1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-01-25 10:52:11 +01:00

617 lines
24 KiB
C++
Raw Normal View History

/**
******************************************************************************
*
* @file twostep.cpp
* @author Jonathan Brandmeyer <jonathan.brandmeyer@gmail.com>
* Copyright (C) 2010.
* @addtogroup GCSPlugins GCS Plugins
* @{
* @addtogroup Config plugin
* @{
* @brief Implements low-level calibration algorithms
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; Version 3 of the License, and no other
* version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <calibration.h>
#include <assertions.h>
#include <Eigen/Cholesky>
#include <Eigen/QR>
#include <Eigen/LU>
#include <cstdlib>
#undef PRINTF_DEBUGGING
#include <iostream>
#include <iomanip>
#if defined(__APPLE__) || defined(_WIN32)
// Qt bug work around
#ifndef isnan
extern "C" int isnan(double);
#endif
#ifndef isinf
extern "C" int isinf(double);
#endif
#endif
/*
* Alas, this implementation is a fairly direct copy of the contents of the
* following papers. You don't have a chance at understanding it without
* reading these first. Any bugs should be presumed to be JB's fault rather
* than Alonso and Shuster until proven otherwise.
*
* Reference [1]: "A New Algorithm for Attitude-independent magnetometer
* calibration", Robert Alonso and Malcolmn D. Shuster, Flight Mechanics/
* Estimation Theory Symposium, NASA Goddard, 1994, pp 513-527
*
* Reference [2]: Roberto Alonso and Malcolm D. Shuster, "Complete Linear
* Attitude-Independent Magnetometer Calibration", Journal of the Astronautical
* Sciences, Vol 50, No 4, 2002, pp 477-490
*
*/
namespace {
Vector3f center(const Vector3f samples[],
size_t n_samples)
{
Vector3f summation(Vector3f::Zero());
for (size_t i = 0; i < n_samples; ++i) {
summation += samples[i];
}
return summation / float(n_samples);
}
void inv_fisher_information_matrix(Matrix3f & fisherInv,
Matrix3f & fisher,
const Vector3f samples[],
size_t n_samples,
const float noise)
{
MatrixXf column_samples(3, n_samples);
for (size_t i = 0; i < n_samples; ++i) {
column_samples.col(i) = samples[i];
}
fisher = 4 / noise *
column_samples * column_samples.transpose();
// Compute the inverse by taking advantage of the results symmetricness
fisher.ldlt().solve(Matrix3f::Identity(), &fisherInv);
}
// Eq 14 of the original reference. Computes the gradiant of the cost function
// with respect to the bias offset.
// @param samples: The vector of measurement samples
// @param mags: The vector of sample delta magnitudes
// @param b: The estimate of the bias
// @param mu: The trace of the noise matrix (3*noise)
// @return the negative gradiant of the cost function with respect to the
// current value of the estimate, b
Vector3f neg_dJdb(const Vector3f samples[],
const float mags[],
size_t n_samples,
const Vector3f & b,
float mu,
float noise)
{
Vector3f summation(Vector3f::Zero());
float b_norm2 = b.squaredNorm();
for (size_t i = 0; i < n_samples; ++i) {
summation += (mags[i] - 2 * samples[i].dot(b) + b_norm2 - mu)
* 2 * (samples[i] - b);
}
return (1.0 / noise) * summation;
}
} // !namespace (anon)
Vector3f twostep_bias_only(const Vector3f samples[],
size_t n_samples,
const Vector3f & referenceField,
const float noise)
{
// \tilde{H}
Vector3f* centeredSamples = new Vector3f[n_samples];
// z_k
float sampleDeltaMag[n_samples];
// eq 7 and 8 applied to samples
Vector3f avg = center(samples, n_samples);
float refSquaredNorm = referenceField.squaredNorm();
float sampleDeltaMagCenter = 0;
for (size_t i = 0; i < n_samples; ++i) {
// eq 9 applied to samples
centeredSamples[i] = samples[i] - avg;
// eqn 2a
