1
0
mirror of https://github.com/Yours3lf/rpi-vk-driver.git synced 2024-12-01 13:24:20 +01:00
rpi-vk-driver/driver/common.c
2018-10-15 19:15:34 +01:00

1534 lines
43 KiB
C

#include "common.h"
#include "kernel/vc4_packet.h"
void createImageBO(_image* i)
{
assert(i);
assert(i->format);
assert(i->width);
assert(i->height);
uint32_t bpp = getFormatBpp(i->format);
uint32_t pixelSizeBytes = bpp / 8;
uint32_t nonPaddedSize = i->width * i->height * pixelSizeBytes;
i->paddedWidth = i->width;
i->paddedHeight = i->height;
//need to pad to T format, as HW automatically chooses that
if(nonPaddedSize > 4096)
{
getPaddedTextureDimensionsT(i->width, i->height, bpp, &i->paddedWidth, &i->paddedHeight);
}
i->size = getBOAlignedSize(i->paddedWidth * i->paddedHeight * pixelSizeBytes);
i->stride = i->paddedWidth * pixelSizeBytes;
i->handle = vc4_bo_alloc(controlFd, i->size, "swapchain image"); assert(i->handle);
//set tiling to T if size > 4KB
if(nonPaddedSize > 4096)
{
int ret = vc4_bo_set_tiling(controlFd, i->handle, DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED); assert(ret);
i->tiling = VC4_TILING_FORMAT_T;
}
else
{
int ret = vc4_bo_set_tiling(controlFd, i->handle, DRM_FORMAT_MOD_LINEAR); assert(ret);
i->tiling = VC4_TILING_FORMAT_LT;
}
}
/*
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkCmdClearColorImage
* Color and depth/stencil images can be cleared outside a render pass instance using vkCmdClearColorImage or vkCmdClearDepthStencilImage, respectively.
* These commands are only allowed outside of a render pass instance.
*/
VKAPI_ATTR void VKAPI_CALL vkCmdClearColorImage(
VkCommandBuffer commandBuffer,
VkImage image,
VkImageLayout imageLayout,
const VkClearColorValue* pColor,
uint32_t rangeCount,
const VkImageSubresourceRange* pRanges)
{
assert(commandBuffer);
assert(image);
assert(pColor);
//TODO this should only flag an image for clearing. This can only be called outside a renderpass
//actual clearing would only happen:
// -if image is rendered to (insert clear before first draw call)
// -if the image is bound for sampling (submit a CL with a clear)
// -if a command buffer is submitted without any rendering (insert clear)
// -etc.
//we shouldn't clear an image if noone uses it
//TODO ranges support
assert(imageLayout == VK_IMAGE_LAYOUT_GENERAL ||
imageLayout == VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR ||
imageLayout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
assert(commandBuffer->state == CMDBUF_STATE_RECORDING);
assert(_queueFamilyProperties[commandBuffer->cp->queueFamilyIndex].queueFlags & VK_QUEUE_GRAPHICS_BIT || _queueFamilyProperties[commandBuffer->cp->queueFamilyIndex].queueFlags & VK_QUEUE_COMPUTE_BIT);
_image* i = image;
assert(i->usageBits & VK_IMAGE_USAGE_TRANSFER_DST_BIT);
//TODO externally sync cmdbuf, cmdpool
i->needToClear = 1;
i->clearColor[0] = i->clearColor[1] = packVec4IntoABGR8(pColor->float32);
}
int findInstanceExtension(char* name)
{
for(int c = 0; c < numInstanceExtensions; ++c)
{
if(strcmp(instanceExtensions[c].extensionName, name) == 0)
{
return c;
}
}
return -1;
}
int findDeviceExtension(char* name)
{
for(int c = 0; c < numDeviceExtensions; ++c)
{
if(strcmp(deviceExtensions[c].extensionName, name) == 0)
{
return c;
}
}
return -1;
}
//Textures in T format:
//formed out of 4KB tiles, which have 1KB subtiles (see page 105 in VC4 arch guide)
//1KB subtiles have 512b microtiles.
//Width/height of the 512b microtiles is the following:
// 64bpp: 2x4
// 32bpp: 4x4
// 16bpp: 8x4
// 8bpp: 8x8
// 4bpp: 16x8
// 1bpp: 32x16
//Therefore width/height of 1KB subtiles is the following:
// 64bpp: 8x16
// 32bpp: 16x16
// 16bpp: 32x16
// 8bpp: 32x32
// 4bpp: 64x32
// 1bpp: 128x64
//Finally width/height of the 4KB tiles:
// 64bpp: 16x32
// 32bpp: 32x32
// 16bpp: 64x32
// 8bpp: 64x64
// 4bpp: 128x64
// 1bpp: 256x128
void getPaddedTextureDimensionsT(uint32_t width, uint32_t height, uint32_t bpp, uint32_t* paddedWidth, uint32_t* paddedHeight)
{
assert(paddedWidth);
assert(paddedHeight);
uint32_t tileW = 0;
uint32_t tileH = 0;
switch(bpp)
{
case 64:
{
tileW = 16;
tileH = 32;
break;
}
case 32:
{
tileW = 32;
tileH = 32;
break;
}
case 16:
{
tileW = 64;
tileH = 32;
break;
}
case 8:
{
tileW = 64;
tileH = 64;
break;
}
case 4:
{
tileW = 128;
tileH = 64;
