1
0
mirror of https://github.com/doitsujin/dxvk.git synced 2025-02-01 17:52:13 +01:00
dxvk/src/util/util_fps_limiter.cpp

132 lines
3.6 KiB
C++
Raw Normal View History

#include <thread>
#include "thread.h"
#include "util_env.h"
#include "util_fps_limiter.h"
#include "util_sleep.h"
#include "util_string.h"
#include "./log/log.h"
using namespace std::chrono_literals;
namespace dxvk {
FpsLimiter::FpsLimiter() {
std::string env = env::getEnvVar("DXVK_FRAME_RATE");
if (!env.empty()) {
try {
setTargetFrameRate(std::stod(env), 0);
m_envOverride = true;
} catch (const std::invalid_argument&) {
// no-op
}
}
}
FpsLimiter::~FpsLimiter() {
}
void FpsLimiter::setTargetFrameRate(double frameRate, uint32_t maxLatency) {
2021-06-28 19:19:29 +02:00
std::lock_guard<dxvk::mutex> lock(m_mutex);
if (!m_envOverride) {
TimerDuration interval = frameRate != 0.0
? TimerDuration(int64_t(double(TimerDuration::period::den) / frameRate))
: TimerDuration::zero();
if (m_targetInterval != interval) {
m_targetInterval = interval;
m_heuristicFrameTime = TimePoint();
m_heuristicFrameCount = 0;
m_heuristicEnable = false;
m_maxLatency = maxLatency;
}
}
}
void FpsLimiter::delay() {
std::unique_lock<dxvk::mutex> lock(m_mutex);
auto interval = m_targetInterval;
auto latency = m_maxLatency;
if (interval == TimerDuration::zero()) {
m_nextFrame = TimePoint();
return;
}
auto t1 = dxvk::high_resolution_clock::now();
if (interval < TimerDuration::zero()) {
interval = -interval;
if (!testRefreshHeuristic(interval, t1, latency))
return;
}
// Subsequent code must not access any class members
// that can be written by setTargetFrameRate
lock.unlock();
if (t1 < m_nextFrame)
Sleep::sleepUntil(t1, m_nextFrame);
m_nextFrame = (t1 < m_nextFrame + interval)
? m_nextFrame + interval
: t1 + interval;
}
bool FpsLimiter::testRefreshHeuristic(TimerDuration interval, TimePoint now, uint32_t maxLatency) {
if (m_heuristicEnable)
return true;
constexpr static uint32_t MinWindowSize = 8;
constexpr static uint32_t MaxWindowSize = 128;
if (m_heuristicFrameCount >= MinWindowSize) {
TimerDuration windowTotalTime = now - m_heuristicFrameTime;
TimerDuration windowExpectedTime = m_heuristicFrameCount * interval;
uint32_t minFrameCount = m_heuristicFrameCount - 1;
uint32_t maxFrameCount = m_heuristicFrameCount + maxLatency;
// Enable frame rate limiter if frames have been delivered faster than
// the desired refresh rate even accounting for swap chain buffering.
if ((maxFrameCount * windowTotalTime) < (m_heuristicFrameCount * windowExpectedTime)) {
double got = (double(m_heuristicFrameCount) * double(TimerDuration::period::den))
/ (double(windowTotalTime.count()) * double(TimerDuration::period::num));
double refresh = double(TimerDuration::period::den) / (double(TimerDuration::period::num) * double(interval.count()));
Logger::info(str::format("Detected frame rate (~", uint32_t(got), ") higher than selected refresh rate of ~",
uint32_t(refresh), " Hz.\n", "Engaging frame rate limiter."));
m_heuristicEnable = true;
return true;
}
// Reset heuristics if frames have been delivered slower than the refresh rate.
if (((minFrameCount * windowTotalTime) > (m_heuristicFrameCount * windowExpectedTime))
|| (m_heuristicFrameCount >= MaxWindowSize)) {
m_heuristicFrameCount = 1;
m_heuristicFrameTime = now;
return false;
}
}
if (!m_heuristicFrameCount)
m_heuristicFrameTime = now;
m_heuristicFrameCount += 1;
return false;
}
}