sampleDeltaMag[i] = samples[i].squaredNorm() - refSquaredNorm;
sampleDeltaMagCenter += sampleDeltaMag[i];
}
sampleDeltaMagCenter /= n_samples;
Matrix3f P_bb;
Matrix3f P_bb_inv;
// Due to eq 12b
inv_fisher_information_matrix(P_bb, P_bb_inv, centeredSamples, n_samples, noise);
// Compute centered magnitudes
float sampleDeltaMagCentered[n_samples];
for (size_t i = 0; i < n_samples; ++i) {
sampleDeltaMagCentered[i] = sampleDeltaMag[i] - sampleDeltaMagCenter;
}
// From eq 12a
Vector3f estimate(Vector3f::Zero());
for (size_t i = 0; i < n_samples; ++i) {
estimate += sampleDeltaMagCentered[i] * centeredSamples[i];
}
estimate = P_bb * ((2 / noise) * estimate);
// Newton-Raphson gradient descent to the optimal solution
// eq 14a and 14b
float mu = -3 * noise;
for (int i = 0; i < 6; ++i) {
Vector3f neg_gradiant = neg_dJdb(samples, sampleDeltaMag, n_samples,
estimate, mu, noise);
Matrix3f scale = P_bb_inv + 4 / noise * (avg - estimate) * (avg - estimate).transpose();
Vector3f neg_increment;
scale.ldlt().solve(neg_gradiant, &neg_increment);
// Note that the negative has been done twice
estimate += neg_increment;
}
delete[] centeredSamples;
return estimate;
}
namespace {
// Private utility functions for the version of TWOSTEP that computes bias and
// scale factor vectors alone.
/** Compute the gradiant of the norm of b with respect to the estimate vector.
*/
Matrix<double, 6, 1>
dnormb_dtheta(const Matrix<double, 6, 1> & theta)
{
return (Matrix<double, 6, 1>() << 2 * theta.coeff(0) / (1 + theta.coeff(3)),
2 * theta.coeff(1) / (1 + theta.coeff(4)),
2 * theta.coeff(2) / (1 + theta.coeff(5)),
-pow(theta.coeff(0), 2) / pow(1 + theta.coeff(3), 2),
-pow(theta.coeff(1), 2) / pow(1 + theta.coeff(4), 2),
-pow(theta.coeff(2), 2) / pow(1 + theta.coeff(5), 2)).finished();
}
/**
* Compute the gradiant of the cost function with respect to the optimal
* estimate.
*/
Matrix<double, 6, 1>
dJdb(const Matrix<double, 6, 1> & centerL,
double centerMag,
const Matrix<double, 6, 1> & theta,
const Matrix<double, 6, 1> & dbdtheta,
double mu,
double noise)
{
// \frac{\delta}{\delta \theta'} |b(\theta')|^2
Matrix<double, 6, 1> vectorPart = dbdtheta - centerL;
// By equation 35
double normbthetaSquared = 0;
for (unsigned i = 0; i < 3; ++i) {
normbthetaSquared += theta.coeff(i) * theta.coeff(i) / (1 + theta.coeff(3 + i));
}
double scalarPart = (centerMag - centerL.dot(theta) + normbthetaSquared
- mu) / noise;
return scalarPart * vectorPart;
}
/** Reconstruct the scale factor and bias offset vectors from the transformed
* estimate vector.
*/
Matrix<double, 1, 6>
theta_to_sane(const Matrix<double, 6, 1> & theta)
{
return (Matrix<double, 6, 1>() <<
theta.coeff(0) / sqrt(1 + theta.coeff(3)),
theta.coeff(1) / sqrt(1 + theta.coeff(4)),
theta.coeff(2) / sqrt(1 + theta.coeff(5)),
-1 + sqrt(1 + theta.coeff(3)),
-1 + sqrt(1 + theta.coeff(4)),
-1 + sqrt(1 + theta.coeff(5))).finished();
}
} // !namespace (anon)
/**
* Compute the scale factor and bias associated with a vector observer
* according to the equation:
* B_k = (I_{3x3} + D)^{-1} \times (O^T A_k H_k + b + \epsilon_k)
* where k is the sample index,
* B_k is the kth measurement
* I_{3x3} is a 3x3 identity matrix
* D is a 3x3 diagonal matrix of scale factors
* O is the orthogonal alignment matrix
* A_k is the attitude at the kth sample
* b is the bias in the global reference frame
* \epsilon_k is the noise at the kth sample
* This implementation makes the assumption that \epsilon is a constant white,
* gaussian noise source that is common to all k. The misalignment matrix O
* is not computed, and the off-diagonal elements of D, corresponding to the
* misalignment scale factors are not either.
