaskHandle);
|
|
TaskMonitorAdd(TASKINFO_RUNNING_SENSORS, sensorsTaskHandle);
|
|
PIOS_WDG_RegisterFlag(PIOS_WDG_SENSORS);
|
|
|
|
return 0;
|
|
}
|
|
|
|
MODULE_INITCALL(SensorsInitialize, SensorsStart)
|
|
|
|
/**
|
|
* Simulated sensor task. Run a model of the airframe and produce sensor values
|
|
*/
|
|
int sensors_count;
|
|
static void SensorsTask(void *parameters)
|
|
{
|
|
portTickType lastSysTime;
|
|
|
|
AlarmsClear(SYSTEMALARMS_ALARM_SENSORS);
|
|
|
|
// HomeLocationData homeLocation;
|
|
// HomeLocationGet(&homeLocation);
|
|
// homeLocation.Latitude = 0;
|
|
// homeLocation.Longitude = 0;
|
|
// homeLocation.Altitude = 0;
|
|
// homeLocation.Be[0] = 26000;
|
|
// homeLocation.Be[1] = 400;
|
|
// homeLocation.Be[2] = 40000;
|
|
// homeLocation.Set = HOMELOCATION_SET_TRUE;
|
|
// HomeLocationSet(&homeLocation);
|
|
|
|
|
|
// Main task loop
|
|
lastSysTime = xTaskGetTickCount();
|
|
uint32_t last_time = PIOS_DELAY_GetRaw();
|
|
while (1) {
|
|
PIOS_WDG_UpdateFlag(PIOS_WDG_SENSORS);
|
|
|
|
SystemSettingsData systemSettings;
|
|
SystemSettingsGet(&systemSettings);
|
|
|
|
switch(systemSettings.AirframeType) {
|
|
case SYSTEMSETTINGS_AIRFRAMETYPE_FIXEDWING:
|
|
case SYSTEMSETTINGS_AIRFRAMETYPE_FIXEDWINGELEVON:
|
|
case SYSTEMSETTINGS_AIRFRAMETYPE_FIXEDWINGVTAIL:
|
|
sensor_sim_type = MODEL_AIRPLANE;
|
|
break;
|
|
case SYSTEMSETTINGS_AIRFRAMETYPE_QUADX:
|
|
case SYSTEMSETTINGS_AIRFRAMETYPE_QUADP:
|
|
case SYSTEMSETTINGS_AIRFRAMETYPE_VTOL:
|
|
case SYSTEMSETTINGS_AIRFRAMETYPE_HEXA:
|
|
case SYSTEMSETTINGS_AIRFRAMETYPE_OCTO:
|
|
sensor_sim_type = MODEL_QUADCOPTER;
|
|
break;
|
|
default:
|
|
sensor_sim_type = MODEL_AGNOSTIC;
|
|
}
|
|
|
|
static int i;
|
|
i++;
|
|
if (i % 5000 == 0) {
|
|
//float dT = PIOS_DELAY_DiffuS(last_time) / 10.0e6;
|
|
//fprintf(stderr, "Sensor relative timing: %f\n", dT);
|
|
last_time = PIOS_DELAY_GetRaw();
|
|
}
|
|
|
|
sensors_count++;
|
|
|
|
switch(sensor_sim_type) {
|
|
case CONSTANT:
|
|
simulateConstant();
|
|
break;
|
|
case MODEL_AGNOSTIC:
|
|
simulateModelAgnostic();
|
|
break;
|
|
case MODEL_QUADCOPTER:
|
|
simulateModelQuadcopter();
|
|
break;
|
|
case MODEL_AIRPLANE:
|
|
simulateModelAirplane();
|
|
}
|
|
|
|
vTaskDelay(2 / portTICK_RATE_MS);
|
|
|
|
}
|
|
}
|
|
|
|
static void simulateConstant()
|
|
{
|
|
AccelsData accelsData; // Skip get as we set all the fields
|
|
accelsData.x = 0;
|
|
accelsData.y = 0;
|
|
accelsData.z = -GRAV;
|
|
accelsData.temperature = 0;
|
|
AccelsSet(&accelsData);
|
|
|
|
GyrosData gyrosData; // Skip get as we set all the fields
|
|
gyrosData.x = 0;
|
|
gyrosData.y = 0;
|
|
gyrosData.z = 0;
|
|
|
|
// Apply bias correction to the gyros
|
|
GyrosBiasData gyrosBias;
|
|
GyrosBiasGet(&gyrosBias);
|
|
gyrosData.x += gyrosBias.x;
|
|
gyrosData.y += gyrosBias.y;
|
|
gyrosData.z += gyrosBias.z;
|
|
|
|
GyrosSet(&gyrosData);
|
|
|
|
BaroAltitudeData baroAltitude;
|
|
BaroAltitudeGet(&baroAltitude);
|
|
baroAltitude.Altitude = 1;
|
|
BaroAltitudeSet(&baroAltitude);
|
|
|
|
GPSPositionData gpsPosition;
|
|
GPSPositionGet(&gpsPosition);
|
|
gpsPosition.Latitude = 0;
|
|
gpsPosition.Longitude = 0;
|
|
gpsPosition.Altitude = 0;
|
|
GPSPositionSet(&gpsPosition);
|
|
|
|
// Because most crafts wont get enough information from gravity to zero yaw gyro, we try
|
|
// and make it average zero (weakly)
|
|
MagnetometerData mag;
|
|
mag.x = 400;
|
|
mag.y = 0;
|
|
mag.z = 800;
|
|
MagnetometerSet(&mag);
|
|
}
|
|
|
|
static void simulateModelAgnostic()
|
|
{
|
|
float Rbe[3][3];
|
|
float q[4];
|
|
|
|
// Simulate accels based on current attitude
|
|
AttitudeActualData attitudeActual;
|
|
AttitudeActualGet(&attitudeActual);
|
|
