1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-01-05 16:46:06 +01:00
LibrePilot/flight/modules/PathFollower/vtollandfsm.cpp

671 lines
25 KiB
C++

/*
******************************************************************************
*
* @file vtollandfsm.cpp
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2015.
* @brief This landing state machine is a helper state machine to the
* VtolLandController.
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
extern "C" {
#include <openpilot.h>
#include <math.h>
#include <pid.h>
#include <alarms.h>
#include <CoordinateConversions.h>
#include <sin_lookup.h>
#include <pathdesired.h>
#include <paths.h>
#include "plans.h"
#include <sanitycheck.h>
#include <homelocation.h>
#include <accelstate.h>
#include <vtolpathfollowersettings.h>
#include <flightstatus.h>
#include <flightmodesettings.h>
#include <pathstatus.h>
#include <positionstate.h>
#include <velocitystate.h>
#include <velocitydesired.h>
#include <stabilizationdesired.h>
#include <airspeedstate.h>
#include <attitudestate.h>
#include <takeofflocation.h>
#include <poilocation.h>
#include <manualcontrolcommand.h>
#include <systemsettings.h>
#include <stabilizationbank.h>
#include <stabilizationdesired.h>
#include <vtolselftuningstats.h>
#include <statusvtolland.h>
#include <pathsummary.h>
}
// C++ includes
#include <vtollandfsm.h>
// Private constants
#define TIMER_COUNT_PER_SECOND (1000 / vtolPathFollowerSettings->UpdatePeriod)
#define MIN_LANDRATE 0.1f
#define MAX_LANDRATE 0.6f
#define LOW_ALT_DESCENT_REDUCTION_FACTOR 0.7f // TODO Need to make the transition smooth
#define LANDRATE_LOWLIMIT_FACTOR 0.5f
#define LANDRATE_HILIMIT_FACTOR 1.5f
#define TIMEOUT_INIT_ALTHOLD (3 * TIMER_COUNT_PER_SECOND)
#define TIMEOUT_WTG_FOR_DESCENTRATE (10 * TIMER_COUNT_PER_SECOND)
#define WTG_FOR_DESCENTRATE_COUNT_LIMIT 10
#define TIMEOUT_AT_DESCENTRATE 10
#define TIMEOUT_GROUNDEFFECT (1 * TIMER_COUNT_PER_SECOND)
#define TIMEOUT_THRUSTDOWN (2 * TIMER_COUNT_PER_SECOND)
#define LANDING_PID_SCALAR_P 2.0f
#define LANDING_PID_SCALAR_I 10.0f
#define LANDING_SLOWDOWN_HEIGHT -5.0f
#define BOUNCE_VELOCITY_TRIGGER_LIMIT -0.3f
#define BOUNCE_ACCELERATION_TRIGGER_LIMIT -9.0f // -6.0 found to be too sensitive
#define BOUNCE_TRIGGER_COUNT 4
#define GROUNDEFFECT_SLOWDOWN_FACTOR 0.3f
#define GROUNDEFFECT_SLOWDOWN_COUNT 4
VtolLandFSM::PathFollowerFSM_LandStateHandler_T VtolLandFSM::sLandStateTable[LAND_STATE_SIZE] = {
[LAND_STATE_INACTIVE] = { .setup = &VtolLandFSM::setup_inactive, .run = 0 },
[LAND_STATE_INIT_ALTHOLD] = { .setup = &VtolLandFSM::setup_init_althold, .run = &VtolLandFSM::run_init_althold },
[LAND_STATE_WTG_FOR_DESCENTRATE] = { .setup = &VtolLandFSM::setup_wtg_for_descentrate, .run = &VtolLandFSM::run_wtg_for_descentrate },
[LAND_STATE_AT_DESCENTRATE] = { .setup = &VtolLandFSM::setup_at_descentrate, .run = &VtolLandFSM::run_at_descentrate },