break;
}
case 1:
{
tileW = 256;
tileH = 128;
break;
}
default:
{
assert(0); //unsupported
}
}
*paddedWidth = ((tileW - (width % tileW)) % tileW) + width;
*paddedHeight = ((tileH - (height % tileH)) % tileH) + height;
}
uint32_t getFormatBpp(VkFormat f)
{
switch(f)
{
case VK_FORMAT_R16G16B16A16_SFLOAT:
return 64;
case VK_FORMAT_R8G8B8_UNORM: //padded to 32
case VK_FORMAT_R8G8B8A8_UNORM:
return 32;
return 32;
case VK_FORMAT_R5G5B5A1_UNORM_PACK16:
case VK_FORMAT_R4G4B4A4_UNORM_PACK16:
case VK_FORMAT_R5G6B5_UNORM_PACK16:
case VK_FORMAT_R8G8_UNORM:
case VK_FORMAT_R16_SFLOAT:
case VK_FORMAT_R16_SINT:
return 16;
case VK_FORMAT_R8_UNORM:
case VK_FORMAT_R8_SINT:
return 8;
default:
assert(0);
return 0;
}
}
uint32_t packVec4IntoABGR8(const float rgba[4])
{
uint8_t r, g, b, a;
r = rgba[0] * 255.0;
g = rgba[1] * 255.0;
b = rgba[2] * 255.0;
a = rgba[3] * 255.0;
uint32_t res = 0 |
(a << 24) |
(b << 16) |
(g << 8) |
(r << 0);
return res;
}
/*static inline void util_pack_color(const float rgba[4], enum pipe_format format, union util_color *uc)
{
ubyte r = 0;
ubyte g = 0;
ubyte b = 0;
ubyte a = 0;
if (util_format_get_component_bits(format, UTIL_FORMAT_COLORSPACE_RGB, 0) <= 8) {
r = float_to_ubyte(rgba[0]);
g = float_to_ubyte(rgba[1]);
b = float_to_ubyte(rgba[2]);
a = float_to_ubyte(rgba[3]);
}
switch (format) {
case PIPE_FORMAT_ABGR8888_UNORM:
{
uc->ui[0] = (r << 24) | (g << 16) | (b << 8) | a;
}
return;
case PIPE_FORMAT_XBGR8888_UNORM:
{
uc->ui[0] = (r << 24) | (g << 16) | (b << 8) | 0xff;
}
return;
case PIPE_FORMAT_BGRA8888_UNORM:
{
uc->ui[0] = (a << 24) | (r << 16) | (g << 8) | b;
}
return;
case PIPE_FORMAT_BGRX8888_UNORM:
{
uc->ui[0] = (0xffu << 24) | (r << 16) | (g << 8) | b;
}
return;
case PIPE_FORMAT_ARGB8888_UNORM:
{
uc->ui[0] = (b << 24) | (g << 16) | (r << 8) | a;
}
return;
case PIPE_FORMAT_XRGB8888_UNORM:
{
uc->ui[0] = (b << 24) | (g << 16) | (r << 8) | 0xff;
}
return;
case PIPE_FORMAT_B5G6R5_UNORM:
{
uc->us = ((r & 0xf8) << 8) | ((g & 0xfc) << 3) | (b >> 3);
}
return;
case PIPE_FORMAT_B5G5R5X1_UNORM:
{
uc->us = ((0x80) << 8) | ((r & 0xf8) << 7) | ((g & 0xf8) << 2) | (b >> 3);
}
return;
case PIPE_FORMAT_B5G5R5A1_UNORM:
{
uc->us = ((a & 0x80) << 8) | ((r & 0xf8) << 7) | ((g & 0xf8) << 2) | (b >> 3);
}
return;
case PIPE_FORMAT_B4G4R4A4_UNORM:
{
uc->us = ((a & 0xf0) << 8) | ((r & 0xf0) << 4) | ((g & 0xf0) << 0) | (b >> 4);
}
return;
case PIPE_FORMAT_A8_UNORM:
{
uc->ub = a;
}
return;
case PIPE_FORMAT_L8_UNORM:
case PIPE_FORMAT_I8_UNORM:
{
uc->ub = r;
}
return;
case PIPE_FORMAT_R32G32B32A32_FLOAT:
{
uc->f[0] = rgba[0];
uc->f[1] = rgba[1];
uc->f[2] = rgba[2];
uc->f[3] = rgba[3];
}
return;
case PIPE_FORMAT_R32G32B32_FLOAT:
{
uc->f[0] = rgba[0];
uc->f[1] = rgba[1];
uc->f[2] = rgba[2];
}
return;
default:
util_format_write_4f(format, rgba, 0, uc, 0, 0, 0, 1, 1);
}
}*/
int isDepthStencilFormat(VkFormat format)
{
switch(format)
{
case VK_FORMAT_D16_UNORM:
case VK_FORMAT_X8_D24_UNORM_PACK32:
case VK_FORMAT_D32_SFLOAT:
case VK_FORMAT_S8_UINT:
case VK_FORMAT_D16_UNORM_S8_UINT:
case VK_FORMAT_D24_UNORM_S8_UINT:
case VK_FORMAT_D32_SFLOAT_S8_UINT:
return 1;
default:
return 0;
}
}
/*
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkCmdBeginRenderPass
*/
void vkCmdBeginRenderPass(VkCommandBuffer commandBuffer, const VkRenderPassBeginInfo* pRenderPassBegin, VkSubpassContents contents)
{
assert(commandBuffer);
assert(pRenderPassBegin);
//TODO subpass contents ignored
//TODO add state tracking to command buffer
//only bake into control list when a draw call is issued or similar
_commandBuffer* cb = commandBuffer;
cb->fbo = pRenderPassBegin->framebuffer;
cb->renderpass = pRenderPassBegin->renderPass;
cb->renderArea = pRenderPassBegin->renderArea;
for(int c = 0; c < pRenderPassBegin->clearValueCount; ++c)
{
if(cb->renderpass->attachments[c].loadOp == VK_ATTACHMENT_LOAD_OP_CLEAR)
{
cb->fbo->attachmentViews[c].image->needToClear = 1;
cb->fbo->attachmentViews[c].image->clearColor[0] = cb->fbo->attachmentViews[c].image->clearColor[1] = packVec4IntoABGR8(pRenderPassBegin->pClearValues->color.float32);
}
else if(isDepthStencilFormat(cb->renderpass->attachments[c].format) && cb->renderpass->attachments[c].stencilLoadOp == VK_ATTACHMENT_LOAD_OP_CLEAR)
{
//TODO how to pack depth/stencil clear values???