q[0] = attitudeActual.q1;
|
|
q[1] = attitudeActual.q2;
|
|
q[2] = attitudeActual.q3;
|
|
q[3] = attitudeActual.q4;
|
|
Quaternion2R(q,Rbe);
|
|
|
|
AccelsData accelsData; // Skip get as we set all the fields
|
|
accelsData.x = -GRAV * Rbe[0][2];
|
|
accelsData.y = -GRAV * Rbe[1][2];
|
|
accelsData.z = -GRAV * Rbe[2][2];
|
|
accelsData.temperature = 30;
|
|
AccelsSet(&accelsData);
|
|
|
|
RateDesiredData rateDesired;
|
|
RateDesiredGet(&rateDesired);
|
|
|
|
GyrosData gyrosData; // Skip get as we set all the fields
|
|
gyrosData.x = rateDesired.Roll + rand_gauss();
|
|
gyrosData.y = rateDesired.Pitch + rand_gauss();
|
|
gyrosData.z = rateDesired.Yaw + rand_gauss();
|
|
|
|
// Apply bias correction to the gyros
|
|
GyrosBiasData gyrosBias;
|
|
GyrosBiasGet(&gyrosBias);
|
|
gyrosData.x += gyrosBias.x;
|
|
gyrosData.y += gyrosBias.y;
|
|
gyrosData.z += gyrosBias.z;
|
|
|
|
GyrosSet(&gyrosData);
|
|
|
|
BaroAltitudeData baroAltitude;
|
|
BaroAltitudeGet(&baroAltitude);
|
|
baroAltitude.Altitude = 1;
|
|
BaroAltitudeSet(&baroAltitude);
|
|
|
|
GPSPositionData gpsPosition;
|
|
GPSPositionGet(&gpsPosition);
|
|
gpsPosition.Latitude = 0;
|
|
gpsPosition.Longitude = 0;
|
|
gpsPosition.Altitude = 0;
|
|
GPSPositionSet(&gpsPosition);
|
|
|
|
// Because most crafts wont get enough information from gravity to zero yaw gyro, we try
|
|
// and make it average zero (weakly)
|
|
MagnetometerData mag;
|
|
mag.x = 400;
|
|
mag.y = 0;
|
|
mag.z = 800;
|
|
MagnetometerSet(&mag);
|
|
}
|
|
|
|
float thrustToDegs = 50;
|
|
bool overideAttitude = false;
|
|
static void simulateModelQuadcopter()
|
|
{
|
|
static double pos[3] = {0,0,0};
|
|
static double vel[3] = {0,0,0};
|
|
static double ned_accel[3] = {0,0,0};
|
|
static float q[4] = {1,0,0,0};
|
|
static float rpy[3] = {0,0,0}; // Low pass filtered actuator
|
|
static float baro_offset = 0.0f;
|
|
float Rbe[3][3];
|
|
|
|
const float ACTUATOR_ALPHA = 0.8;
|
|
const float MAX_THRUST = GRAV * 2;
|
|
const float K_FRICTION = 1;
|
|
const float GPS_PERIOD = 0.1;
|
|
const float MAG_PERIOD = 1.0 / 75.0;
|
|
const float BARO_PERIOD = 1.0 / 20.0;
|
|
|
|
static uint32_t last_time;
|
|
|
|
float dT = (PIOS_DELAY_DiffuS(last_time) / 1e6);
|
|
if(dT < 1e-3)
|
|
dT = 2e-3;
|
|
last_time = PIOS_DELAY_GetRaw();
|
|
|
|
FlightStatusData flightStatus;
|
|
FlightStatusGet(&flightStatus);
|
|
ActuatorDesiredData actuatorDesired;
|
|
ActuatorDesiredGet(&actuatorDesired);
|
|
|
|
float thrust = (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMED) ? actuatorDesired.Throttle * MAX_THRUST : 0;
|
|
if (thrust < 0)
|
|
thrust = 0;
|
|
|
|
if (thrust != thrust)
|
|
thrust = 0;
|
|
|
|
// float control_scaling = thrust * thrustToDegs;
|
|
// // In rad/s
|
|
// rpy[0] = control_scaling * actuatorDesired.Roll * (1 - ACTUATOR_ALPHA) + rpy[0] * ACTUATOR_ALPHA;
|
|
// rpy[1] = control_scaling * actuatorDesired.Pitch * (1 - ACTUATOR_ALPHA) + rpy[1] * ACTUATOR_ALPHA;
|
|
// rpy[2] = control_scaling * actuatorDesired.Yaw * (1 - ACTUATOR_ALPHA) + rpy[2] * ACTUATOR_ALPHA;
|
|
//
|
|
// GyrosData gyrosData; // Skip get as we set all the fields
|
|
// gyrosData.x = rpy[0] * 180 / M_PI + rand_gauss();
|
|
// gyrosData.y = rpy[1] * 180 / M_PI + rand_gauss();
|
|
// gyrosData.z = rpy[2] * 180 / M_PI + rand_gauss();
|
|
|
|
RateDesiredData rateDesired;
|
|
RateDesiredGet(&rateDesired);
|
|
|
|
rpy[0] = (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMED) * rateDesired.Roll * (1 - ACTUATOR_ALPHA) + rpy[0] * ACTUATOR_ALPHA;
|
|
rpy[1] = (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMED) * rateDesired.Pitch * (1 - ACTUATOR_ALPHA) + rpy[1] * ACTUATOR_ALPHA;
|
|