[LAND_STATE_WTG_FOR_GROUNDEFFECT] = { .setup = &VtolLandFSM::setup_wtg_for_groundeffect, .run = &VtolLandFSM::run_wtg_for_groundeffect },
[LAND_STATE_GROUNDEFFECT] = { .setup = &VtolLandFSM::setup_groundeffect, .run = &VtolLandFSM::run_groundeffect },
[LAND_STATE_THRUSTDOWN] = { .setup = &VtolLandFSM::setup_thrustdown, .run = &VtolLandFSM::run_thrustdown },
[LAND_STATE_THRUSTOFF] = { .setup = &VtolLandFSM::setup_thrustoff, .run = &VtolLandFSM::run_thrustoff },
[LAND_STATE_DISARMED] = { .setup = &VtolLandFSM::setup_disarmed, .run = &VtolLandFSM::run_disarmed }
};
// pointer to a singleton instance
VtolLandFSM *VtolLandFSM::p_inst = 0;
VtolLandFSM::VtolLandFSM()
: mLandData(0), vtolPathFollowerSettings(0), pathDesired(0), flightStatus(0)
{}
// Private types
// Private functions
// Public API methods
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
int32_t VtolLandFSM::Initialize(VtolPathFollowerSettingsData *ptr_vtolPathFollowerSettings,
PathDesiredData *ptr_pathDesired,
FlightStatusData *ptr_flightStatus)
{
PIOS_Assert(ptr_vtolPathFollowerSettings);
PIOS_Assert(ptr_pathDesired);
PIOS_Assert(ptr_flightStatus);
if (mLandData == 0) {
mLandData = (VtolLandFSMData_T *)pios_malloc(sizeof(VtolLandFSMData_T));
PIOS_Assert(mLandData);
}
memset(mLandData, 0, sizeof(VtolLandFSMData_T));
vtolPathFollowerSettings = ptr_vtolPathFollowerSettings;
pathDesired = ptr_pathDesired;
flightStatus = ptr_flightStatus;
initFSM();
return 0;
}
void VtolLandFSM::Inactive(void)
{
memset(mLandData, 0, sizeof(VtolLandFSMData_T));
initFSM();
}
// Initialise the FSM
void VtolLandFSM::initFSM(void)
{
if (vtolPathFollowerSettings != 0) {
setState(STATUSVTOLLAND_STATE_INACTIVE, STATUSVTOLLAND_STATEEXITREASON_NONE);
} else {
mLandData->currentState = STATUSVTOLLAND_STATE_INACTIVE;
}
}
void VtolLandFSM::Activate()
{
memset(mLandData, 0, sizeof(VtolLandFSMData_T));
mLandData->currentState = STATUSVTOLLAND_STATE_INACTIVE;
mLandData->flLowAltitude = false;
mLandData->flAltitudeHold = false;
mLandData->fsmLandStatus.averageDescentRate = MIN_LANDRATE;
mLandData->fsmLandStatus.averageDescentThrust = vtolPathFollowerSettings->ThrustLimits.Neutral;
mLandData->fsmLandStatus.calculatedNeutralThrust = vtolPathFollowerSettings->ThrustLimits.Neutral;
mLandData->boundThrustMin = vtolPathFollowerSettings->ThrustLimits.Min;
mLandData->boundThrustMax = vtolPathFollowerSettings->ThrustLimits.Max;
TakeOffLocationGet(&(mLandData->takeOffLocation));
mLandData->fsmLandStatus.AltitudeAtState[STATUSVTOLLAND_STATE_INACTIVE] = 0.0f;
assessAltitude();
if (pathDesired->Mode == PATHDESIRED_MODE_LAND) {
#ifndef DEBUG_GROUNDIMPACT
setState(STATUSVTOLLAND_STATE_INITALTHOLD, STATUSVTOLLAND_STATEEXITREASON_NONE);
#else
setState(STATUSVTOLLAND_STATE_WTGFORGROUNDEFFECT, STATUSVTOLLAND_STATEEXITREASON_NONE);
#endif
} else {
// move to error state and callback to position hold
