1
0
mirror of https://github.com/Yours3lf/rpi-vk-driver.git synced 2024-12-12 00:08:54 +01:00
rpi-vk-driver/driver/common.c

692 lines
17 KiB
C
Raw Normal View History

2018-08-26 15:11:43 +02:00
#include "common.h"
#include "kernel/vc4_packet.h"
void createImageBO(_image* i)
{
assert(i);
assert(i->format);
assert(i->width);
assert(i->height);
uint32_t bpp = getFormatBpp(i->format);
uint32_t pixelSizeBytes = bpp / 8;
uint32_t nonPaddedSize = i->width * i->height * pixelSizeBytes;
i->paddedWidth = i->width;
i->paddedHeight = i->height;
//need to pad to T format, as HW automatically chooses that
if(nonPaddedSize > 4096)
{
getPaddedTextureDimensionsT(i->width, i->height, bpp, &i->paddedWidth, &i->paddedHeight);
}
i->size = getBOAlignedSize(i->paddedWidth * i->paddedHeight * pixelSizeBytes);
2018-08-26 15:11:43 +02:00
i->stride = i->paddedWidth * pixelSizeBytes;
i->handle = vc4_bo_alloc(controlFd, i->size, "swapchain image"); assert(i->handle);
//set tiling to T if size > 4KB
if(nonPaddedSize > 4096)
{
int ret = vc4_bo_set_tiling(controlFd, i->handle, DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED); assert(ret);
i->tiling = VC4_TILING_FORMAT_T;
}
else
{
int ret = vc4_bo_set_tiling(controlFd, i->handle, DRM_FORMAT_MOD_LINEAR); assert(ret);
i->tiling = VC4_TILING_FORMAT_LT;
}
}
/*
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkCmdClearColorImage
* Color and depth/stencil images can be cleared outside a render pass instance using vkCmdClearColorImage or vkCmdClearDepthStencilImage, respectively.
* These commands are only allowed outside of a render pass instance.
*/
VKAPI_ATTR void VKAPI_CALL vkCmdClearColorImage(
VkCommandBuffer commandBuffer,
VkImage image,
VkImageLayout imageLayout,
const VkClearColorValue* pColor,
uint32_t rangeCount,
const VkImageSubresourceRange* pRanges)
{
assert(commandBuffer);
assert(image);
assert(pColor);
//TODO this should only flag an image for clearing. This can only be called outside a renderpass
//actual clearing would only happen:
// -if image is rendered to (insert clear before first draw call)
// -if the image is bound for sampling (submit a CL with a clear)
// -if a command buffer is submitted without any rendering (insert clear)
// -etc.
//we shouldn't clear an image if noone uses it
//TODO ranges support
assert(imageLayout == VK_IMAGE_LAYOUT_GENERAL ||
imageLayout == VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR ||
imageLayout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
assert(commandBuffer->state == CMDBUF_STATE_RECORDING);
assert(_queueFamilyProperties[commandBuffer->cp->queueFamilyIndex].queueFlags & VK_QUEUE_GRAPHICS_BIT || _queueFamilyProperties[commandBuffer->cp->queueFamilyIndex].queueFlags & VK_QUEUE_COMPUTE_BIT);
_image* i = image;
assert(i->usageBits & VK_IMAGE_USAGE_TRANSFER_DST_BIT);
//TODO externally sync cmdbuf, cmdpool
i->needToClear = 1;
i->clearColor[0] = i->clearColor[1] = packVec4IntoABGR8(pColor->float32);
}
int findInstanceExtension(char* name)
{
for(int c = 0; c < numInstanceExtensions; ++c)
{
if(strcmp(instanceExtensions[c].extensionName, name) == 0)
{
return c;
}
}
return -1;
}
int findDeviceExtension(char* name)
{
for(int c = 0; c < numDeviceExtensions; ++c)
{
if(strcmp(deviceExtensions[c].extensionName, name) == 0)
{
return c;
}
}
return -1;
}
//Textures in T format:
//formed out of 4KB tiles, which have 1KB subtiles (see page 105 in VC4 arch guide)
//1KB subtiles have 512b microtiles.