rpy[2] = (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMED) * rateDesired.Yaw * (1 - ACTUATOR_ALPHA) + rpy[2] * ACTUATOR_ALPHA;
|
|
|
|
GyrosData gyrosData; // Skip get as we set all the fields
|
|
gyrosData.x = rpy[0] + rand_gauss();
|
|
gyrosData.y = rpy[1] + rand_gauss();
|
|
gyrosData.z = rpy[2] + rand_gauss();
|
|
GyrosSet(&gyrosData);
|
|
|
|
// Predict the attitude forward in time
|
|
float qdot[4];
|
|
qdot[0] = (-q[1] * rpy[0] - q[2] * rpy[1] - q[3] * rpy[2]) * dT * M_PI / 180 / 2;
|
|
qdot[1] = (q[0] * rpy[0] - q[3] * rpy[1] + q[2] * rpy[2]) * dT * M_PI / 180 / 2;
|
|
qdot[2] = (q[3] * rpy[0] + q[0] * rpy[1] - q[1] * rpy[2]) * dT * M_PI / 180 / 2;
|
|
qdot[3] = (-q[2] * rpy[0] + q[1] * rpy[1] + q[0] * rpy[2]) * dT * M_PI / 180 / 2;
|
|
|
|
// Take a time step
|
|
q[0] = q[0] + qdot[0];
|
|
q[1] = q[1] + qdot[1];
|
|
q[2] = q[2] + qdot[2];
|
|
q[3] = q[3] + qdot[3];
|
|
|
|
float qmag = sqrtf(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
|
|
q[0] = q[0] / qmag;
|
|
q[1] = q[1] / qmag;
|
|
q[2] = q[2] / qmag;
|
|
q[3] = q[3] / qmag;
|
|
|
|
if(overideAttitude){
|
|
AttitudeActualData attitudeActual;
|
|
AttitudeActualGet(&attitudeActual);
|
|
attitudeActual.q1 = q[0];
|
|
attitudeActual.q2 = q[1];
|
|
attitudeActual.q3 = q[2];
|
|
attitudeActual.q4 = q[3];
|
|
AttitudeActualSet(&attitudeActual);
|
|
}
|
|
|
|
static float wind[3] = {0,0,0};
|
|
wind[0] = wind[0] * 0.95 + rand_gauss() / 10.0;
|
|
wind[1] = wind[1] * 0.95 + rand_gauss() / 10.0;
|
|
wind[2] = wind[2] * 0.95 + rand_gauss() / 10.0;
|
|
|
|
Quaternion2R(q,Rbe);
|
|
// Make thrust negative as down is positive
|
|
ned_accel[0] = -thrust * Rbe[2][0];
|
|
ned_accel[1] = -thrust * Rbe[2][1];
|
|
// Gravity causes acceleration of 9.81 in the down direction
|
|
ned_accel[2] = -thrust * Rbe[2][2] + GRAV;
|
|
|
|
// Apply acceleration based on velocity
|
|
ned_accel[0] -= K_FRICTION * (vel[0] - wind[0]);
|
|
ned_accel[1] -= K_FRICTION * (vel[1] - wind[1]);
|
|
ned_accel[2] -= K_FRICTION * (vel[2] - wind[2]);
|
|
|
|
// Predict the velocity forward in time
|
|
vel[0] = vel[0] + ned_accel[0] * dT;
|
|
vel[1] = vel[1] + ned_accel[1] * dT;
|
|
vel[2] = vel[2] + ned_accel[2] * dT;
|
|
|
|
// Predict the position forward in time
|
|
pos[0] = pos[0] + vel[0] * dT;
|
|
pos[1] = pos[1] + vel[1] * dT;
|
|
pos[2] = pos[2] + vel[2] * dT;
|
|
|
|
// Simulate hitting ground
|
|
if(pos[2] > 0) {
|
|
pos[2] = 0;
|
|
vel[2] = 0;
|
|
ned_accel[2] = 0;
|
|
}
|
|
|
|
// Sensor feels gravity (when not acceleration in ned frame e.g. ned_accel[2] = 0)
|
|
ned_accel[2] -= 9.81;
|
|
|
|
// Transform the accels back in to body frame
|
|
AccelsData accelsData; // Skip get as we set all the fields
|
|
accelsData.x = ned_accel[0] * Rbe[0][0] + ned_accel[1] * Rbe[0][1] + ned_accel[2] * Rbe[0][2] + accel_bias[0];
|
|
accelsData.y = ned_accel[0] * Rbe[1][0] + ned_accel[1] * Rbe[1][1] + ned_accel[2] * Rbe[1][2] + accel_bias[1];
|
|
accelsData.z = ned_accel[0] * Rbe[2][0] + ned_accel[1] * Rbe[2][1] + ned_accel[2] * Rbe[2][2] + accel_bias[2];
|
|
accelsData.temperature = 30;
|
|
AccelsSet(&accelsData);
|
|
|
|
if(baro_offset == 0) {
|
|
// Hacky initialization
|
|
baro_offset = 50;// * rand_gauss();
|
|
} else {
|
|
// Very small drift process
|
|
baro_offset += rand_gauss() / 100;
|
|
}
|
|
// Update baro periodically
|
|
static uint32_t last_baro_time = 0;
|
|
if(PIOS_DELAY_DiffuS(last_baro_time) / 1.0e6 > BARO_PERIOD) {
|
|
BaroAltitudeData baroAltitude;
|
|
BaroAltitudeGet(&baroAltitude);
|
|
baroAltitude.Altitude = -pos[2] + baro_offset;
|
|
BaroAltitudeSet(&baroAltitude);
|
|
last_baro_time = PIOS_DELAY_GetRaw();
|
|
}
|
|
|
|
HomeLocationData homeLocation;
|
|
HomeLocationGet(&homeLocation);