setState(STATUSVTOLLAND_STATE_DISARMED, STATUSVTOLLAND_STATEEXITREASON_NONE);
}
}
PathFollowerFSMState_T VtolLandFSM::GetCurrentState(void)
{
switch (mLandData->currentState) {
case STATUSVTOLLAND_STATE_INACTIVE:
return PFFSM_STATE_INACTIVE;
break;
case STATUSVTOLLAND_STATE_DISARMED:
return PFFSM_STATE_DISARMED;
break;
default:
return PFFSM_STATE_ACTIVE;
break;
}
}
void VtolLandFSM::Update()
{
runState();
if (GetCurrentState() != PFFSM_STATE_INACTIVE) {
runAlways();
}
}
int32_t VtolLandFSM::runState(void)
{
uint8_t flTimeout = false;
mLandData->stateRunCount++;
if (mLandData->stateTimeoutCount > 0 && mLandData->stateRunCount > mLandData->stateTimeoutCount) {
flTimeout = true;
}
// If the current state has a static function, call it
if (sLandStateTable[mLandData->currentState].run) {
(this->*sLandStateTable[mLandData->currentState].run)(flTimeout);
}
return 0;
}
int32_t VtolLandFSM::runAlways(void)
{
void assessAltitude(void);
return 0;
}
// PathFollower implements the PID scheme and has a objective
// set by a PathDesired object. Based on the mode, pathfollower
// uses FSM's as helper functions that manage state and event detection.
// PathFollower calls into FSM methods to alter its commands.
void VtolLandFSM::BoundThrust(float &ulow, float &uhigh)
{
ulow = mLandData->boundThrustMin;
uhigh = mLandData->boundThrustMax;
if (mLandData->flConstrainThrust) {
uhigh = mLandData->thrustLimit;
}
}
void VtolLandFSM::ConstrainStabiDesired(StabilizationDesiredData *stabDesired)
{
if (mLandData->flZeroStabiHorizontal && stabDesired) {
stabDesired->Pitch = 0.0f;
stabDesired->Roll = 0.0f;
stabDesired->Yaw = 0.0f;
}
}
void VtolLandFSM::CheckPidScaler(pid_scaler *local_scaler)
{
if (mLandData->flLowAltitude) {
local_scaler->p = LANDING_PID_SCALAR_P;
local_scaler->i = LANDING_PID_SCALAR_I;
}
}
// Set the new state and perform setup for subsequent state run calls
// This is called by state run functions on event detection that drive
// state transitions.
void VtolLandFSM::setState(StatusVtolLandStateOptions newState, StatusVtolLandStateExitReasonOptions reason)
{
mLandData->fsmLandStatus.StateExitReason[mLandData->currentState] = reason;
if (mLandData->currentState == newState) {
return;
}
mLandData->currentState = newState;
if (newState != STATUSVTOLLAND_STATE_INACTIVE) {
PositionStateData positionState;
PositionStateGet(&positionState);
float takeOffDown = 0.0f;
if (mLandData->takeOffLocation.Status == TAKEOFFLOCATION_STATUS_VALID) {
takeOffDown = mLandData->takeOffLocation.Down;
}
mLandData->fsmLandStatus.AltitudeAtState[newState] = positionState.Down - takeOffDown;
assessAltitude();
}
// Restart state timer counter
mLandData->stateRunCount = 0;
// Reset state timeout to disabled/zero
mLandData->stateTimeoutCount = 0;
if (sLandStateTable[mLandData->currentState].setup) {
(this->*sLandStateTable[mLandData->currentState].setup)();
}
updateVtolLandFSMStatus();
}