*
* @param bias[out] The computed bias, in the global frame
* @param scale[out] The computed scale factor, in the sensor frame
* @param samples[in] An array of measurement samples.
* @param n_samples The number of samples in the array.
* @param referenceField The magnetic field vector at this location.
* @param noise The one-sigma squared standard deviation of the observed noise
* in the sensor.
*/
void twostep_bias_scale(Vector3f & bias,
Vector3f & scale,
const Vector3f samples[],
const size_t n_samples,
const Vector3f & referenceField,
const float noise)
{
// Initial estimate for gradiant descent starts at eq 37a of ref 2.
// Define L_k by eq 30 and 28 for k = 1 .. n_samples
Matrix<double, Dynamic, 6> fullSamples(n_samples, 6);
// \hbar{L} by eq 33, simplified by obesrving that the
Matrix<double, 1, 6> centerSample = Matrix<double, 1, 6>::Zero();
// Define the sample differences z_k by eq 23 a)
double sampleDeltaMag[n_samples];
// The center value \hbar{z}
double sampleDeltaMagCenter = 0;
double refSquaredNorm = referenceField.squaredNorm();
for (size_t i = 0; i < n_samples; ++i) {
fullSamples.row(i) << 2 * samples[i].transpose().cast<double>(),
-(samples[i][0] * samples[i][0]),
-(samples[i][1] * samples[i][1]),
-(samples[i][2] * samples[i][2]);
centerSample += fullSamples.row(i);
sampleDeltaMag[i] = samples[i].squaredNorm() - refSquaredNorm;
sampleDeltaMagCenter += sampleDeltaMag[i];
}
sampleDeltaMagCenter /= n_samples;
centerSample /= n_samples;
// True for all k.
// double mu = -3*noise;
// The center value of mu, \bar{mu}
// double centerMu = mu;
// The center value of mu, \tilde{mu}
// double centeredMu = 0;
// Define \tilde{L}_k for k = 0 .. n_samples
Matrix<double, Dynamic, 6> centeredSamples(n_samples, 6);
// Define \tilde{z}_k for k = 0 .. n_samples
double centeredMags[n_samples];
// Compute the term under the summation of eq 37a
Matrix<double, 6, 1> estimateSummation = Matrix<double, 6, 1>::Zero();
for (size_t i = 0; i < n_samples; ++i) {
centeredSamples.row(i) = fullSamples.row(i) - centerSample;
centeredMags[i] = sampleDeltaMag[i] - sampleDeltaMagCenter;
estimateSummation += centeredMags[i] * centeredSamples.row(i).transpose();
}
estimateSummation /= noise; // note: paper supplies 1/noise
// By eq 37 b). Note, paper supplies 1/noise here
Matrix<double, 6, 6> P_theta_theta_inv = (1.0f / noise) *
centeredSamples.transpose() * centeredSamples;
#ifdef PRINTF_DEBUGGING
SelfAdjointEigenSolver<Matrix<double, 6, 6> > eig(P_theta_theta_inv);
std::cout << "P_theta_theta_inverse: \n" << P_theta_theta_inv << "\n\n";
std::cout << "P_\\tt^-1 eigenvalues: " << eig.eigenvalues().transpose()
<< "\n";
std::cout << "P_\\tt^-1 eigenvectors:\n" << eig.eigenvectors() << "\n";
#endif
// The Fisher information matrix has a small eigenvalue, with a
// corresponding eigenvector of about [1e-2 1e-2 1e-2 0.55, 0.55,
// 0.55]. This means that there is relatively little information
// about the common gain on the scale factor, which has a
// corresponding effect on the bias, too. The fixup is performed by
// the first iteration of the second stage of TWOSTEP, as documented in
// [1].