//cb->fbo->attachmentViews[c].image->needToClear = 1;
//cb->fbo->attachmentViews[c].image->clearColor = packVec4IntoABGR8(pRenderPassBegin->pClearValues->depthStencil.depth);
}
}
cb->currentSubpass = 0;
}
/*
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkCmdBindPipeline
*/
void vkCmdBindPipeline(VkCommandBuffer commandBuffer, VkPipelineBindPoint pipelineBindPoint, VkPipeline pipeline)
{
assert(commandBuffer);
_commandBuffer* cb = commandBuffer;
if(pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS)
{
cb->graphicsPipeline = pipeline;
}
else if(pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE)
{
cb->computePipeline = pipeline;
}
}
/*
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkCmdSetViewport
*/
void vkCmdSetViewport(VkCommandBuffer commandBuffer, uint32_t firstViewport, uint32_t viewportCount, const VkViewport* pViewports)
{
//TODO
}
/*
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkCmdSetScissor
*/
void vkCmdSetScissor(VkCommandBuffer commandBuffer, uint32_t firstScissor, uint32_t scissorCount, const VkRect2D* pScissors)
{
//TODO
}
uint32_t getDepthCompareOp(VkCompareOp op)
{
switch(op)
{
case VK_COMPARE_OP_NEVER:
return V3D_COMPARE_FUNC_NEVER;
case VK_COMPARE_OP_LESS:
return V3D_COMPARE_FUNC_LESS;
case VK_COMPARE_OP_EQUAL:
return V3D_COMPARE_FUNC_EQUAL;
case VK_COMPARE_OP_LESS_OR_EQUAL:
return V3D_COMPARE_FUNC_LEQUAL;
case VK_COMPARE_OP_GREATER:
return V3D_COMPARE_FUNC_GREATER;
case VK_COMPARE_OP_NOT_EQUAL:
return V3D_COMPARE_FUNC_NOTEQUAL;
case VK_COMPARE_OP_GREATER_OR_EQUAL:
return V3D_COMPARE_FUNC_GEQUAL;
case VK_COMPARE_OP_ALWAYS:
return V3D_COMPARE_FUNC_ALWAYS;
default:
return -1;
}
}
uint32_t getTopology(VkPrimitiveTopology topology)
{
switch(topology)
{
case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
return 0;
case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
return 1;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
return 2;
default:
return -1;
}
}
uint32_t getPrimitiveMode(VkPrimitiveTopology topology)
{
switch(topology)
{
case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
return V3D_PRIM_POINTS;
case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
return V3D_PRIM_LINES;
case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
return V3D_PRIM_LINE_STRIP;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
return V3D_PRIM_TRIANGLES;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
return V3D_PRIM_TRIANGLE_STRIP;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
return V3D_PRIM_TRIANGLE_FAN;
default:
return -1;
}
}
uint32_t getFormatByteSize(VkFormat format)
{
switch(format)
{
case VK_FORMAT_R16_SFLOAT:
return 2;
case VK_FORMAT_R16G16_SFLOAT:
return 4;
case VK_FORMAT_R16G16B16_SFLOAT:
return 6;
case VK_FORMAT_R16G16B16A16_SFLOAT:
return 8;
case VK_FORMAT_R32_SFLOAT:
return 4;
case VK_FORMAT_R32G32_SFLOAT:
return 8;
case VK_FORMAT_R32G32B32_SFLOAT:
return 8;
case VK_FORMAT_R32G32B32A32_SFLOAT:
return 8;
default:
return -1;
}
}
uint32_t ulog2(uint32_t v)
{
uint32_t ret = 0;
while(v >>= 1) ret++;
return ret;
}
/*
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkCmdDraw
*/
void vkCmdDraw(VkCommandBuffer commandBuffer, uint32_t vertexCount, uint32_t instanceCount, uint32_t firstVertex, uint32_t firstInstance)
{
assert(commandBuffer);
_commandBuffer* cb = commandBuffer;
_renderpass* rp = cb->renderpass;
_framebuffer* fb = cb->fbo;
//TODO handle multiple attachments etc.
_image* i = fb->attachmentViews[rp->subpasses[cb->currentSubpass].pColorAttachments[0].attachment].image;
//stuff needed to submit a draw call:
//Tile Binning Mode Configuration
clFit(commandBuffer, &commandBuffer->binCl, V3D21_TILE_BINNING_MODE_CONFIGURATION_length);
clInsertTileBinningModeConfiguration(&commandBuffer->binCl,
0, 0, 0, 0,
getFormatBpp(i->format) == 64, //64 bit color mode
i->samples > 1, //msaa
i->width, i->height, 0, 0, 0);
//Start Tile Binning
clFit(commandBuffer, &commandBuffer->binCl, V3D21_START_TILE_BINNING_length);
clInsertStartTileBinning(&commandBuffer->binCl);
//Primitive List Format
clFit(commandBuffer, &commandBuffer->binCl, V3D21_PRIMITIVE_LIST_FORMAT_length);
clInsertPrimitiveListFormat(&commandBuffer->binCl,
1, //16 bit
getTopology(cb->graphicsPipeline->topology)); //tris
//Clip Window
clFit(commandBuffer, &commandBuffer->binCl, V3D21_CLIP_WINDOW_length);
clInsertClipWindow(&commandBuffer->binCl, i->width, i->height, 0, 0);
//Configuration Bits
clFit(commandBuffer, &commandBuffer->binCl, V3D21_CONFIGURATION_BITS_length);
clInsertConfigurationBits(&commandBuffer->binCl,
1, //TODO earlyz updates
0, //TODO earlyz enable
0, //TODO z updates
cb->graphicsPipeline->depthTestEnable ? getDepthCompareOp(cb->graphicsPipeline->depthCompareOp) : V3D_COMPARE_FUNC_ALWAYS, //depth compare func
0,
0,
0,
0,
0,
cb->graphicsPipeline->depthBiasEnable, //depth offset enable
cb->graphicsPipeline->frontFace == VK_FRONT_FACE_CLOCKWISE, //clockwise
!(cb->graphicsPipeline->cullMode & VK_CULL_MODE_BACK_BIT), //enable back facing primitives
!(cb->graphicsPipeline->cullMode & VK_CULL_MODE_FRONT_BIT)); //enable front facing primitives
//TODO Depth Offset
clFit(commandBuffer, &commandBuffer->binCl, V3D21_DEPTH_OFFSET_length);
clInsertDepthOffset(&commandBuffer->binCl, cb->graphicsPipeline->depthBiasConstantFactor, cb->graphicsPipeline->depthBiasSlopeFactor);
//Point size
clFit(commandBuffer, &commandBuffer->binCl, V3D21_POINT_SIZE_length);
clInsertPointSize(&commandBuffer->binCl, 1.0f);
//Line width
clFit(commandBuffer, &commandBuffer->binCl, V3D21_LINE_WIDTH_length);
clInsertLineWidth(&commandBuffer->binCl, cb->graphicsPipeline->lineWidth);
//TODO why flipped???
//Clipper XY Scaling
clFit(commandBuffer, &commandBuffer->binCl, V3D21_CLIPPER_XY_SCALING_length);
clInsertClipperXYScaling(&commandBuffer->binCl, (float)(i->width) * 0.5f * 16.0f, -1.0f * (float)(i->height) * 0.5f * 16.0f);
//TODO how is this calculated?
//seems to go from -1.0 .. 1.0 to 0.0 .. 1.0
//eg. x * 0.5 + 0.5
//cb->graphicsPipeline->minDepthBounds;
//Clipper Z Scale and Offset
clFit(commandBuffer, &commandBuffer->binCl, V3D21_CLIPPER_Z_SCALE_AND_OFFSET_length);
clInsertClipperZScaleOffset(&commandBuffer->binCl, 0.5f, 0.5f);
//Viewport Offset
clFit(commandBuffer, &commandBuffer->binCl, V3D21_VIEWPORT_OFFSET_length);
clInsertViewPortOffset(&commandBuffer->binCl, i->width >> 1, i->height >> 1);
//TODO?