// Timeout utility function for use by state init implementations
void VtolLandFSM::setStateTimeout(int32_t count)
{
mLandData->stateTimeoutCount = count;
}
void VtolLandFSM::updateVtolLandFSMStatus()
{
mLandData->fsmLandStatus.State = mLandData->currentState;
if (mLandData->flLowAltitude) {
mLandData->fsmLandStatus.AltitudeState = STATUSVTOLLAND_ALTITUDESTATE_LOW;
} else {
mLandData->fsmLandStatus.AltitudeState = STATUSVTOLLAND_ALTITUDESTATE_HIGH;
}
StatusVtolLandSet(&mLandData->fsmLandStatus);
}
float VtolLandFSM::BoundVelocityDown(float velocity_down)
{
velocity_down = boundf(velocity_down, MIN_LANDRATE, MAX_LANDRATE);
if (mLandData->flLowAltitude) {
velocity_down *= LOW_ALT_DESCENT_REDUCTION_FACTOR;
}
mLandData->fsmLandStatus.targetDescentRate = velocity_down;
if (mLandData->flAltitudeHold) {
return 0.0f;
} else {
return velocity_down;
}
}
void VtolLandFSM::assessAltitude(void)
{
float positionDown;
PositionStateDownGet(&positionDown);
float takeOffDown = 0.0f;
if (mLandData->takeOffLocation.Status == TAKEOFFLOCATION_STATUS_VALID) {
takeOffDown = mLandData->takeOffLocation.Down;
}
float positionDownRelativeToTakeoff = positionDown - takeOffDown;
if (positionDownRelativeToTakeoff < LANDING_SLOWDOWN_HEIGHT) {
mLandData->flLowAltitude = false;
} else {
mLandData->flLowAltitude = true;
}
}
// FSM Setup and Run method implementation
// State: INACTIVE
void VtolLandFSM::setup_inactive(void)
{
// Re-initialise local variables
mLandData->flZeroStabiHorizontal = false;
mLandData->flConstrainThrust = false;
}
// State: INIT ALTHOLD
void VtolLandFSM::setup_init_althold(void)
{
setStateTimeout(TIMEOUT_INIT_ALTHOLD);
// get target descent velocity
mLandData->flZeroStabiHorizontal = false;
mLandData->fsmLandStatus.targetDescentRate = BoundVelocityDown(pathDesired->ModeParameters[PATHDESIRED_MODEPARAMETER_LAND_VELOCITYVECTOR_DOWN]);
mLandData->flConstrainThrust = false;
mLandData->flAltitudeHold = true;
mLandData->boundThrustMin = vtolPathFollowerSettings->ThrustLimits.Min;
mLandData->boundThrustMax = vtolPathFollowerSettings->ThrustLimits.Max;
}
void VtolLandFSM::run_init_althold(uint8_t flTimeout)
{
if (flTimeout) {
mLandData->flAltitudeHold = false;
setState(STATUSVTOLLAND_STATE_WTGFORDESCENTRATE, STATUSVTOLLAND_STATEEXITREASON_TIMEOUT);
}
}
// State: WAITING FOR DESCENT RATE
void VtolLandFSM::setup_wtg_for_descentrate(void)
{
setStateTimeout(TIMEOUT_WTG_FOR_DESCENTRATE);
// get target descent velocity
mLandData->flZeroStabiHorizontal = false;
mLandData->observationCount = 0;
mLandData->observation2Count = 0;
mLandData->flConstrainThrust = false;
mLandData->flAltitudeHold = false;
mLandData->boundThrustMin = vtolPathFollowerSettings->ThrustLimits.Min;
mLandData->boundThrustMax = vtolPathFollowerSettings->ThrustLimits.Max;
}
void VtolLandFSM::run_wtg_for_descentrate(uint8_t flTimeout)
{
// Look at current actual thrust...are we already shutdown??