Matrix<double, 6, 1> estimate;
// By eq 37 a), \tilde{Fisher}^-1
P_theta_theta_inv.ldlt().solve(estimateSummation, &estimate);
#ifdef PRINTF_DEBUGGING
Matrix<double, 6, 6> P_theta_theta;
P_theta_theta_inv.ldlt().solve(Matrix<double, 6, 6>::Identity(), &P_theta_theta);
SelfAdjointEigenSolver<Matrix<double, 6, 6> > eig2(P_theta_theta);
std::cout << "eigenvalues: " << eig2.eigenvalues().transpose() << "\n";
std::cout << "eigenvectors: \n" << eig2.eigenvectors() << "\n";
std::cout << "estimate summation: \n" << estimateSummation.normalized()
<< "\n";
#endif
// estimate i+1 = estimate_i - Fisher^{-1}(at estimate_i)*gradiant(theta)
// Fisher^{-1} = \tilde{Fisher}^-1 + \hbar{Fisher}^{-1}
size_t count = 3;
while (count-- > 0) {
// eq 40
Matrix<double, 1, 6> db_dtheta = dnormb_dtheta(estimate);
Matrix<double, 6, 1> dJ_dtheta = dJdb(centerSample,
sampleDeltaMagCenter,
estimate,
db_dtheta,
-3 * noise,
noise / n_samples);
// Eq 39 (with double-negation on term inside parens)
db_dtheta = centerSample - db_dtheta;
Matrix<double, 6, 6> scale = P_theta_theta_inv +
(double(n_samples) / noise) * db_dtheta.transpose() * db_dtheta;
// eq 14b, mutatis mutandis (grumble, grumble)
Matrix<double, 6, 1> increment;
scale.ldlt().solve(dJ_dtheta, &increment);
estimate -= increment;
}
// Transform the estimated parameters from [c | e] back into [b | d].
for (size_t i = 0; i < 3; ++i) {
scale.coeffRef(i) = -1 + sqrt(1 + estimate.coeff(3 + i));
bias.coeffRef(i) = estimate.coeff(i) / sqrt(1 + estimate.coeff(3 + i));
}
}
namespace {
// Private functions specific to the scale factor and orthogonal calibration
// version of TWOSTEP
/**
* Reconstruct the symmetric E matrix from the last 6 elements of the estimate
* vector
*/
Matrix3d E_theta(const Matrix<double, 9, 1> & theta)
{
// By equation 49b
return (Matrix3d() <<
theta.coeff(3), theta.coeff(6), theta.coeff(7),
theta.coeff(6), theta.coeff(4), theta.coeff(8),
theta.coeff(7), theta.coeff(8), theta.coeff(5)).finished();
}
/**
* Compute the gradient of the squared norm of b with respect to theta. Note
* that b itself is just a function of theta. Therefore, this function
* computes \frac{\delta,\delta\theta'}\left|b(\theta')\right|
* From eq 55 of [2].
*/
Matrix<double, 9, 1>
dnormb_dtheta(const Matrix<double, 9, 1> & theta)
{
// Re-form the matrix E from the vector of theta'
Matrix3d E = E_theta(theta);
// Compute (I + E)^-1 * c
Vector3d IE_inv_c;
E.ldlt().solve(theta.end<3>(), &IE_inv_c);
return (Matrix<double, 9, 1>() << 2 * IE_inv_c,
-IE_inv_c.coeff(0) * IE_inv_c.coeff(0),
-IE_inv_c.coeff(1) * IE_inv_c.coeff(1),
-IE_inv_c.coeff(2) * IE_inv_c.coeff(2),
-2 * IE_inv_c.coeff(0) * IE_inv_c.coeff(1),
-2 * IE_inv_c.coeff(0) * IE_inv_c.coeff(2),
-2 * IE_inv_c.coeff(1) * IE_inv_c.coeff(2)).finished();
}
// The gradient of the cost function with respect to theta, at a particular
// value of theta.