|
|
|
|
static float gps_vel_drift[3] = {0,0,0};
|
|
gps_vel_drift[0] = gps_vel_drift[0] * 0.65 + rand_gauss() / 5.0;
|
|
gps_vel_drift[1] = gps_vel_drift[1] * 0.65 + rand_gauss() / 5.0;
|
|
gps_vel_drift[2] = gps_vel_drift[2] * 0.65 + rand_gauss() / 5.0;
|
|
|
|
// Update GPS periodically
|
|
static uint32_t last_gps_time = 0;
|
|
if(PIOS_DELAY_DiffuS(last_gps_time) / 1.0e6 > GPS_PERIOD) {
|
|
// Use double precision here as simulating what GPS produces
|
|
double T[3];
|
|
T[0] = homeLocation.Altitude+6.378137E6f * M_PI / 180.0;
|
|
T[1] = cos(homeLocation.Latitude / 10e6 * M_PI / 180.0f)*(homeLocation.Altitude+6.378137E6) * M_PI / 180.0;
|
|
T[2] = -1.0;
|
|
|
|
static float gps_drift[3] = {0,0,0};
|
|
gps_drift[0] = gps_drift[0] * 0.95 + rand_gauss() / 10.0;
|
|
gps_drift[1] = gps_drift[1] * 0.95 + rand_gauss() / 10.0;
|
|
gps_drift[2] = gps_drift[2] * 0.95 + rand_gauss() / 10.0;
|
|
|
|
GPSPositionData gpsPosition;
|
|
GPSPositionGet(&gpsPosition);
|
|
gpsPosition.Latitude = homeLocation.Latitude + ((pos[0] + gps_drift[0]) / T[0] * 10.0e6);
|
|
gpsPosition.Longitude = homeLocation.Longitude + ((pos[1] + gps_drift[1])/ T[1] * 10.0e6);
|
|
gpsPosition.Altitude = homeLocation.Altitude + ((pos[2] + gps_drift[2]) / T[2]);
|
|
gpsPosition.Groundspeed = sqrt(pow(vel[0] + gps_vel_drift[0],2) + pow(vel[1] + gps_vel_drift[1],2));
|
|
gpsPosition.Heading = 180 / M_PI * atan2(vel[1] + gps_vel_drift[1],vel[0] + gps_vel_drift[0]);
|
|
gpsPosition.Satellites = 7;
|
|
gpsPosition.PDOP = 1;
|
|
GPSPositionSet(&gpsPosition);
|
|
last_gps_time = PIOS_DELAY_GetRaw();
|
|
}
|
|
|
|
// Update GPS Velocity measurements
|
|
static uint32_t last_gps_vel_time = 1000; // Delay by a millisecond
|
|
if(PIOS_DELAY_DiffuS(last_gps_vel_time) / 1.0e6 > GPS_PERIOD) {
|
|
GPSVelocityData gpsVelocity;
|
|
GPSVelocityGet(&gpsVelocity);
|
|
gpsVelocity.North = vel[0] + gps_vel_drift[0];
|
|
gpsVelocity.East = vel[1] + gps_vel_drift[1];
|
|
gpsVelocity.Down = vel[2] + gps_vel_drift[2];
|
|
GPSVelocitySet(&gpsVelocity);
|
|
last_gps_vel_time = PIOS_DELAY_GetRaw();
|
|
}
|
|
|
|
// Update mag periodically
|
|
static uint32_t last_mag_time = 0;
|
|
if(PIOS_DELAY_DiffuS(last_mag_time) / 1.0e6 > MAG_PERIOD) {
|
|
MagnetometerData mag;
|
|
mag.x = homeLocation.Be[0] * Rbe[0][0] + homeLocation.Be[1] * Rbe[0][1] + homeLocation.Be[2] * Rbe[0][2];
|
|
mag.y = homeLocation.Be[0] * Rbe[1][0] + homeLocation.Be[1] * Rbe[1][1] + homeLocation.Be[2] * Rbe[1][2];
|
|
mag.z = homeLocation.Be[0] * Rbe[2][0] + homeLocation.Be[1] * Rbe[2][1] + homeLocation.Be[2] * Rbe[2][2];
|
|
|
|
// Run the offset compensation algorithm from the firmware
|
|
magOffsetEstimation(&mag);
|
|
|
|
MagnetometerSet(&mag);
|
|
last_mag_time = PIOS_DELAY_GetRaw();
|
|
}
|
|
|
|
AttitudeSimulatedData attitudeSimulated;
|
|
AttitudeSimulatedGet(&attitudeSimulated);
|
|
attitudeSimulated.q1 = q[0];
|
|
attitudeSimulated.q2 = q[1];
|
|
attitudeSimulated.q3 = q[2];
|
|
attitudeSimulated.q4 = q[3];
|
|
Quaternion2RPY(q,&attitudeSimulated.Roll);
|
|
attitudeSimulated.Position[0] = pos[0];
|
|
attitudeSimulated.Position[1] = pos[1];
|
|
attitudeSimulated.Position[2] = pos[2];
|
|
attitudeSimulated.Velocity[0] = vel[0];
|
|
attitudeSimulated.Velocity[1] = vel[1];
|
|
attitudeSimulated.Velocity[2] = vel[2];
|
|
AttitudeSimulatedSet(&attitudeSimulated);
|
|
}
|
|
|
|
/**
|
|
* This method performs a simple simulation of a quadcopter
|
|
*
|
|
* It takes in the ActuatorDesired command to rotate the aircraft and performs
|
|
* a simple kinetic model where the throttle increases the energy and drag decreases
|
|
* it. Changing altitude moves energy from kinetic to potential.