VelocityStateData velocityState;
VelocityStateGet(&velocityState);
StabilizationDesiredData stabDesired;
StabilizationDesiredGet(&stabDesired);
// We don't expect PID to get exactly the target descent rate, so have a lower
// water mark but need to see 5 observations to be confident that we have semi-stable
// descent achieved
// we need to see velocity down within a range of control before we proceed, without which we
// really don't have confidence to allow later states to run.
if (velocityState.Down > (LANDRATE_LOWLIMIT_FACTOR * mLandData->fsmLandStatus.targetDescentRate) &&
velocityState.Down < (LANDRATE_HILIMIT_FACTOR * mLandData->fsmLandStatus.targetDescentRate)) {
if (mLandData->observationCount++ > WTG_FOR_DESCENTRATE_COUNT_LIMIT) {
setState(STATUSVTOLLAND_STATE_ATDESCENTRATE, STATUSVTOLLAND_STATEEXITREASON_DESCENTRATEOK);
return;
}
}
if (flTimeout) {
setState(STATUSVTOLLAND_STATE_INITALTHOLD, STATUSVTOLLAND_STATEEXITREASON_TIMEOUT);
}
}
// State: AT DESCENT RATE
void VtolLandFSM::setup_at_descentrate(void)
{
setStateTimeout(TIMEOUT_AT_DESCENTRATE);
mLandData->flZeroStabiHorizontal = false;
mLandData->observationCount = 0;
mLandData->sum1 = 0.0f;
mLandData->sum2 = 0.0f;
mLandData->flConstrainThrust = false;
mLandData->fsmLandStatus.averageDescentRate = MIN_LANDRATE;
mLandData->fsmLandStatus.averageDescentThrust = vtolPathFollowerSettings->ThrustLimits.Neutral;
mLandData->boundThrustMin = vtolPathFollowerSettings->ThrustLimits.Min;
mLandData->boundThrustMax = vtolPathFollowerSettings->ThrustLimits.Max;
}
void VtolLandFSM::run_at_descentrate(uint8_t flTimeout)
{
VelocityStateData velocityState;
VelocityStateGet(&velocityState);
StabilizationDesiredData stabDesired;
StabilizationDesiredGet(&stabDesired);
mLandData->sum1 += velocityState.Down;
mLandData->sum2 += stabDesired.Thrust;
mLandData->observationCount++;
if (flTimeout) {
mLandData->fsmLandStatus.averageDescentRate = boundf((mLandData->sum1 / (float)(mLandData->observationCount)), 0.5f * MIN_LANDRATE, 1.5f * MAX_LANDRATE);
mLandData->fsmLandStatus.averageDescentThrust = boundf((mLandData->sum2 / (float)(mLandData->observationCount)), vtolPathFollowerSettings->ThrustLimits.Min, vtolPathFollowerSettings->ThrustLimits.Max);
// We need to calculate a neutral limit to use later to constrain upper thrust range during states where we are close to the ground
// As our battery gets flat, ThrustLimits.Neutral needs to constrain us too much and we get too fast a descent rate. We can
// detect this by the fact that the descent rate will exceed the target and the required thrust will exceed the neutral value
mLandData->fsmLandStatus.calculatedNeutralThrust = mLandData->fsmLandStatus.averageDescentRate / mLandData->fsmLandStatus.targetDescentRate * mLandData->fsmLandStatus.averageDescentThrust;
mLandData->fsmLandStatus.calculatedNeutralThrust = boundf(mLandData->fsmLandStatus.calculatedNeutralThrust, vtolPathFollowerSettings->ThrustLimits.Neutral, vtolPathFollowerSettings->ThrustLimits.Max);
setState(STATUSVTOLLAND_STATE_WTGFORGROUNDEFFECT, STATUSVTOLLAND_STATEEXITREASON_DESCENTRATEOK);
}
}
// State: WAITING FOR GROUND EFFECT
void VtolLandFSM::setup_wtg_for_groundeffect(void)
{
// No timeout
mLandData->flZeroStabiHorizontal = false;
mLandData->observationCount = 0;
mLandData->observation2Count = 0;
mLandData->sum1 = 0.0f;
mLandData->sum2 = 0.0f;
mLandData->flConstrainThrust = false;
mLandData->fsmLandStatus.WtgForGroundEffect.BounceVelocity = 0.0f;
mLandData->fsmLandStatus.WtgForGroundEffect.BounceAccel = 0.0f;
mLandData->boundThrustMin = vtolPathFollowerSettings->ThrustLimits.Min;
mLandData->boundThrustMax = vtolPathFollowerSettings->ThrustLimits.Max;
}
void VtolLandFSM::run_wtg_for_groundeffect(__attribute__((unused)) uint8_t flTimeout)
{
// detect material downrating in thrust for 1 second.