//Width/height of the 512b microtiles is the following:
// 64bpp: 2x4
// 32bpp: 4x4
// 16bpp: 8x4
// 8bpp: 8x8
// 4bpp: 16x8
// 1bpp: 32x16
//Therefore width/height of 1KB subtiles is the following:
// 64bpp: 8x16
// 32bpp: 16x16
// 16bpp: 32x16
// 8bpp: 32x32
// 4bpp: 64x32
// 1bpp: 128x64
//Finally width/height of the 4KB tiles:
// 64bpp: 16x32
// 32bpp: 32x32
// 16bpp: 64x32
// 8bpp: 64x64
// 4bpp: 128x64
// 1bpp: 256x128
void getPaddedTextureDimensionsT(uint32_t width, uint32_t height, uint32_t bpp, uint32_t* paddedWidth, uint32_t* paddedHeight)
{
assert(paddedWidth);
assert(paddedHeight);
uint32_t tileW = 0;
uint32_t tileH = 0;
switch(bpp)
{
case 64:
{
tileW = 16;
tileH = 32;
break;
}
case 32:
{
tileW = 32;
tileH = 32;
break;
}
case 16:
{
tileW = 64;
tileH = 32;
break;
}
case 8:
{
tileW = 64;
tileH = 64;
break;
}
case 4:
{
tileW = 128;
tileH = 64;
break;
}
case 1:
{
tileW = 256;
tileH = 128;
break;
}
default:
{
assert(0); //unsupported
}
}
*paddedWidth = ((tileW - (width % tileW)) % tileW) + width;
*paddedHeight = ((tileH - (height % tileH)) % tileH) + height;
}
uint32_t getFormatBpp(VkFormat f)
{
switch(f)
{
case VK_FORMAT_R16G16B16A16_SFLOAT:
return 64;
case VK_FORMAT_R8G8B8_UNORM: //padded to 32
case VK_FORMAT_R8G8B8A8_UNORM:
return 32;
return 32;
case VK_FORMAT_R5G5B5A1_UNORM_PACK16:
case VK_FORMAT_R4G4B4A4_UNORM_PACK16:
case VK_FORMAT_R5G6B5_UNORM_PACK16:
case VK_FORMAT_R8G8_UNORM:
case VK_FORMAT_R16_SFLOAT:
case VK_FORMAT_R16_SINT:
return 16;
case VK_FORMAT_R8_UNORM:
case VK_FORMAT_R8_SINT:
return 8;
default:
assert(0);
return 0;
}
}
uint32_t packVec4IntoABGR8(const float rgba[4])
{
uint8_t r, g, b, a;
r = rgba[0] * 255.0;
g = rgba[1] * 255.0;
b = rgba[2] * 255.0;
a = rgba[3] * 255.0;
uint32_t res = 0 |
(a << 24) |
(b << 16) |
(g << 8) |
(r << 0);
return res;
}
/*static inline void util_pack_color(const float rgba[4], enum pipe_format format, union util_color *uc)
{
ubyte r = 0;
ubyte g = 0;
ubyte b = 0;
ubyte a = 0;
if (util_format_get_component_bits(format, UTIL_FORMAT_COLORSPACE_RGB, 0) <= 8) {
r = float_to_ubyte(rgba[0]);
g = float_to_ubyte(rgba[1]);
b = float_to_ubyte(rgba[2]);
a = float_to_ubyte(rgba[3]);
}
switch (format) {
case PIPE_FORMAT_ABGR8888_UNORM:
{
uc->ui[0] = (r << 24) | (g << 16) | (b << 8) | a;
}
return;
case PIPE_FORMAT_XBGR8888_UNORM:
{
uc->ui[0] = (r << 24) | (g << 16) | (b << 8) | 0xff;
}
return;
case PIPE_FORMAT_BGRA8888_UNORM:
{
uc->ui[0] = (a << 24) | (r << 16) | (g << 8) | b;
}
return;
case PIPE_FORMAT_BGRX8888_UNORM:
{
uc->ui[0] = (0xffu << 24) | (r << 16) | (g << 8) | b;
}
return;
case PIPE_FORMAT_ARGB8888_UNORM:
{
uc->ui[0] = (b << 24) | (g << 16) | (r << 8) | a;
}
return;
case PIPE_FORMAT_XRGB8888_UNORM:
{
uc->ui[0] = (b << 24) | (g << 16) | (r << 8) | 0xff;
}
return;
case PIPE_FORMAT_B5G6R5_UNORM:
{
uc->us = ((r & 0xf8) << 8) | ((g & 0xfc) << 3) | (b >> 3);
}
return;
case PIPE_FORMAT_B5G5R5X1_UNORM:
{
uc->us = ((0x80) << 8) | ((r & 0xf8) << 7) | ((g & 0xf8) << 2) | (b >> 3);
}
return;
case PIPE_FORMAT_B5G5R5A1_UNORM:
{
uc->us = ((a & 0x80) << 8) | ((r & 0xf8) << 7) | ((g & 0xf8) << 2) | (b >> 3);
}
return;
case PIPE_FORMAT_B4G4R4A4_UNORM:
{
uc->us = ((a & 0xf0) << 8) | ((r & 0xf0) << 4) | ((g & 0xf0) << 0) | (b >> 4);
}
return;
case PIPE_FORMAT_A8_UNORM:
{
uc->ub = a;
}
return;
case PIPE_FORMAT_L8_UNORM:
case PIPE_FORMAT_I8_UNORM:
{
uc->ub = r;
}
return;
case PIPE_FORMAT_R32G32B32A32_FLOAT:
{
uc->f[0] = rgba[0];
uc->f[1] = rgba[1];
uc->f[2] = rgba[2];
uc->f[3] = rgba[3];
}
return;
case PIPE_FORMAT_R32G32B32_FLOAT:
{
uc->f[0] = rgba[0];
uc->f[1] = rgba[1];
uc->f[2] = rgba[2];
}
return;
default:
