1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-12-04 12:24:11 +01:00
LibrePilot/flight/modules/Attitude/attitude.c

771 lines
26 KiB
C
Raw Normal View History

/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup Attitude Copter Control Attitude Estimation
* @brief Acquires sensor data and computes attitude estimate
* Specifically updates the the @ref AttitudeState "AttitudeState" and @ref AttitudeRaw "AttitudeRaw" settings objects
* @{
*
* @file attitude.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief Module to handle all comms to the AHRS on a periodic basis.
*
* @see The GNU Public License (GPL) Version 3
*
******************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/**
* Input objects: None, takes sensor data via pios
* Output objects: @ref AttitudeRaw @ref AttitudeState
*
* This module computes an attitude estimate from the sensor data
*
* The module executes in its own thread.
*
* UAVObjects are automatically generated by the UAVObjectGenerator from
* the object definition XML file.
*
* Modules have no API, all communication to other modules is done through UAVObjects.
* However modules may use the API exposed by shared libraries.
* See the OpenPilot wiki for more details.
* http://www.openpilot.org/OpenPilot_Application_Architecture
*
*/
#include <openpilot.h>
#include <pios_board_info.h>
#include "attitude.h"
#include "gyrostate.h"
#include "accelstate.h"
#include "attitudestate.h"
#include "attitudesettings.h"
#include "accelgyrosettings.h"
#include "flightstatus.h"
#include "manualcontrolcommand.h"
#include "taskinfo.h"
#include "CoordinateConversions.h"
#include <pios_notify.h>
#include <pios_instrumentation_helper.h>
PERF_DEFINE_COUNTER(counterUpd);
PERF_DEFINE_COUNTER(counterAccelSamples);
PERF_DEFINE_COUNTER(counterPeriod);
PERF_DEFINE_COUNTER(counterAtt);
// Counters:
// - 0xA7710001 sensor fetch duration
// - 0xA7710002 updateAttitude execution time
// - 0xA7710003 Attitude loop rate(period)
// - 0xA7710004 number of accel samples read for each loop (cc only).
// Private constants
#define STACK_SIZE_BYTES 540
#define TASK_PRIORITY (tskIDLE_PRIORITY + 3)
#define SENSOR_PERIOD 4
#define UPDATE_RATE 25.0f
#define UPDATE_EXPECTED (1.0f / 500.0f)
#define UPDATE_MIN 1.0e-6f
#define UPDATE_MAX 1.0f
#define UPDATE_ALPHA 1.0e-2f
// Private types
// Private variables
static xTaskHandle taskHandle;
static PiOSDeltatimeConfig dtconfig;
// Private functions
static void AttitudeTask(void *parameters);
static float gyro_correct_int[3] = { 0, 0, 0 };
static xQueueHandle gyro_queue;
static int32_t updateSensors(AccelStateData *, GyroStateData *);
static int32_t updateSensorsCC3D(AccelStateData *accelStateData, GyroStateData *gyrosData);
static void updateAttitude(AccelStateData *, GyroStateData *);
static void settingsUpdatedCb(UAVObjEvent *objEv);
static float accelKi = 0;
static float accelKp = 0;
static float accel_alpha = 0;
static bool accel_filter_enabled = false;
static float accels_filtered[3];
static float grot_filtered[3];
static float yawBiasRate = 0;
static float rollPitchBiasRate = 0.0f;
static AccelGyroSettingsaccel_biasData accel_bias;
static float q[4] = { 1, 0, 0, 0 };
static float R[3][3];
static int8_t rotate = 0;
static bool zero_during_arming = false;
static bool bias_correct_gyro = true;