VelocityStateData velocityState;
VelocityStateGet(&velocityState);
AccelStateData accelState;
AccelStateGet(&accelState);
// +ve 9.8 expected
float g_e;
HomeLocationg_eGet(&g_e);
StabilizationDesiredData stabDesired;
StabilizationDesiredGet(&stabDesired);
// detect bounce
uint8_t flBounce = (velocityState.Down < BOUNCE_VELOCITY_TRIGGER_LIMIT);
if (flBounce) {
mLandData->fsmLandStatus.WtgForGroundEffect.BounceVelocity = velocityState.Down;
} else {
mLandData->fsmLandStatus.WtgForGroundEffect.BounceVelocity = 0.0f;
}
// invert sign of accel to the standard convention of down is +ve and subtract the gravity to get
// a relative acceleration term.
float bounceAccel = -accelState.z - g_e;
uint8_t flBounceAccel = (bounceAccel < BOUNCE_ACCELERATION_TRIGGER_LIMIT);
if (flBounceAccel) {
mLandData->fsmLandStatus.WtgForGroundEffect.BounceAccel = bounceAccel;
} else {
mLandData->fsmLandStatus.WtgForGroundEffect.BounceAccel = 0.0f;
}
if (flBounce) { // || flBounceAccel) { // accel trigger can occur due to vibration and is too sensitive
mLandData->observation2Count++;
if (mLandData->observation2Count > BOUNCE_TRIGGER_COUNT) {
setState(STATUSVTOLLAND_STATE_GROUNDEFFECT, (flBounce ? STATUSVTOLLAND_STATEEXITREASON_BOUNCEVELOCITY : STATUSVTOLLAND_STATEEXITREASON_BOUNCEACCEL));
return;
}
} else {
mLandData->observation2Count = 0;
}
// detect low descent rate
uint8_t flDescentRateLow = (velocityState.Down < (GROUNDEFFECT_SLOWDOWN_FACTOR * mLandData->fsmLandStatus.averageDescentRate));
if (flDescentRateLow) {
mLandData->boundThrustMax = mLandData->fsmLandStatus.calculatedNeutralThrust;
mLandData->observationCount++;
if (mLandData->observationCount > GROUNDEFFECT_SLOWDOWN_COUNT) {
#ifndef DEBUG_GROUNDIMPACT
setState(STATUSVTOLLAND_STATE_GROUNDEFFECT, STATUSVTOLLAND_STATEEXITREASON_LOWDESCENTRATE);
#endif
return;
}
} else {
mLandData->observationCount = 0;
}
updateVtolLandFSMStatus();
}
// STATE: GROUNDEFFET
void VtolLandFSM::setup_groundeffect(void)
{
setStateTimeout(TIMEOUT_GROUNDEFFECT);
mLandData->flZeroStabiHorizontal = false;
PositionStateData positionState;
PositionStateGet(&positionState);
mLandData->expectedLandPositionNorth = positionState.North;
mLandData->expectedLandPositionEast = positionState.East;
mLandData->flConstrainThrust = false;
// now that we have ground effect limit max thrust to neutral
mLandData->boundThrustMin = -0.1f;
mLandData->boundThrustMax = mLandData->fsmLandStatus.calculatedNeutralThrust;
}
void VtolLandFSM::run_groundeffect(__attribute__((unused)) uint8_t flTimeout)
{
StabilizationDesiredData stabDesired;
StabilizationDesiredGet(&stabDesired);
if (stabDesired.Thrust < 0.0f) {
setState(STATUSVTOLLAND_STATE_THRUSTOFF, STATUSVTOLLAND_STATEEXITREASON_ZEROTHRUST);
return;
}
// Stay in this state until we get a low altitude flag.
if (mLandData->flLowAltitude == false) {
// worst case scenario is that we land and the pid brings thrust down to zero.