|
|
*
|
|
* 1. Update attitude based on ActuatorDesired
|
|
* 2. Update position based on velocity
|
|
*/
|
|
static void simulateModelAirplane()
|
|
{
|
|
static double pos[3] = {0,0,0};
|
|
static double vel[3] = {0,0,0};
|
|
static double ned_accel[3] = {0,0,0};
|
|
static float q[4] = {1,0,0,0};
|
|
static float rpy[3] = {0,0,0}; // Low pass filtered actuator
|
|
static float baro_offset = 0.0f;
|
|
float Rbe[3][3];
|
|
|
|
const float LIFT_SPEED = 8; // (m/s) where achieve lift for zero pitch
|
|
const float ACTUATOR_ALPHA = 0.8;
|
|
const float MAX_THRUST = 9.81 * 2;
|
|
const float K_FRICTION = 0.2;
|
|
const float GPS_PERIOD = 0.1;
|
|
const float MAG_PERIOD = 1.0 / 75.0;
|
|
const float BARO_PERIOD = 1.0 / 20.0;
|
|
const float ROLL_HEADING_COUPLING = 0.1; // (deg/s) heading change per deg of roll
|
|
const float PITCH_THRUST_COUPLING = 0.2; // (m/s^2) of forward acceleration per deg of pitch
|
|
|
|
static uint32_t last_time;
|
|
|
|
float dT = (PIOS_DELAY_DiffuS(last_time) / 1e6);
|
|
if(dT < 1e-3)
|
|
dT = 2e-3;
|
|
last_time = PIOS_DELAY_GetRaw();
|
|
|
|
FlightStatusData flightStatus;
|
|
FlightStatusGet(&flightStatus);
|
|
ActuatorDesiredData actuatorDesired;
|
|
ActuatorDesiredGet(&actuatorDesired);
|
|
|
|
float thrust = (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMED) ? actuatorDesired.Throttle * MAX_THRUST : 0;
|
|
if (thrust < 0)
|
|
thrust = 0;
|
|
|
|
if (thrust != thrust)
|
|
thrust = 0;
|
|
|
|
// float control_scaling = thrust * thrustToDegs;
|
|
// // In rad/s
|
|
// rpy[0] = control_scaling * actuatorDesired.Roll * (1 - ACTUATOR_ALPHA) + rpy[0] * ACTUATOR_ALPHA;
|
|
// rpy[1] = control_scaling * actuatorDesired.Pitch * (1 - ACTUATOR_ALPHA) + rpy[1] * ACTUATOR_ALPHA;
|
|
// rpy[2] = control_scaling * actuatorDesired.Yaw * (1 - ACTUATOR_ALPHA) + rpy[2] * ACTUATOR_ALPHA;
|
|
//
|
|
// GyrosData gyrosData; // Skip get as we set all the fields
|
|
// gyrosData.x = rpy[0] * 180 / M_PI + rand_gauss();
|
|
// gyrosData.y = rpy[1] * 180 / M_PI + rand_gauss();
|
|
// gyrosData.z = rpy[2] * 180 / M_PI + rand_gauss();
|
|
|
|
/**** 1. Update attitude ****/
|
|
RateDesiredData rateDesired;
|
|
RateDesiredGet(&rateDesired);
|
|
|
|
// Need to get roll angle for easy cross coupling
|
|
AttitudeActualData attitudeActual;
|
|
AttitudeActualGet(&attitudeActual);
|
|
double roll = attitudeActual.Roll;
|
|
double pitch = attitudeActual.Pitch;
|
|
|
|
rpy[0] = (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMED) * rateDesired.Roll * (1 - ACTUATOR_ALPHA) + rpy[0] * ACTUATOR_ALPHA;
|
|
rpy[1] = (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMED) * rateDesired.Pitch * (1 - ACTUATOR_ALPHA) + rpy[1] * ACTUATOR_ALPHA;
|
|
rpy[2] = (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMED) * rateDesired.Yaw * (1 - ACTUATOR_ALPHA) + rpy[2] * ACTUATOR_ALPHA;
|
|
rpy[2] += roll * ROLL_HEADING_COUPLING;
|
|
|
|
|
|
GyrosData gyrosData; // Skip get as we set all the fields
|
|
gyrosData.x = rpy[0] + rand_gauss();
|
|
gyrosData.y = rpy[1] + rand_gauss();
|
|
gyrosData.z = rpy[2] + rand_gauss();
|
|
GyrosSet(&gyrosData);
|
|
|
|
// Predict the attitude forward in time
|
|
float qdot[4];
|
|
qdot[0] = (-q[1] * rpy[0] - q[2] * rpy[1] - q[3] * rpy[2]) * dT * M_PI / 180 / 2;
|
|
qdot[1] = (q[0] * rpy[0] - q[3] * rpy[1] + q[2] * rpy[2]) * dT * M_PI / 180 / 2;
|
|
qdot[2] = (q[3] * rpy[0] + q[0] * rpy[1] - q[1] * rpy[2]) * dT * M_PI / 180 / 2;
|
|
qdot[3] = (-q[2] * rpy[0] + q[1] * rpy[1] + q[0] * rpy[2]) * dT * M_PI / 180 / 2;
|
|
|
|
// Take a time step
|
|
q[0] = q[0] + qdot[0];
|
|
q[1] = q[1] + qdot[1];
|
|
q[2] = q[2] + qdot[2];
|
|
q[3] = q[3] + qdot[3];
|
|
|
|
float qmag = sqrtf(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
|
|
q[0] = q[0] / qmag;
|
|
q[1] = q[1] / qmag;
|
|
