mirror of
https://bitbucket.org/librepilot/librepilot.git
synced 2025-01-21 06:52:11 +01:00
44e3466e0a
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@3053 ebee16cc-31ac-478f-84a7-5cbb03baadba
88 lines
3.0 KiB
C++
88 lines
3.0 KiB
C++
|
|
#include <calibration.h>
|
|
#include <Eigen/Cholesky>
|
|
#include <Eigen/SVD>
|
|
#include <Eigen/QR>
|
|
|
|
/*
|
|
* Compute basic calibration parameters for a three axis gyroscope.
|
|
* The measurement equation is
|
|
* gyro_k = accelSensitivity * \tilde{accel}_k + bias + omega
|
|
*
|
|
* where, omega is the true angular rate (assumed to be zero)
|
|
* bias is the sensor bias
|
|
* accelSensitivity is the 3x3 matrix of sensitivity scale factors
|
|
* \tilde{accel}_k is the calibrated measurement of the accelerometer
|
|
* at time k
|
|
*
|
|
* After calibration, the optimized gyro measurement is given by
|
|
* \tilde{gyro}_k = gyro_k - bias - accelSensitivity * \tilde{accel}_k
|
|
*/
|
|
void
|
|
gyroscope_calibration(Vector3f& bias,
|
|
Matrix3f& accelSensitivity,
|
|
Vector3f gyroSamples[],
|
|
Vector3f accelSamples[],
|
|
size_t n_samples)
|
|
{
|
|
// Assume the following measurement model:
|
|
// y = H*x
|
|
// where x is the vector of unknowns, and y is the measurement vector.
|
|
// the vector of unknowns is
|
|
// [a_x a_y a_z b_x]
|
|
// The measurement vector is
|
|
// [gyro_x]
|
|
// and the measurement matrix H is
|
|
// [accelSample_x accelSample_y accelSample_z 1]
|
|
|
|
// Note that the individual solutions for x are given by
|
|
// (H^T \times H)^-1 \times H^T y
|
|
// Everything is identical except for y and x. So, transform it
|
|
// into block form X = (H^T \times H)^-1 \times H^T Y
|
|
// where each column of X contains the partial solution for each
|
|
// column of y.
|
|
|
|
// Construct the matrix of accelerometer samples. Intermediate results
|
|
// are computed in "twice the precision that the source provides and the
|
|
// result deserves" by Kahan's thumbrule to prevent numerical problems.
|
|
Matrix<double, Dynamic, 4> H(n_samples, 4);
|
|
// And the matrix of gyro samples.
|
|
Matrix<double, Dynamic, 3> Y(n_samples, 3);
|
|
for (unsigned i = 0; i < n_samples; ++i) {
|
|
H.row(i) << accelSamples[i].transpose().cast<double>(), 1.0;
|
|
Y.row(i) << gyroSamples[i].transpose().cast<double>();
|
|
}
|
|
|
|
#if 1
|
|
Matrix<double, 4, 3> result;
|
|
// Use the cholesky-based Penrose pseudoinverse method.
|
|
(H.transpose() * H).ldlt().solve(H.transpose()*Y, &result);
|
|
|
|
// Transpose the result and return it to the caller. Cast back to float
|
|
// since there really isn't that much accuracy in the result.
|
|
bias = result.row(3).transpose().cast<float>();
|
|
accelSensitivity = result.block<3, 3>(0, 0).transpose().cast<float>();
|
|
#else
|
|
// TODO: Compare this result with a total-least-squares model.
|
|
size_t n = 4;
|
|
Matrix<double, Dynamic, 7> C;
|
|
C << H, Y;
|
|
SVD<Matrix<double, Dynamic, 7> > usv(C);
|
|
Matrix<double, 4, 3> V_ab = usv.matrixV().block<4, 3>(0, n);
|
|
Matrix<double, Dynamic, 3> V_bb = usv.matrixV().corner(BottomRight, n_samples-4, 3);
|
|
// X = -V_ab/V_bb;
|
|
// X^T = (A * B^-1)^T
|
|
// X^T = (B^-1^T * A^T)
|
|
// X^T = (B^T^-1 * A^T)
|
|
// V_bb is orthgonal but not orthonormal. QR decomposition
|
|
// should be very fast in this case.
|
|
Matrix<double, 3, 4> result;
|
|
V_bb.transpose().qr().solve(-V_ab.transpose(), &result);
|
|
|
|
// Results only deserve single precision.
|
|
bias = result.col(3).cast<float>();
|
|
accelSensitivity = result.block<3, 3>(0, 0).cast<float>();
|
|
|
|
#endif
|
|
}
|