util_format_write_4f(format, rgba, 0, uc, 0, 0, 0, 1, 1);
}
}*/
2018-09-08 18:53:51 +02:00
/*
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkCmdBeginRenderPass
*/
void vkCmdBeginRenderPass(VkCommandBuffer commandBuffer, const VkRenderPassBeginInfo* pRenderPassBegin, VkSubpassContents contents)
2018-09-08 18:53:51 +02:00
{
}
/*
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkCmdBindPipeline
*/
void vkCmdBindPipeline(VkCommandBuffer commandBuffer, VkPipelineBindPoint pipelineBindPoint, VkPipeline pipeline)
2018-09-08 18:53:51 +02:00
{
}
/*
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkCmdSetViewport
*/
void vkCmdSetViewport(VkCommandBuffer commandBuffer, uint32_t firstViewport, uint32_t viewportCount, const VkViewport* pViewports)
2018-09-08 18:53:51 +02:00
{
}
/*
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkCmdSetScissor
*/
void vkCmdSetScissor(VkCommandBuffer commandBuffer, uint32_t firstScissor, uint32_t scissorCount, const VkRect2D* pScissors)
2018-09-08 18:53:51 +02:00
{
}
/*
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkCmdDraw
*/
void vkCmdDraw(VkCommandBuffer commandBuffer, uint32_t vertexCount, uint32_t instanceCount, uint32_t firstVertex, uint32_t firstInstance)
2018-09-08 18:53:51 +02:00
{
}
/*
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkCmdEndRenderPass
*/
void vkCmdEndRenderPass(VkCommandBuffer commandBuffer)
2018-09-08 18:53:51 +02:00
{
}
/*
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkCreateRenderPass
*/
VkResult vkCreateRenderPass(VkDevice device, const VkRenderPassCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkRenderPass* pRenderPass)
2018-09-08 18:53:51 +02:00
{
assert(device);
assert(pCreateInfo);
assert(pRenderPass);
assert(pAllocator == 0); //TODO allocators not supported yet
_renderpass* rp = malloc(sizeof(_renderpass));
if(!rp)
{
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
*pRenderPass = rp;
2018-09-08 18:53:51 +02:00
return VK_SUCCESS;
2018-09-08 18:53:51 +02:00
}
/*
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkCreateImageView
*/
VkResult vkCreateImageView(VkDevice device, const VkImageViewCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkImageView* pView)
2018-09-08 18:53:51 +02:00
{
return VK_SUCCESS;
}
2018-09-08 18:53:51 +02:00
/*
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkCreateFramebuffer
*/
VkResult vkCreateFramebuffer(VkDevice device, const VkFramebufferCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkFramebuffer* pFramebuffer)
{
return VK_SUCCESS;
2018-09-08 18:53:51 +02:00
}
/*
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkCreateShaderModule
*/
VkResult vkCreateShaderModule(VkDevice device, const VkShaderModuleCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkShaderModule* pShaderModule)
2018-09-08 18:53:51 +02:00
{
return VK_SUCCESS;
}
2018-09-08 18:53:51 +02:00
/*
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkCreateGraphicsPipelines
*/
VkResult vkCreateGraphicsPipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t createInfoCount, const VkGraphicsPipelineCreateInfo* pCreateInfos, const VkAllocationCallbacks* pAllocator, VkPipeline* pPipelines)
{
return VK_SUCCESS;
2018-09-08 18:53:51 +02:00
}
/*
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkGetPhysicalDeviceMemoryProperties
*/
void vkGetPhysicalDeviceMemoryProperties(VkPhysicalDevice physicalDevice, VkPhysicalDeviceMemoryProperties* pMemoryProperties)
2018-09-08 18:53:51 +02:00
{
assert(physicalDevice);
assert(pMemoryProperties);
2018-09-08 18:53:51 +02:00
if(memoryHeaps[0].size == 0)
{
//TODO is this the correct way of getting amount of video mem?