q[2] = q[2] / qmag;
|
|
q[3] = q[3] / qmag;
|
|
|
|
if(overideAttitude){
|
|
AttitudeActualData attitudeActual;
|
|
AttitudeActualGet(&attitudeActual);
|
|
attitudeActual.q1 = q[0];
|
|
attitudeActual.q2 = q[1];
|
|
attitudeActual.q3 = q[2];
|
|
attitudeActual.q4 = q[3];
|
|
AttitudeActualSet(&attitudeActual);
|
|
}
|
|
|
|
/**** 2. Update position based on velocity ****/
|
|
static float wind[3] = {0,0,0};
|
|
wind[0] = wind[0] * 0.95 + rand_gauss() / 10.0;
|
|
wind[1] = wind[1] * 0.95 + rand_gauss() / 10.0;
|
|
wind[2] = wind[2] * 0.95 + rand_gauss() / 10.0;
|
|
wind[0] = 0;
|
|
wind[1] = 0;
|
|
wind[2] = 0;
|
|
|
|
// Rbe takes a vector from body to earth. If we take (1,0,0)^T through this and then dot with airspeed
|
|
// we get forward airspeed
|
|
Quaternion2R(q,Rbe);
|
|
|
|
double airspeed[3] = {vel[0] - wind[0], vel[1] - wind[1], vel[2] - wind[2]};
|
|
double forwardAirspeed = Rbe[0][0] * airspeed[0] + Rbe[0][1] * airspeed[1] + Rbe[0][2] * airspeed[2];
|
|
double sidewaysAirspeed = Rbe[1][0] * airspeed[0] + Rbe[1][1] * airspeed[1] + Rbe[1][2] * airspeed[2];
|
|
double downwardAirspeed = Rbe[2][0] * airspeed[0] + Rbe[2][1] * airspeed[1] + Rbe[2][2] * airspeed[2];
|
|
|
|
/* Compute aerodynamic forces in body referenced frame. Later use more sophisticated equations */
|
|
/* TODO: This should become more accurate. Use the force equations to calculate lift from the */
|
|
/* various surfaces based on AoA and airspeed. From that compute torques and forces. For later */
|
|
double forces[3]; // X, Y, Z
|
|
forces[0] = thrust - pitch * PITCH_THRUST_COUPLING - forwardAirspeed * K_FRICTION; // Friction is applied in all directions in NED
|
|
forces[1] = 0 - sidewaysAirspeed * K_FRICTION * 100; // No side slip
|
|
forces[2] = GRAV * (forwardAirspeed - LIFT_SPEED) + downwardAirspeed * K_FRICTION * 100; // Stupidly simple, always have gravity lift when straight and level
|
|
|
|
// Negate force[2] as NED defines down as possitive, aircraft convention is Z up is positive (?)
|
|
ned_accel[0] = forces[0] * Rbe[0][0] + forces[1] * Rbe[1][0] - forces[2] * Rbe[2][0];
|
|
ned_accel[1] = forces[0] * Rbe[0][1] + forces[1] * Rbe[1][1] - forces[2] * Rbe[2][1];
|
|
ned_accel[2] = forces[0] * Rbe[0][2] + forces[1] * Rbe[1][2] - forces[2] * Rbe[2][2];
|
|
// Gravity causes acceleration of 9.81 in the down direction
|
|
ned_accel[2] += 9.81;
|
|
|
|
// Apply acceleration based on velocity
|
|
ned_accel[0] -= K_FRICTION * (vel[0] - wind[0]);
|
|
ned_accel[1] -= K_FRICTION * (vel[1] - wind[1]);
|
|
ned_accel[2] -= K_FRICTION * (vel[2] - wind[2]);
|
|
|
|
// Predict the velocity forward in time
|
|
vel[0] = vel[0] + ned_accel[0] * dT;
|
|
vel[1] = vel[1] + ned_accel[1] * dT;
|
|
vel[2] = vel[2] + ned_accel[2] * dT;
|
|
|
|
// Predict the position forward in time
|
|
pos[0] = pos[0] + vel[0] * dT;
|
|
pos[1] = pos[1] + vel[1] * dT;
|
|
pos[2] = pos[2] + vel[2] * dT;
|
|
|
|
// Simulate hitting ground
|
|
if(pos[2] > 0) {
|
|
pos[2] = 0;
|
|
vel[2] = 0;
|
|
ned_accel[2] = 0;
|
|
}
|
|
|
|
// Sensor feels gravity (when not acceleration in ned frame e.g. ned_accel[2] = 0)
|
|
ned_accel[2] -= GRAV;
|
|
|
|
// Transform the accels back in to body frame
|
|
AccelsData accelsData; // Skip get as we set all the fields
|
|
accelsData.x = ned_accel[0] * Rbe[0][0] + ned_accel[1] * Rbe[0][1] + ned_accel[2] * Rbe[0][2] + accel_bias[0];
|
|
accelsData.y = ned_accel[0] * Rbe[1][0] + ned_accel[1] * Rbe[1][1] + ned_accel[2] * Rbe[1][2] + accel_bias[1];
|
|
accelsData.z = ned_accel[0] * Rbe[2][0] + ned_accel[1] * Rbe[2][1] + ned_accel[2] * Rbe[2][2] + accel_bias[2];
|
|
accelsData.temperature = 30;
|
|
AccelsSet(&accelsData);
|
|
|
|
if(baro_offset == 0) {
|
|
// Hacky initialization
|
|
baro_offset = 50;// * rand_gauss();
|
|
} else {