//Flat Shade Flags
clFit(commandBuffer, &commandBuffer->binCl, V3D21_FLAT_SHADE_FLAGS_length);
clInsertFlatShadeFlags(&commandBuffer->binCl, 0);
//TODO how to get address?
//GL Shader State
clFit(commandBuffer, &commandBuffer->binCl, V3D21_GL_SHADER_STATE_length);
clInsertShaderState(&commandBuffer->binCl, 0, 0, cb->graphicsPipeline->vertexAttributeDescriptionCount);
//Vertex Array Primitives (draw call)
clFit(commandBuffer, &commandBuffer->binCl, V3D21_VERTEX_ARRAY_PRIMITIVES_length);
clInsertVertexArrayPrimitives(&commandBuffer->binCl, firstVertex, vertexCount, getPrimitiveMode(cb->graphicsPipeline->topology));
//emit shader record
ControlListAddress fragCode = {
.handle = ((_shaderModule*)(cb->graphicsPipeline->modules[ulog2(VK_SHADER_STAGE_FRAGMENT_BIT)]))->bos[VK_RPI_ASSEMBLY_TYPE_FRAGMENT],
.offset = 0,
};
ControlListAddress vertCode = {
.handle = ((_shaderModule*)(cb->graphicsPipeline->modules[ulog2(VK_SHADER_STAGE_VERTEX_BIT)]))->bos[VK_RPI_ASSEMBLY_TYPE_VERTEX],
.offset = 0,
};
ControlListAddress coordCode = {
.handle = ((_shaderModule*)(cb->graphicsPipeline->modules[ulog2(VK_SHADER_STAGE_VERTEX_BIT)]))->bos[VK_RPI_ASSEMBLY_TYPE_COORDINATE],
.offset = 0,
};
//TODO
commandBuffer->shaderRecCount++;
clFit(commandBuffer, &commandBuffer->shaderRecCl, V3D21_SHADER_RECORD_length);
ControlList relocCl = commandBuffer->shaderRecCl;
//TODO number of attribs
//3 is the number of type of possible shaders
int numAttribs = 1;
for(int c = 0; c < (3 + numAttribs)*4; ++c)
{
clInsertNop(&commandBuffer->shaderRecCl);
}
clInsertShaderRecord(&commandBuffer->shaderRecCl,
&relocCl,
&commandBuffer->handlesCl,
1, //TODO single threaded?
0, //point size included in shaded vertex data?
1, //enable clipping?
0, //fragment number of unused uniforms?
0, //fragment number of varyings?
0, //fragment uniform address?
fragCode, //fragment code address
0, //vertex number of unused uniforms?
1, //TODO vertex attribute array select bits
8, //TODO vertex total attribute size
0, //vertex uniform address
vertCode, //vertex shader code address
0, //coordinate number of unused uniforms?
1, //TODO coordinate attribute array select bits
8, //TODO coordinate total attribute size
0, //coordinate uniform address
coordCode //coordinate shader code address
);
ControlListAddress vertexBuffer = {
.handle = cb->vertexBuffers[cb->graphicsPipeline->vertexAttributeDescriptions[0].location]->boundMem->bo,
.offset = 0,
};
clFit(commandBuffer, &commandBuffer->shaderRecCl, V3D21_ATTRIBUTE_RECORD_length);
clInsertAttributeRecord(&commandBuffer->shaderRecCl,
&relocCl,
&commandBuffer->handlesCl,
vertexBuffer, //address
getFormatByteSize(cb->graphicsPipeline->vertexAttributeDescriptions[0].format),
cb->graphicsPipeline->vertexBindingDescriptions[0].stride, //stride
0, //TODO vertex vpm offset
0 //TODO coordinte vpm offset
);
//insert vertex buffer handle
//clFit(commandBuffer, &commandBuffer->handlesCl, 4);
//uint32_t vboIdx = clGetHandleIndex(&commandBuffer->handlesCl, vertexBuffer.handle);
//insert shader code handles
//clFit(commandBuffer, &commandBuffer->handlesCl, 4);
//uint32_t vertIdx = clGetHandleIndex(&commandBuffer->handlesCl, vertCode.handle);
//clFit(commandBuffer, &commandBuffer->handlesCl, 4);
//uint32_t coordIdx = clGetHandleIndex(&commandBuffer->handlesCl, coordCode.handle);
//clFit(commandBuffer, &commandBuffer->handlesCl, 4);
//uint32_t fragIdx = clGetHandleIndex(&commandBuffer->handlesCl, fragCode.handle);
//Insert image handle index
clFit(commandBuffer, &commandBuffer->handlesCl, 4);
uint32_t imageIdx = clGetHandleIndex(&commandBuffer->handlesCl, i->handle);
//fill out submit cl fields
commandBuffer->submitCl.color_write.hindex = imageIdx;
commandBuffer->submitCl.color_write.offset = 0;
commandBuffer->submitCl.color_write.flags = 0;
//TODO format
commandBuffer->submitCl.color_write.bits =
VC4_SET_FIELD(VC4_RENDER_CONFIG_FORMAT_RGBA8888, VC4_RENDER_CONFIG_FORMAT) |
VC4_SET_FIELD(i->tiling, VC4_RENDER_CONFIG_MEMORY_FORMAT);
commandBuffer->submitCl.clear_color[0] = i->clearColor[0];
commandBuffer->submitCl.clear_color[1] = i->clearColor[1];
commandBuffer->submitCl.min_x_tile = 0;
commandBuffer->submitCl.min_y_tile = 0;
uint32_t tileSizeW = 64;
uint32_t tileSizeH = 64;
if(i->samples > 1)
{
tileSizeW >>= 1;
tileSizeH >>= 1;
}
if(getFormatBpp(i->format) == 64)
{
tileSizeH >>= 1;
}
uint32_t widthInTiles = divRoundUp(i->width, tileSizeW);
uint32_t heightInTiles = divRoundUp(i->height, tileSizeH);
commandBuffer->submitCl.max_x_tile = widthInTiles - 1;
commandBuffer->submitCl.max_y_tile = heightInTiles - 1;
commandBuffer->submitCl.width = i->width;
commandBuffer->submitCl.height = i->height;
commandBuffer->submitCl.flags |= VC4_SUBMIT_CL_USE_CLEAR_COLOR;
commandBuffer->submitCl.clear_z = 0; //TODO
commandBuffer->submitCl.clear_s = 0;
//write uniforms
//TODO
/**
//FS
uniform count : 1
tex sample count : 0
uniform constant : 4291579008
//VS
uniform count : 4
tex sample count : 0
uniform constant : 1065353216
uniform viewport xscale : 15360.000000
uniform viewport yscale : -8640.000000
uniform viewport zoffset : 0.500000
//CS (same as VS)
uniform count : 4
tex sample count : 0
uniform viewport yscale : -8640.000000
uniform constant : 1065353216
uniform viewport xscale : 15360.000000
uniform viewport zoffset : 0.500000
/**/
clFit(commandBuffer, &commandBuffer->uniformsCl, 4*(1+4+4));
//FS
clInsertUniformConstant(&commandBuffer->uniformsCl, 4291579008);
//VS
clInsertUniformConstant(&commandBuffer->uniformsCl, 1065353216);
clInsertUniformXYScale(&commandBuffer->uniformsCl, (float)(i->width) * 0.5f * 16.0f);
clInsertUniformXYScale(&commandBuffer->uniformsCl, -1.0f * (float)(i->height) * 0.5f * 16.0f);
clInsertUniformZOffset(&commandBuffer->uniformsCl, 0.5f);
//CS
clInsertUniformXYScale(&commandBuffer->uniformsCl, -1.0f * (float)(i->height) * 0.5f * 16.0f);
clInsertUniformConstant(&commandBuffer->uniformsCl, 1065353216);
clInsertUniformXYScale(&commandBuffer->uniformsCl, (float)(i->width) * 0.5f * 16.0f);
clInsertUniformZOffset(&commandBuffer->uniformsCl, 0.5f);
}
/*
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkCmdEndRenderPass
*/
void vkCmdEndRenderPass(VkCommandBuffer commandBuffer)
{
assert(commandBuffer);
//TODO switch command buffer to next control record stream?