char buf[4096];
int fd = open("/proc/meminfo", O_RDONLY);
read(fd, buf, 4096);
close(fd);
char* cma = strstr(buf, "CmaTotal");
char* cmaend = strstr(cma, "\n");
char cmaAmount[4096];
char* cmaPtr = cmaAmount;
while(cma != cmaend)
{
if(*cma >= '0' && *cma <= '9')
{
//number
*cmaPtr = *cma; //copy char
cmaPtr++;
}
cma++;
}
*cmaPtr = '\0';
unsigned amount = atoi(cmaAmount);
//printf("%i\n", amount);
//all heaps share the same memory
for(int c = 0; c < numMemoryHeaps; ++c)
{
memoryHeaps[c].size = amount;
}
}
pMemoryProperties->memoryTypeCount = numMemoryTypes;
for(int c = 0; c < numMemoryTypes; ++c)
{
pMemoryProperties->memoryTypes[c] = memoryTypes[c];
}
pMemoryProperties->memoryHeapCount = numMemoryHeaps;
for(int c = 0; c < numMemoryHeaps; ++c)
{
pMemoryProperties->memoryHeaps[c] = memoryHeaps[c];
}
2018-09-08 18:53:51 +02:00
}
/*
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkCmdBindVertexBuffers
*/
void vkCmdBindVertexBuffers(VkCommandBuffer commandBuffer, uint32_t firstBinding, uint32_t bindingCount, const VkBuffer* pBuffers, const VkDeviceSize* pOffsets)
2018-09-08 18:53:51 +02:00
{
}
/*
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkCreateBuffer
*/
VkResult vkCreateBuffer(VkDevice device, const VkBufferCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkBuffer* pBuffer)
2018-09-08 18:53:51 +02:00
{
assert(device);
assert(pCreateInfo);
assert(pBuffer);
assert(pAllocator == 0); //TODO
_buffer* buf = malloc(sizeof(_buffer));
if(!buf)
{
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
buf->size = pCreateInfo->size;
buf->usage = pCreateInfo->usage;
buf->boundMem = 0;
buf->alignment = ARM_PAGE_SIZE; //TODO
buf->alignedSize = getBOAlignedSize(buf->size);
*pBuffer = buf;
2018-09-08 18:53:51 +02:00
return VK_SUCCESS;
2018-09-08 18:53:51 +02:00
}
/*
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkGetBufferMemoryRequirements
*/
void vkGetBufferMemoryRequirements(VkDevice device, VkBuffer buffer, VkMemoryRequirements* pMemoryRequirements)
2018-09-08 18:53:51 +02:00
{
assert(device);
assert(buffer);
assert(pMemoryRequirements);
pMemoryRequirements->alignment = ((_buffer*)buffer)->alignment;
pMemoryRequirements->size = ((_buffer*)buffer)->alignedSize;
pMemoryRequirements->memoryTypeBits = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT; //TODO
2018-09-08 18:53:51 +02:00
}
/*
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkAllocateMemory
*/
VkResult vkAllocateMemory(VkDevice device, const VkMemoryAllocateInfo* pAllocateInfo, const VkAllocationCallbacks* pAllocator, VkDeviceMemory* pMemory)
2018-09-08 18:53:51 +02:00
{
assert(device);
assert(pAllocateInfo);
assert(pMemory);
assert(pAllocator == 0); //TODO
uint32_t bo = vc4_bo_alloc(controlFd, pAllocateInfo->allocationSize, "vkAllocateMemory");
if(!bo)
{
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
}
_deviceMemory* mem = malloc(sizeof(_deviceMemory));
if(!mem)
{
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
mem->bo = bo;
mem->size = pAllocateInfo->allocationSize;