// @param centerL: The center of the samples theta'
// @param centerMag: The center of the magnitude data
// @param theta: The estimate of the bias and scale factor
// @return the gradient of the cost function with respect to the
// current value of the estimate, theta'
Matrix<double, 9, 1>
dJ_dtheta(const Matrix<double, 9, 1> & centerL,
double centerMag,
const Matrix<double, 9, 1> & theta,
const Matrix<double, 9, 1> & dbdtheta,
double mu,
double noise)
{
// \frac{\delta}{\delta \theta'} |b(\theta')|^2
Matrix<double, 9, 1> vectorPart = dbdtheta - centerL;
// |b(\theta')|^2
Matrix3d E = E_theta(theta);
Vector3d rhs;
(Matrix3d::Identity() + E).ldlt().solve(theta.start<3>(), &rhs);
double normbthetaSquared = theta.start<3>().dot(rhs);
double scalarPart = (centerMag - centerL.dot(theta) + normbthetaSquared
- mu) / noise;
return scalarPart * vectorPart;
}
} // !namespace (anonymous)
/**
* Compute the scale factor and bias associated with a vector observer
* according to the equation:
* B_k = (I_{3x3} + D)^{-1} \times (O^T A_k H_k + b + \epsilon_k)
* where k is the sample index,
* B_k is the kth measurement
* I_{3x3} is a 3x3 identity matrix
* D is a 3x3 symmetric matrix of scale factors
* O is the orthogonal alignment matrix
* A_k is the attitude at the kth sample
* b is the bias in the global reference frame
* \epsilon_k is the noise at the kth sample
*
* After computing the scale factor and bias matrices, the optimal estimate is
* given by
* \tilde{B}_k = (I_{3x3} + D)B_k - b
*
* This implementation makes the assumption that \epsilon is a constant white,
* gaussian noise source that is common to all k. The misalignment matrix O
* is not computed.
*
* @param bias[out] The computed bias, in the global frame
* @param scale[out] The computed scale factor matrix, in the sensor frame.
* @param samples[in] An array of measurement samples.
* @param n_samples The number of samples in the array.
* @param referenceField The magnetic field vector at this location.
* @param noise The one-sigma squared standard deviation of the observed noise
* in the sensor.
*/
void twostep_bias_scale(Vector3f & bias,
Matrix3f & scale,
const Vector3f samples[],
const size_t n_samples,
const Vector3f & referenceField,
const float noise)
{
// Define L_k by eq 51 for k = 1 .. n_samples
Matrix<double, Dynamic, 9> fullSamples(n_samples, 9);
// \hbar{L} by eq 52, simplified by observing that the common noise term
// makes this a simple average.
Matrix<double, 1, 9> centerSample = Matrix<double, 1, 9>::Zero();
// Define the sample differences z_k by eq 23 a)
double sampleDeltaMag[n_samples];
// The center value \hbar{z}
double sampleDeltaMagCenter = 0;
// The squared norm of the reference vector
double refSquaredNorm = referenceField.squaredNorm();
for (size_t i = 0; i < n_samples; ++i) {
fullSamples.row(i) << 2 * samples[i].transpose().cast<double>(),
-(samples[i][0] * samples[i][0]),
-(samples[i][1] * samples[i][1]),
-(samples[i][2] * samples[i][2]),
-2 * (samples[i][0] * samples[i][1]),
-2 * (samples[i][0] * samples[i][2]),
-2 * (samples[i][1] * samples[i][2]);
centerSample += fullSamples.row(i);
sampleDeltaMag[i] = samples[i].squaredNorm() - refSquaredNorm;
sampleDeltaMagCenter += sampleDeltaMag[i];
}
sampleDeltaMagCenter /= n_samples;
centerSample /= n_samples;
// Define \tilde{L}_k for k = 0 .. n_samples