//Ending a render pass instance performs any multisample resolve operations on the final subpass
}
/*
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkCreateRenderPass
*/
VkResult vkCreateRenderPass(VkDevice device, const VkRenderPassCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkRenderPass* pRenderPass)
{
assert(device);
assert(pCreateInfo);
assert(pRenderPass);
assert(pAllocator == 0); //TODO allocators not supported yet
//just copy all data from create info
//we'll later need to bake the control list based on this
_renderpass* rp = malloc(sizeof(_renderpass));
if(!rp)
{
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
rp->numAttachments = pCreateInfo->attachmentCount;
rp->attachments = malloc(sizeof(VkAttachmentDescription)*rp->numAttachments);
if(!rp->attachments)
{
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
memcpy(rp->attachments, pCreateInfo->pAttachments, sizeof(VkAttachmentDescription)*rp->numAttachments);
rp->numSubpasses = pCreateInfo->subpassCount;
rp->subpasses = malloc(sizeof(VkSubpassDescription)*rp->numSubpasses);
if(!rp->subpasses)
{
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
for(int c = 0; c < rp->numSubpasses; ++c)
{
rp->subpasses[c].flags = pCreateInfo->pSubpasses[c].flags;
rp->subpasses[c].pipelineBindPoint = pCreateInfo->pSubpasses[c].pipelineBindPoint;
rp->subpasses[c].inputAttachmentCount = pCreateInfo->pSubpasses[c].inputAttachmentCount;
rp->subpasses[c].colorAttachmentCount = pCreateInfo->pSubpasses[c].colorAttachmentCount;
rp->subpasses[c].preserveAttachmentCount = pCreateInfo->pSubpasses[c].preserveAttachmentCount;
if(rp->subpasses[c].inputAttachmentCount)
{
rp->subpasses[c].pInputAttachments = malloc(sizeof(VkAttachmentReference)*rp->subpasses[c].inputAttachmentCount);
if(!rp->subpasses[c].pInputAttachments)
{
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
memcpy(rp->subpasses[c].pInputAttachments, pCreateInfo->pSubpasses[c].pInputAttachments, sizeof(VkAttachmentReference)*rp->subpasses[c].inputAttachmentCount);
}
else
{
rp->subpasses[c].pInputAttachments = 0;
}
if(rp->subpasses[c].colorAttachmentCount)
{
rp->subpasses[c].pColorAttachments = malloc(sizeof(VkAttachmentReference)*rp->subpasses[c].colorAttachmentCount);
if(!rp->subpasses[c].pColorAttachments)
{
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
memcpy(rp->subpasses[c].pColorAttachments, pCreateInfo->pSubpasses[c].pColorAttachments, sizeof(VkAttachmentReference)*rp->subpasses[c].colorAttachmentCount);
}
else
{
rp->subpasses[c].pColorAttachments = 0;
}
if(rp->subpasses[c].colorAttachmentCount && pCreateInfo->pSubpasses[c].pResolveAttachments)
{
rp->subpasses[c].pResolveAttachments = malloc(sizeof(VkAttachmentReference)*rp->subpasses[c].colorAttachmentCount);
if(!rp->subpasses[c].pResolveAttachments)
{
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
memcpy(rp->subpasses[c].pResolveAttachments, pCreateInfo->pSubpasses[c].pResolveAttachments, sizeof(VkAttachmentReference)*rp->subpasses[c].colorAttachmentCount);
}
else
{
rp->subpasses[c].pResolveAttachments = 0;
}
if(pCreateInfo->pSubpasses[c].pDepthStencilAttachment)
{
rp->subpasses[c].pDepthStencilAttachment = malloc(sizeof(VkAttachmentReference));
if(!rp->subpasses[c].pDepthStencilAttachment)
{
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
memcpy(rp->subpasses[c].pDepthStencilAttachment, pCreateInfo->pSubpasses[c].pDepthStencilAttachment, sizeof(VkAttachmentReference));
}
else
{
rp->subpasses[c].pDepthStencilAttachment = 0;
}
if(rp->subpasses[c].preserveAttachmentCount)
{
rp->subpasses[c].pPreserveAttachments = malloc(sizeof(uint32_t)*rp->subpasses[c].preserveAttachmentCount);
if(!rp->subpasses[c].pPreserveAttachments)
{
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
memcpy(rp->subpasses[c].pPreserveAttachments, pCreateInfo->pSubpasses[c].pPreserveAttachments, sizeof(uint32_t)*rp->subpasses[c].preserveAttachmentCount);
}
else
{
rp->subpasses[c].pPreserveAttachments = 0;
}
}
rp->numSubpassDependencies = pCreateInfo->dependencyCount;
rp->subpassDependencies = malloc(sizeof(VkSubpassDependency)*rp->numSubpassDependencies);
if(!rp->subpassDependencies)
{
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
memcpy(rp->subpassDependencies, pCreateInfo->pDependencies, sizeof(VkSubpassDependency)*rp->numSubpassDependencies);
*pRenderPass = rp;
return VK_SUCCESS;
}
/*
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkCreateImageView
*/
VkResult vkCreateImageView(VkDevice device, const VkImageViewCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkImageView* pView)
{
assert(device);
assert(pCreateInfo);
assert(pView);
assert(pAllocator == 0); //TODO
_imageView* view = malloc(sizeof(_imageView));
if(!view)
{
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
view->image = pCreateInfo->image;
view->viewType = pCreateInfo->viewType;
view->interpretedFormat = pCreateInfo->format;
view->swizzle = pCreateInfo->components;
view->subresourceRange = pCreateInfo->subresourceRange;
//TODO errors/validation
*pView = view;
return VK_SUCCESS;
}
/*
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkCreateFramebuffer
*/
VkResult vkCreateFramebuffer(VkDevice device, const VkFramebufferCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkFramebuffer* pFramebuffer)