mem->memTypeIndex = pAllocateInfo->memoryTypeIndex;
mem->mappedPtr = 0;
*pMemory = mem;
//TODO max number of allocations
2018-09-08 18:53:51 +02:00
return VK_SUCCESS;
}
/*
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkMapMemory
*/
VkResult vkMapMemory(VkDevice device, VkDeviceMemory memory, VkDeviceSize offset, VkDeviceSize size, VkMemoryMapFlags flags, void** ppData)
2018-09-08 18:53:51 +02:00
{
assert(device);
assert(memory);
assert(size);
assert(ppData);
assert(memoryTypes[((_deviceMemory*)memory)->memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT);
assert(!((_deviceMemory*)memory)->mappedPtr);
assert(offset < ((_deviceMemory*)memory)->size);
if(size != VK_WHOLE_SIZE)
{
assert(size > 0);
assert(size <= ((_deviceMemory*)memory)->size - offset);
}
//TODO check ppdata alignment
//TODO multiple instances?
void* ptr = vc4_bo_map(controlFd, ((_deviceMemory*)memory)->bo, offset, size);
if(!ptr)
{
return VK_ERROR_MEMORY_MAP_FAILED;
}
((_deviceMemory*)memory)->mappedPtr = ptr;
((_deviceMemory*)memory)->mappedOffset = offset;
((_deviceMemory*)memory)->mappedSize = size;
*ppData = ptr;
2018-09-08 18:53:51 +02:00
return VK_SUCCESS;
}
/*
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkUnmapMemory
*/
void vkUnmapMemory(VkDevice device, VkDeviceMemory memory)
2018-09-08 18:53:51 +02:00
{
assert(device);
assert(memory);
vc4_bo_unmap_unsynchronized(controlFd, ((_deviceMemory*)memory)->mappedPtr, ((_deviceMemory*)memory)->mappedSize);
2018-09-08 18:53:51 +02:00
}
/*
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkBindBufferMemory
*/
VkResult vkBindBufferMemory(VkDevice device, VkBuffer buffer, VkDeviceMemory memory, VkDeviceSize memoryOffset)
2018-09-08 18:53:51 +02:00
{
assert(device);
assert(buffer);
assert(memory);
_buffer* buf = buffer;
_deviceMemory* mem = memory;
assert(!buf->boundMem);
assert(memoryOffset < mem->size);
assert(memoryOffset % buf->alignment == 0);
assert(buf->alignedSize <= mem->size - memoryOffset);
buf->boundMem = mem;
buf->boundOffset = memoryOffset;
2018-09-08 18:53:51 +02:00
return VK_SUCCESS;
}
void vkDestroyBuffer(VkDevice device, VkBuffer buffer, const VkAllocationCallbacks* pAllocator)
{
}
void vkFreeMemory(VkDevice device, VkDeviceMemory memory, const VkAllocationCallbacks* pAllocator)
{
}
void vkDestroyImage(VkDevice device, VkImage image, const VkAllocationCallbacks* pAllocator)
{
}
void vkDestroyImageView(VkDevice device, VkImageView imageView, const VkAllocationCallbacks* pAllocator)
{
}
void vkDestroyFramebuffer(VkDevice device, VkFramebuffer framebuffer, const VkAllocationCallbacks* pAllocator)
{
}
void vkDestroyRenderPass(VkDevice device, VkRenderPass renderPass, const VkAllocationCallbacks* pAllocator)
{
assert(device);
assert(renderPass);
assert(pAllocator == 0); //TODO
//TODO?
free(renderPass);
}
void vkDestroyShaderModule(VkDevice device, VkShaderModule shaderModule, const VkAllocationCallbacks* pAllocator)
{
}
void vkDestroyPipeline(VkDevice device, VkPipeline pipeline, const VkAllocationCallbacks* pAllocator)
{
}