Matrix<double, Dynamic, 9> centeredSamples(n_samples, 9);
// Define \tilde{z}_k for k = 0 .. n_samples
double centeredMags[n_samples];
// Compute the term under the summation of eq 57a
Matrix<double, 9, 1> estimateSummation = Matrix<double, 9, 1>::Zero();
for (size_t i = 0; i < n_samples; ++i) {
centeredSamples.row(i) = fullSamples.row(i) - centerSample;
centeredMags[i] = sampleDeltaMag[i] - sampleDeltaMagCenter;
estimateSummation += centeredMags[i] * centeredSamples.row(i).transpose();
}
estimateSummation /= noise;
// By eq 57b
Matrix<double, 9, 9> P_theta_theta_inv = (1.0f / noise) *
centeredSamples.transpose() * centeredSamples;
#ifdef PRINTF_DEBUGGING
SelfAdjointEigenSolver<Matrix<double, 9, 9> > eig(P_theta_theta_inv);
std::cout << "P_theta_theta_inverse: \n" << P_theta_theta_inv << "\n\n";
std::cout << "P_\\tt^-1 eigenvalues: " << eig.eigenvalues().transpose()
<< "\n";
std::cout << "P_\\tt^-1 eigenvectors:\n" << eig.eigenvectors() << "\n";
#endif
// The current value of the estimate. Initialized to \tilde{\theta}^*
Matrix<double, 9, 1> estimate;
// By eq 57a
P_theta_theta_inv.ldlt().solve(estimateSummation, &estimate);
// estimate i+1 = estimate_i - Fisher^{-1}(at estimate_i)*gradient(theta)
// Fisher^{-1} = \tilde{Fisher}^-1 + \hbar{Fisher}^{-1}
size_t count = 0;
double eta = 10000;
while (count++ < 200 && eta > 1e-8) {
static bool warned = false;
if (hasNaN(estimate)) {
std::cout << "WARNING: found NaN at time " << count << "\n";
warned = true;
}
#if 0
SelfAdjointEigenSolver<Matrix3d> eig_E(E_theta(estimate));
Vector3d S = eig_E.eigenvalues();
Vector3d W; W << -1 + sqrt(1 + S.coeff(0)),
-1 + sqrt(1 + S.coeff(1)),
-1 + sqrt(1 + S.coeff(2));
scale = (eig_E.eigenvectors() * W.asDiagonal() *
eig_E.eigenvectors().transpose()).cast<float>();
(Matrix3f::Identity() + scale).ldlt().solve(
estimate.start<3>().cast<float>(), &bias);
std::cout << "\n\nestimated bias: " << bias.transpose()
<< "\nestimated scale:\n" << scale;
#endif
Matrix<double, 1, 9> db_dtheta = dnormb_dtheta(estimate);
Matrix<double, 9, 1> dJ_dtheta = ::dJ_dtheta(centerSample,
sampleDeltaMagCenter,
estimate,
db_dtheta,
-3 * noise,
noise / n_samples);
// Eq 59, with reused storage on db_dtheta
db_dtheta = centerSample - db_dtheta;
Matrix<double, 9, 9> scale = P_theta_theta_inv +
(double(n_samples) / noise) * db_dtheta.transpose() * db_dtheta;
// eq 14b, mutatis mutandis (grumble, grumble)
Matrix<double, 9, 1> increment;
scale.ldlt().solve(dJ_dtheta, &increment);
estimate -= increment;
eta = increment.dot(scale * increment);
std::cout << "eta: " << eta << "\n";
}
std::cout << "terminated at eta = " << eta
<< " after " << count << " iterations\n";
if (!isnan(eta) && !isinf(eta)) {
// Transform the estimated parameters from [c | E] back into [b | D].
// See eq 63-65
SelfAdjointEigenSolver<Matrix3d> eig_E(E_theta(estimate));
Vector3d S = eig_E.eigenvalues();
Vector3d W; W << -1 + sqrt(1 + S.coeff(0)),
-1 + sqrt(1 + S.coeff(1)),
-1 + sqrt(1 + S.coeff(2));
scale = (eig_E.eigenvectors() * W.asDiagonal() *
eig_E.eigenvectors().transpose()).cast<float>();
(Matrix3f::Identity() + scale).ldlt().solve(
estimate.start<3>().cast<float>(), &bias);
} else {
// return nonsense data. The eigensolver can fall ingo
// an infinite loop otherwise.
// TODO: Add error code return
scale = Matrix3f::Ones() * std::numeric_limits<float>::quiet_NaN();
bias = Vector3f::Zero();
}
}