{
assert(device);
assert(pCreateInfo);
assert(pFramebuffer);
assert(pAllocator == 0); //TODO
_framebuffer* fb = malloc(sizeof(_framebuffer));
if(!fb)
{
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
fb->renderpass = pCreateInfo->renderPass;
fb->numAttachmentViews = pCreateInfo->attachmentCount;
fb->attachmentViews = malloc(sizeof(_imageView) * fb->numAttachmentViews);
if(!fb->attachmentViews)
{
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
for(int c = 0; c < fb->numAttachmentViews; ++c)
{
memcpy(&fb->attachmentViews[c], pCreateInfo->pAttachments[c], sizeof(_imageView));
}
fb->width = pCreateInfo->width;
fb->height = pCreateInfo->height;
fb->layers = pCreateInfo->layers;
//TODO errors/validation
*pFramebuffer = fb;
return VK_SUCCESS;
}
VkResult vkCreateShaderModuleFromRpiAssemblyKHR(VkDevice device, VkRpiShaderModuleAssemblyCreateInfoKHR* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkShaderModule* pShaderModule)
{
assert(device);
assert(pCreateInfo);
assert(pShaderModule);
assert(pCreateInfo->byteStreamArray);
assert(pCreateInfo->numBytesArray);
assert(pAllocator == 0); //TODO
_shaderModule* shader = malloc(sizeof(_shaderModule));
if(!shader)
{
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
for(int c = 0; c < VK_RPI_ASSEMBLY_TYPE_MAX; ++c)
{
if(pCreateInfo->byteStreamArray[c])
{
uint32_t size = pCreateInfo->numBytesArray[c];
shader->bos[c] = vc4_bo_alloc_shader(controlFd, pCreateInfo->byteStreamArray[c], &size);
shader->sizes[c] = size;
}
else
{
shader->bos[c] = 0;
}
}
*pShaderModule = shader;
return VK_SUCCESS;
}
/*
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkCreateShaderModule
*/
VkResult vkCreateShaderModule(VkDevice device, const VkShaderModuleCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkShaderModule* pShaderModule)
{
return VK_SUCCESS;
}
/*
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkCreateGraphicsPipelines
*/
VkResult vkCreateGraphicsPipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t createInfoCount, const VkGraphicsPipelineCreateInfo* pCreateInfos, const VkAllocationCallbacks* pAllocator, VkPipeline* pPipelines)
{
assert(device);
assert(createInfoCount > 0);
assert(pCreateInfos);
assert(pPipelines);
assert(pipelineCache == 0); //TODO not supported right now
assert(pAllocator == 0); //TODO
for(int c = 0; c < createInfoCount; ++c)
{
_pipeline* pip = malloc(sizeof(_pipeline));
if(!pip)
{
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
for(int d = 0; d < pCreateInfos->stageCount; ++d)
{
uint32_t idx = ulog2(pCreateInfos->pStages[d].stage);
pip->modules[idx] = pCreateInfos->pStages[d].module;
pip->names[idx] = malloc(strlen(pCreateInfos->pStages[d].pName)+1);
if(!pip->names[idx])
{
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
memcpy(pip->names[idx], pCreateInfos->pStages[d].pName, strlen(pCreateInfos->pStages[d].pName)+1);
}
pip->vertexAttributeDescriptionCount = pCreateInfos->pVertexInputState->vertexAttributeDescriptionCount;
pip->vertexAttributeDescriptions = malloc(sizeof(VkVertexInputAttributeDescription) * pip->vertexAttributeDescriptionCount);
if(!pip->vertexAttributeDescriptions)
{
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
memcpy(pip->vertexAttributeDescriptions, pCreateInfos->pVertexInputState->pVertexAttributeDescriptions, sizeof(VkVertexInputAttributeDescription) * pip->vertexAttributeDescriptionCount);
pip->vertexBindingDescriptionCount = pCreateInfos->pVertexInputState->vertexBindingDescriptionCount;
pip->vertexBindingDescriptions = malloc(sizeof(VkVertexInputBindingDescription) * pip->vertexBindingDescriptionCount);
if(!pip->vertexBindingDescriptions)
{
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
memcpy(pip->vertexBindingDescriptions, pCreateInfos->pVertexInputState->pVertexBindingDescriptions, sizeof(VkVertexInputBindingDescription) * pip->vertexBindingDescriptionCount);
pip->topology = pCreateInfos->pInputAssemblyState->topology;
pip->primitiveRestartEnable = pCreateInfos->pInputAssemblyState->primitiveRestartEnable;
//TODO tessellation ignored
pip->viewportCount = pCreateInfos->pViewportState->viewportCount;
pip->viewports = malloc(sizeof(VkViewport) * pip->viewportCount);
if(!pip->viewports)
{
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
memcpy(pip->viewports, pCreateInfos->pViewportState->pViewports, sizeof(VkViewport) * pip->viewportCount);
pip->scissorCount = pCreateInfos->pViewportState->scissorCount;
pip->scissors = malloc(sizeof(VkRect2D) * pip->viewportCount);
if(!pip->scissors)
{
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
memcpy(pip->scissors, pCreateInfos->pViewportState->pScissors, sizeof(VkRect2D) * pip->scissorCount);
pip->depthClampEnable = pCreateInfos->pRasterizationState->depthClampEnable;
pip->rasterizerDiscardEnable = pCreateInfos->pRasterizationState->rasterizerDiscardEnable;
pip->polygonMode = pCreateInfos->pRasterizationState->polygonMode;
pip->cullMode = pCreateInfos->pRasterizationState->cullMode;
pip->frontFace = pCreateInfos->pRasterizationState->frontFace;
pip->depthBiasEnable = pCreateInfos->pRasterizationState->depthBiasEnable;