|
|
// Very small drift process
|
|
baro_offset += rand_gauss() / 100;
|
|
}
|
|
// Update baro periodically
|
|
static uint32_t last_baro_time = 0;
|
|
if(PIOS_DELAY_DiffuS(last_baro_time) / 1.0e6 > BARO_PERIOD) {
|
|
BaroAltitudeData baroAltitude;
|
|
BaroAltitudeGet(&baroAltitude);
|
|
baroAltitude.Altitude = -pos[2] + baro_offset;
|
|
BaroAltitudeSet(&baroAltitude);
|
|
last_baro_time = PIOS_DELAY_GetRaw();
|
|
}
|
|
|
|
// Update baro airpseed periodically
|
|
static uint32_t last_airspeed_time = 0;
|
|
if(PIOS_DELAY_DiffuS(last_airspeed_time) / 1.0e6 > BARO_PERIOD) {
|
|
BaroAirspeedData baroAirspeed;
|
|
baroAirspeed.Connected = BAROAIRSPEED_CONNECTED_TRUE;
|
|
baroAirspeed.ZeroPoint = 0;
|
|
baroAirspeed.Airspeed = forwardAirspeed;
|
|
BaroAirspeedSet(&baroAirspeed);
|
|
last_airspeed_time = PIOS_DELAY_GetRaw();
|
|
}
|
|
|
|
HomeLocationData homeLocation;
|
|
HomeLocationGet(&homeLocation);
|
|
|
|
static float gps_vel_drift[3] = {0,0,0};
|
|
gps_vel_drift[0] = gps_vel_drift[0] * 0.65 + rand_gauss() / 5.0;
|
|
gps_vel_drift[1] = gps_vel_drift[1] * 0.65 + rand_gauss() / 5.0;
|
|
gps_vel_drift[2] = gps_vel_drift[2] * 0.65 + rand_gauss() / 5.0;
|
|
|
|
// Update GPS periodically
|
|
static uint32_t last_gps_time = 0;
|
|
if(PIOS_DELAY_DiffuS(last_gps_time) / 1.0e6 > GPS_PERIOD) {
|
|
// Use double precision here as simulating what GPS produces
|
|
double T[3];
|
|
T[0] = homeLocation.Altitude+6.378137E6f * M_PI / 180.0;
|
|
T[1] = cos(homeLocation.Latitude / 10e6 * M_PI / 180.0f)*(homeLocation.Altitude+6.378137E6) * M_PI / 180.0;
|
|
T[2] = -1.0;
|
|
|
|
static float gps_drift[3] = {0,0,0};
|
|
gps_drift[0] = gps_drift[0] * 0.95 + rand_gauss() / 10.0;
|
|
gps_drift[1] = gps_drift[1] * 0.95 + rand_gauss() / 10.0;
|
|
gps_drift[2] = gps_drift[2] * 0.95 + rand_gauss() / 10.0;
|
|
|
|
GPSPositionData gpsPosition;
|
|
GPSPositionGet(&gpsPosition);
|
|
gpsPosition.Latitude = homeLocation.Latitude + ((pos[0] + gps_drift[0]) / T[0] * 10.0e6);
|
|
gpsPosition.Longitude = homeLocation.Longitude + ((pos[1] + gps_drift[1])/ T[1] * 10.0e6);
|
|
gpsPosition.Altitude = homeLocation.Altitude + ((pos[2] + gps_drift[2]) / T[2]);
|
|
gpsPosition.Groundspeed = sqrt(pow(vel[0] + gps_vel_drift[0],2) + pow(vel[1] + gps_vel_drift[1],2));
|
|
gpsPosition.Heading = 180 / M_PI * atan2(vel[1] + gps_vel_drift[1],vel[0] + gps_vel_drift[0]);
|
|
gpsPosition.Satellites = 7;
|
|
gpsPosition.PDOP = 1;
|
|
GPSPositionSet(&gpsPosition);
|
|
last_gps_time = PIOS_DELAY_GetRaw();
|
|
}
|
|
|
|
// Update GPS Velocity measurements
|
|
static uint32_t last_gps_vel_time = 1000; // Delay by a millisecond
|
|
if(PIOS_DELAY_DiffuS(last_gps_vel_time) / 1.0e6 > GPS_PERIOD) {
|
|
GPSVelocityData gpsVelocity;
|
|
GPSVelocityGet(&gpsVelocity);
|
|
gpsVelocity.North = vel[0] + gps_vel_drift[0];
|
|
gpsVelocity.East = vel[1] + gps_vel_drift[1];
|
|
gpsVelocity.Down = vel[2] + gps_vel_drift[2];
|
|
GPSVelocitySet(&gpsVelocity);
|
|
last_gps_vel_time = PIOS_DELAY_GetRaw();
|
|
}
|
|
|
|
// Update mag periodically
|
|
static uint32_t last_mag_time = 0;
|
|
if(PIOS_DELAY_DiffuS(last_mag_time) / 1.0e6 > MAG_PERIOD) {
|
|
MagnetometerData mag;
|
|
mag.x = 100+homeLocation.Be[0] * Rbe[0][0] + homeLocation.Be[1] * Rbe[0][1] + homeLocation.Be[2] * Rbe[0][2];
|
|
mag.y = 100+homeLocation.Be[0] * Rbe[1][0] + homeLocation.Be[1] * Rbe[1][1] + homeLocation.Be[2] * Rbe[1][2];
|
|
mag.z = 100+homeLocation.Be[0] * Rbe[2][0] + homeLocation.Be[1] * Rbe[2][1] + homeLocation.Be[2] * Rbe[2][2];
|
|
magOffsetEstimation(&mag);
|
|
MagnetometerSet(&mag);
|
|
last_mag_time = PIOS_DELAY_GetRaw();
|
|
}
|
|
|
|
AttitudeSimulatedData attitudeSimulated;
|
|
AttitudeSimulatedGet(&attitudeSimulated);
|
|
attitudeSimulated.q1 = q[0];
|
|
attitudeSimulated.q2 = q[1];
|
|