return;
}
// detect broad sideways drift. If for some reason we have a hard landing that the bounce detection misses, this will kick in
PositionStateData positionState;
PositionStateGet(&positionState);
float north_error = mLandData->expectedLandPositionNorth - positionState.North;
float east_error = mLandData->expectedLandPositionEast - positionState.East;
float positionError = sqrtf(north_error * north_error + east_error * east_error);
if (positionError > 1.5f) {
setState(STATUSVTOLLAND_STATE_THRUSTDOWN, STATUSVTOLLAND_STATEEXITREASON_POSITIONERROR);
return;
}
if (flTimeout) {
setState(STATUSVTOLLAND_STATE_THRUSTDOWN, STATUSVTOLLAND_STATEEXITREASON_TIMEOUT);
}
}
// STATE: THRUSTDOWN
void VtolLandFSM::setup_thrustdown(void)
{
setStateTimeout(TIMEOUT_THRUSTDOWN);
mLandData->flZeroStabiHorizontal = true;
mLandData->flConstrainThrust = true;
StabilizationDesiredData stabDesired;
StabilizationDesiredGet(&stabDesired);
mLandData->thrustLimit = stabDesired.Thrust;
mLandData->sum1 = stabDesired.Thrust / (float)TIMEOUT_THRUSTDOWN;
mLandData->boundThrustMin = -0.1f;
mLandData->boundThrustMax = mLandData->fsmLandStatus.calculatedNeutralThrust;
}
void VtolLandFSM::run_thrustdown(__attribute__((unused)) uint8_t flTimeout)
{
// reduce thrust setpoint step by step
mLandData->thrustLimit -= mLandData->sum1;
StabilizationDesiredData stabDesired;
StabilizationDesiredGet(&stabDesired);
if (stabDesired.Thrust < 0.0f || mLandData->thrustLimit < 0.0f) {
setState(STATUSVTOLLAND_STATE_THRUSTOFF, STATUSVTOLLAND_STATEEXITREASON_ZEROTHRUST);
}
if (flTimeout) {
setState(STATUSVTOLLAND_STATE_THRUSTOFF, STATUSVTOLLAND_STATEEXITREASON_TIMEOUT);
}
}
// STATE: THRUSTOFF
void VtolLandFSM::setup_thrustoff(void)
{
mLandData->thrustLimit = -1.0f;
mLandData->flZeroStabiHorizontal = true;
mLandData->flConstrainThrust = true;
mLandData->boundThrustMin = -0.1f;
mLandData->boundThrustMax = 0.0f;
}
void VtolLandFSM::run_thrustoff(__attribute__((unused)) uint8_t flTimeout)
{
setState(STATUSVTOLLAND_STATE_DISARMED, STATUSVTOLLAND_STATEEXITREASON_NONE);
}
// STATE: DISARMED
void VtolLandFSM::setup_disarmed(void)
{
// nothing to do
mLandData->flConstrainThrust = false;
mLandData->flZeroStabiHorizontal = true;
mLandData->observationCount = 0;
mLandData->boundThrustMin = -0.1f;
mLandData->boundThrustMax = 0.0f;
// force disarm unless in pathplanner mode
// to clear, a new pathfollower mode must be selected that is not land,
// and also a non-pathfollower mode selection will set this to uninitialised.
if (flightStatus->ControlChain.PathPlanner != FLIGHTSTATUS_CONTROLCHAIN_TRUE) {
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_CRITICAL);
}
}
void VtolLandFSM::run_disarmed(__attribute__((unused)) uint8_t flTimeout)
{
if (flightStatus->ControlChain.PathPlanner != FLIGHTSTATUS_CONTROLCHAIN_TRUE) {
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_CRITICAL);
}
#ifdef DEBUG_GROUNDIMPACT
if (mLandData->observationCount++ > 100) {
setState(STATUSVTOLLAND_STATE_WTGFORGROUNDEFFECT, STATUSVTOLLAND_STATEEXITREASON_NONE);
}
#endif
}