pip->depthBiasConstantFactor = pCreateInfos->pRasterizationState->depthBiasConstantFactor;
pip->depthBiasClamp = pCreateInfos->pRasterizationState->depthBiasClamp;
pip->depthBiasSlopeFactor = pCreateInfos->pRasterizationState->depthBiasSlopeFactor;
pip->lineWidth = pCreateInfos->pRasterizationState->lineWidth;
pip->rasterizationSamples = pCreateInfos->pMultisampleState->rasterizationSamples;
pip->sampleShadingEnable = pCreateInfos->pMultisampleState->sampleShadingEnable;
pip->minSampleShading = pCreateInfos->pMultisampleState->minSampleShading;
if(pCreateInfos->pMultisampleState->pSampleMask)
{
pip->sampleMask = *pCreateInfos->pMultisampleState->pSampleMask;
}
else
{
pip->sampleMask = 0;
}
pip->alphaToCoverageEnable = pCreateInfos->pMultisampleState->alphaToCoverageEnable;
pip->alphaToOneEnable = pCreateInfos->pMultisampleState->alphaToOneEnable;
pip->depthTestEnable = pCreateInfos->pDepthStencilState->depthTestEnable;
pip->depthWriteEnable = pCreateInfos->pDepthStencilState->depthWriteEnable;
pip->depthCompareOp = pCreateInfos->pDepthStencilState->depthCompareOp;
pip->depthBoundsTestEnable = pCreateInfos->pDepthStencilState->depthBoundsTestEnable;
pip->stencilTestEnable = pCreateInfos->pDepthStencilState->stencilTestEnable;
pip->front = pCreateInfos->pDepthStencilState->front;
pip->back = pCreateInfos->pDepthStencilState->back;
pip->minDepthBounds = pCreateInfos->pDepthStencilState->minDepthBounds;
pip->maxDepthBounds = pCreateInfos->pDepthStencilState->maxDepthBounds;
pip->logicOpEnable = pCreateInfos->pColorBlendState->logicOpEnable;
pip->logicOp = pCreateInfos->pColorBlendState->logicOp;
pip->attachmentCount = pCreateInfos->pColorBlendState->attachmentCount;
pip->attachmentBlendStates = malloc(sizeof(VkPipelineColorBlendAttachmentState) * pip->attachmentCount);
if(!pip->attachmentBlendStates)
{
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
memcpy(pip->attachmentBlendStates, pCreateInfos->pColorBlendState->pAttachments, sizeof(VkPipelineColorBlendAttachmentState) * pip->attachmentCount);
memcpy(pip->blendConstants, pCreateInfos->pColorBlendState, sizeof(float)*4);
if(pCreateInfos->pDynamicState)
{
pip->dynamicStateCount = pCreateInfos->pDynamicState->dynamicStateCount;
pip->dynamicStates = malloc(sizeof(VkDynamicState)*pip->dynamicStateCount);
if(!pip->dynamicStates)
{
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
memcpy(pip->dynamicStates, pCreateInfos->pDynamicState->pDynamicStates, sizeof(VkDynamicState)*pip->dynamicStateCount);
}
else
{
pip->dynamicStateCount = 0;
pip->dynamicStates = 0;
}
pip->layout = pCreateInfos->layout;
pip->renderPass = pCreateInfos->renderPass;
pip->subpass = pCreateInfos->subpass;
//TODO derivative pipelines ignored
pPipelines[c] = pip;
}
return VK_SUCCESS;
}
/*
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkGetPhysicalDeviceMemoryProperties
*/
void vkGetPhysicalDeviceMemoryProperties(VkPhysicalDevice physicalDevice, VkPhysicalDeviceMemoryProperties* pMemoryProperties)
{
assert(physicalDevice);
assert(pMemoryProperties);
if(memoryHeaps[0].size == 0)
{
//TODO is this the correct way of getting amount of video mem?
char buf[4096];
int fd = open("/proc/meminfo", O_RDONLY);
read(fd, buf, 4096);
close(fd);
char* cma = strstr(buf, "CmaTotal");
char* cmaend = strstr(cma, "\n");
char cmaAmount[4096];
char* cmaPtr = cmaAmount;
while(cma != cmaend)
{
if(*cma >= '0' && *cma <= '9')
{
//number
*cmaPtr = *cma; //copy char
cmaPtr++;
}
cma++;
}
*cmaPtr = '\0';
unsigned amount = atoi(cmaAmount);
//printf("%i\n", amount);
//all heaps share the same memory
for(int c = 0; c < numMemoryHeaps; ++c)
{
memoryHeaps[c].size = amount;
}
}
pMemoryProperties->memoryTypeCount = numMemoryTypes;
for(int c = 0; c < numMemoryTypes; ++c)
{
pMemoryProperties->memoryTypes[c] = memoryTypes[c];
}
pMemoryProperties->memoryHeapCount = numMemoryHeaps;
for(int c = 0; c < numMemoryHeaps; ++c)
{
pMemoryProperties->memoryHeaps[c] = memoryHeaps[c];
}
}
/*
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkCmdBindVertexBuffers
*/
void vkCmdBindVertexBuffers(VkCommandBuffer commandBuffer, uint32_t firstBinding, uint32_t bindingCount, const VkBuffer* pBuffers, const VkDeviceSize* pOffsets)
{
assert(commandBuffer);
_commandBuffer* cb = commandBuffer;
for(int c = 0; c < bindingCount; ++c)
{
cb->vertexBuffers[firstBinding + c] = pBuffers[c];
cb->vertexBufferOffsets[firstBinding + c] = pOffsets[c];
}
}
/*
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkCreateBuffer
*/
VkResult vkCreateBuffer(VkDevice device, const VkBufferCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkBuffer* pBuffer)
{
assert(device);
assert(pCreateInfo);
assert(pBuffer);
assert(pAllocator == 0); //TODO
_buffer* buf = malloc(sizeof(_buffer));
if(!buf)
{
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
buf->size = pCreateInfo->size;
buf->usage = pCreateInfo->usage;
buf->boundMem = 0;
buf->alignment = ARM_PAGE_SIZE; //TODO
buf->alignedSize = getBOAlignedSize(buf->size);
*pBuffer = buf;
return VK_SUCCESS;
}
/*
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkGetBufferMemoryRequirements
*/
void vkGetBufferMemoryRequirements(VkDevice device, VkBuffer buffer, VkMemoryRequirements* pMemoryRequirements)
{
assert(device);
assert(buffer);