attitudeSimulated.q3 = q[2];
|
|
attitudeSimulated.q4 = q[3];
|
|
Quaternion2RPY(q,&attitudeSimulated.Roll);
|
|
attitudeSimulated.Position[0] = pos[0];
|
|
attitudeSimulated.Position[1] = pos[1];
|
|
attitudeSimulated.Position[2] = pos[2];
|
|
attitudeSimulated.Velocity[0] = vel[0];
|
|
attitudeSimulated.Velocity[1] = vel[1];
|
|
attitudeSimulated.Velocity[2] = vel[2];
|
|
AttitudeSimulatedSet(&attitudeSimulated);
|
|
}
|
|
|
|
static float rand_gauss (void) {
|
|
float v1,v2,s;
|
|
|
|
do {
|
|
v1 = 2.0 * ((float) rand()/RAND_MAX) - 1;
|
|
v2 = 2.0 * ((float) rand()/RAND_MAX) - 1;
|
|
|
|
s = v1*v1 + v2*v2;
|
|
} while ( s >= 1.0 );
|
|
|
|
if (s == 0.0)
|
|
return 0.0;
|
|
else
|
|
return (v1*sqrt(-2.0 * log(s) / s));
|
|
}
|
|
|
|
/**
|
|
* Perform an update of the @ref MagBias based on
|
|
* Magnetometer Offset Cancellation: Theory and Implementation,
|
|
* revisited William Premerlani, October 14, 2011
|
|
*/
|
|
static void magOffsetEstimation(MagnetometerData *mag)
|
|
{
|
|
#if 0
|
|
RevoCalibrationData cal;
|
|
RevoCalibrationGet(&cal);
|
|
|
|
// Constants, to possibly go into a UAVO
|
|
static const float MIN_NORM_DIFFERENCE = 50;
|
|
|
|
static float B2[3] = {0, 0, 0};
|
|
|
|
MagBiasData magBias;
|
|
MagBiasGet(&magBias);
|
|
|
|
// Remove the current estimate of the bias
|
|
mag->x -= magBias.x;
|
|
mag->y -= magBias.y;
|
|
mag->z -= magBias.z;
|
|
|
|
// First call
|
|
if (B2[0] == 0 && B2[1] == 0 && B2[2] == 0) {
|
|
B2[0] = mag->x;
|
|
B2[1] = mag->y;
|
|
B2[2] = mag->z;
|
|
return;
|
|
}
|
|
|
|
float B1[3] = {mag->x, mag->y, mag->z};
|
|
float norm_diff = sqrtf(powf(B2[0] - B1[0],2) + powf(B2[1] - B1[1],2) + powf(B2[2] - B1[2],2));
|
|
if (norm_diff > MIN_NORM_DIFFERENCE) {
|
|
float norm_b1 = sqrtf(B1[0]*B1[0] + B1[1]*B1[1] + B1[2]*B1[2]);
|
|
float norm_b2 = sqrtf(B2[0]*B2[0] + B2[1]*B2[1] + B2[2]*B2[2]);
|
|
float scale = cal.MagBiasNullingRate * (norm_b2 - norm_b1) / norm_diff;
|
|
float b_error[3] = {(B2[0] - B1[0]) * scale, (B2[1] - B1[1]) * scale, (B2[2] - B1[2]) * scale};
|
|
|
|
magBias.x += b_error[0];
|
|
magBias.y += b_error[1];
|
|
magBias.z += b_error[2];
|
|
|
|
MagBiasSet(&magBias);
|
|
|
|
// Store this value to compare against next update
|
|
B2[0] = B1[0]; B2[1] = B1[1]; B2[2] = B1[2];
|
|
}
|
|
#else
|
|
HomeLocationData homeLocation;
|
|
HomeLocationGet(&homeLocation);
|
|
|
|
AttitudeActualData attitude;
|
|
AttitudeActualGet(&attitude);
|
|
|
|
MagBiasData magBias;
|
|
MagBiasGet(&magBias);
|
|
|
|
// Remove the current estimate of the bias
|
|
mag->x -= magBias.x;
|
|
mag->y -= magBias.y;
|
|
mag->z -= magBias.z;
|
|
|
|
const float Rxy = sqrtf(homeLocation.Be[0]*homeLocation.Be[0] + homeLocation.Be[1]*homeLocation.Be[1]);
|
|
const float Rz = homeLocation.Be[2];
|
|
|
|
const float rate = 0.01;
|
|
float R[3][3];
|
|
float B_e[3];
|
|
float xy[2];
|
|
float delta[3];
|
|
|
|
// Get the rotation matrix
|
|
Quaternion2R(&attitude.q1, R);
|
|
|
|
// Rotate the mag into the NED frame
|
|
B_e[0] = R[0][0] * mag->x + R[1][0] * mag->y + R[2][0] * mag->z;
|
|
B_e[1] = R[0][1] * mag->x + R[1][1] * mag->y + R[2][1] * mag->z;
|
|
B_e[2] = R[0][2] * mag->x + R[1][2] * mag->y + R[2][2] * mag->z;
|
|
|
|
float cy = cosf(attitude.Yaw * M_PI / 180.0f);
|
|
float sy = sinf(attitude.Yaw * M_PI / 180.0f);
|
|
|
|
xy[0] = cy * B_e[0] + sy * B_e[1];
|
|
xy[1] = -sy * B_e[0] + cy * B_e[1];
|
|
|
|
float xy_norm = sqrtf(xy[0]*xy[0] + xy[1]*xy[1]);
|
|
|
|
delta[0] = -rate * (xy[0] / xy_norm * Rxy - xy[0]);
|
|
delta[1] = -rate * (xy[1] / xy_norm * Rxy - xy[1]);
|
|
delta[2] = -rate * (Rz - B_e[2]);
|
|
|
|
magBias.x += delta[0];
|
|
magBias.y += delta[1];
|
|
magBias.z += delta[2];
|
|
MagBiasSet(&magBias);
|
|
#endif
|
|
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
* @}
|
|
*/
|