assert(pMemoryRequirements);
pMemoryRequirements->alignment = ((_buffer*)buffer)->alignment;
pMemoryRequirements->size = ((_buffer*)buffer)->alignedSize;
pMemoryRequirements->memoryTypeBits = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT; //TODO
}
/*
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkAllocateMemory
*/
VkResult vkAllocateMemory(VkDevice device, const VkMemoryAllocateInfo* pAllocateInfo, const VkAllocationCallbacks* pAllocator, VkDeviceMemory* pMemory)
{
assert(device);
assert(pAllocateInfo);
assert(pMemory);
assert(pAllocator == 0); //TODO
uint32_t bo = vc4_bo_alloc(controlFd, pAllocateInfo->allocationSize, "vkAllocateMemory");
if(!bo)
{
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
}
_deviceMemory* mem = malloc(sizeof(_deviceMemory));
if(!mem)
{
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
mem->bo = bo;
mem->size = pAllocateInfo->allocationSize;
mem->memTypeIndex = pAllocateInfo->memoryTypeIndex;
mem->mappedPtr = 0;
*pMemory = mem;
//TODO max number of allocations
return VK_SUCCESS;
}
/*
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkMapMemory
*/
VkResult vkMapMemory(VkDevice device, VkDeviceMemory memory, VkDeviceSize offset, VkDeviceSize size, VkMemoryMapFlags flags, void** ppData)
{
assert(device);
assert(memory);
assert(size);
assert(ppData);
assert(memoryTypes[((_deviceMemory*)memory)->memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT);
assert(!((_deviceMemory*)memory)->mappedPtr);
assert(offset < ((_deviceMemory*)memory)->size);
if(size != VK_WHOLE_SIZE)
{
assert(size > 0);
assert(size <= ((_deviceMemory*)memory)->size - offset);
}
//TODO check ppdata alignment
//TODO multiple instances?
void* ptr = vc4_bo_map(controlFd, ((_deviceMemory*)memory)->bo, offset, size);
if(!ptr)
{
return VK_ERROR_MEMORY_MAP_FAILED;
}
((_deviceMemory*)memory)->mappedPtr = ptr;
((_deviceMemory*)memory)->mappedOffset = offset;
((_deviceMemory*)memory)->mappedSize = size;
*ppData = ptr;
return VK_SUCCESS;
}
/*
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkUnmapMemory
*/
void vkUnmapMemory(VkDevice device, VkDeviceMemory memory)
{
assert(device);
assert(memory);
vc4_bo_unmap_unsynchronized(controlFd, ((_deviceMemory*)memory)->mappedPtr, ((_deviceMemory*)memory)->mappedSize);
}
/*
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkBindBufferMemory
*/
VkResult vkBindBufferMemory(VkDevice device, VkBuffer buffer, VkDeviceMemory memory, VkDeviceSize memoryOffset)
{
assert(device);
assert(buffer);
assert(memory);
_buffer* buf = buffer;
_deviceMemory* mem = memory;
assert(!buf->boundMem);
assert(memoryOffset < mem->size);
assert(memoryOffset % buf->alignment == 0);
assert(buf->alignedSize <= mem->size - memoryOffset);
buf->boundMem = mem;
buf->boundOffset = memoryOffset;
return VK_SUCCESS;
}
void vkDestroyBuffer(VkDevice device, VkBuffer buffer, const VkAllocationCallbacks* pAllocator)
{
assert(device);
assert(buffer);
assert(pAllocator == 0); //TODO
_buffer* buf = buffer;
free(buf);
}
void vkFreeMemory(VkDevice device, VkDeviceMemory memory, const VkAllocationCallbacks* pAllocator)
{
assert(device);
assert(memory);
assert(pAllocator == 0); //TODO
_deviceMemory* mem = memory;
vc4_bo_free(controlFd, mem->bo, mem->mappedPtr, mem->size);
free(mem);
}
void vkDestroyImage(VkDevice device, VkImage image, const VkAllocationCallbacks* pAllocator)
{
//TODO
}
void vkDestroyImageView(VkDevice device, VkImageView imageView, const VkAllocationCallbacks* pAllocator)
{
assert(device);
assert(imageView);
assert(pAllocator == 0); //TODO
_imageView* view = imageView;
free(view);
}
void vkDestroyFramebuffer(VkDevice device, VkFramebuffer framebuffer, const VkAllocationCallbacks* pAllocator)
{
assert(device);
assert(framebuffer);
assert(pAllocator == 0); //TODO
_framebuffer* fb = framebuffer;
free(fb->attachmentViews);
free(fb);
}
void vkDestroyRenderPass(VkDevice device, VkRenderPass renderPass, const VkAllocationCallbacks* pAllocator)
{
assert(device);
assert(renderPass);
assert(pAllocator == 0); //TODO
_renderpass* rp = renderPass;
free(rp->subpassDependencies);
for(int c = 0; c < rp->numSubpasses; ++c)
{
free(rp->subpasses[c].pInputAttachments);
free(rp->subpasses[c].pColorAttachments);
free(rp->subpasses[c].pResolveAttachments);
free(rp->subpasses[c].pDepthStencilAttachment);
free(rp->subpasses[c].pPreserveAttachments);
}
free(rp->subpasses);
free(rp->attachments);
free(rp);
}
void vkDestroyShaderModule(VkDevice device, VkShaderModule shaderModule, const VkAllocationCallbacks* pAllocator)
{
assert(device);
assert(shaderModule);
assert(pAllocator == 0);
_shaderModule* shader = shaderModule;
for(int c = 0; c < VK_RPI_ASSEMBLY_TYPE_MAX; ++c)
{
if(shader->bos[c])
{
vc4_bo_free(controlFd, shader->bos[c], 0, shader->sizes[c]);
}
}
free(shader);
}
void vkDestroyPipeline(VkDevice device, VkPipeline pipeline, const VkAllocationCallbacks* pAllocator)
{
assert(device);
assert(pipeline);
assert(pAllocator == 0); //TODO
_pipeline* pip = pipeline;
free(pip->dynamicStates);
free(pip->attachmentBlendStates);
free(pip->scissors);
free(pip->viewports);
free(pip->vertexBindingDescriptions);
free(pip->vertexAttributeDescriptions);
for(int c = 0; c < 6; ++c)
{
free(pip->names[c]);
}
free(pip);
}