2013-12-29 18:45:44 +01:00
// static float gyros_passed[3];
// temp coefficient to calculate gyro bias
static bool apply_gyro_temp = false;
static bool apply_accel_temp = false;
static AccelGyroSettingsgyro_temp_coeffData gyro_temp_coeff;;
static AccelGyroSettingsaccel_temp_coeffData accel_temp_coeff;
static AccelGyroSettingstemp_calibrated_extentData temp_calibrated_extent;
// Accel and Gyro scaling (this is the product of sensor scale and adjustement in AccelGyroSettings
static AccelGyroSettingsgyro_scaleData gyro_scale;
static AccelGyroSettingsaccel_scaleData accel_scale;
// For running trim flights
static volatile bool trim_requested = false;
static volatile int32_t trim_accels[3];
static volatile int32_t trim_samples;
int32_t const MAX_TRIM_FLIGHT_SAMPLES = 65535;
2013-12-29 18:45:44 +01:00
#define GRAV 9.81f
#define STD_CC_ACCEL_SCALE (GRAV * 0.004f)
/* 0.004f is gravity / LSB */
2013-12-29 18:45:44 +01:00
#define STD_CC_ANALOG_GYRO_NEUTRAL 1665
#define STD_CC_ANALOG_GYRO_GAIN 0.42f
2013-12-29 18:45:44 +01:00
// Used to detect CC vs CC3D
static const struct pios_board_info *bdinfo = &pios_board_info_blob;
2013-12-29 18:45:44 +01:00
#define BOARDISCC3D (bdinfo->board_rev == 0x02)
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
int32_t AttitudeStart(void)
{
// Start main task
xTaskCreate(AttitudeTask, "Attitude", STACK_SIZE_BYTES / 4, NULL, TASK_PRIORITY, &taskHandle);
PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_ATTITUDE, taskHandle);
PIOS_WDG_RegisterFlag(PIOS_WDG_ATTITUDE);
return 0;
}
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
int32_t AttitudeInitialize(void)
{
AttitudeStateInitialize();
AttitudeSettingsInitialize();
AccelGyroSettingsInitialize();
AccelStateInitialize();
GyroStateInitialize();
// Initialize quaternion
AttitudeStateData attitude;
AttitudeStateGet(&attitude);
attitude.q1 = 1;
attitude.q2 = 0;
attitude.q3 = 0;
attitude.q4 = 0;
AttitudeStateSet(&attitude);
// Cannot trust the values to init right above if BL runs
gyro_correct_int[0] = 0;
gyro_correct_int[1] = 0;
gyro_correct_int[2] = 0;
q[0] = 1;
q[1] = 0;
q[2] = 0;
q[3] = 0;
for (uint8_t i = 0; i < 3; i++) {
for (uint8_t j = 0; j < 3; j++) {
R[i][j] = 0;
}
}
trim_requested = false;
AttitudeSettingsConnectCallback(&settingsUpdatedCb);
AccelGyroSettingsConnectCallback(&settingsUpdatedCb);
return 0;
}
MODULE_INITCALL(AttitudeInitialize, AttitudeStart);
/**
* Module thread, should not return.
*/
int32_t accel_test;
int32_t gyro_test;
static void AttitudeTask(__attribute__((unused)) void *parameters)
{
uint8_t init = 0;
AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE);
// Set critical error and wait until the accel is producing data
while (PIOS_ADXL345_FifoElements() == 0) {
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_CRITICAL);
PIOS_WDG_UpdateFlag(PIOS_WDG_ATTITUDE);
}
bool cc3d = BOARDISCC3D;
if (cc3d) {
#if defined(PIOS_INCLUDE_MPU6000)
gyro_test = PIOS_MPU6000_Test();
#endif
} else {
#if defined(PIOS_INCLUDE_ADXL345)
accel_test = PIOS_ADXL345_Test();
#endif
#if defined(PIOS_INCLUDE_ADC)
// Create queue for passing gyro data, allow 2 back samples in case
gyro_queue = xQueueCreate(1, sizeof(float) * 4);
PIOS_Assert(gyro_queue != NULL);
PIOS_ADC_SetQueue(gyro_queue);
PIOS_ADC_Config(46);
#endif
}
PERF_INIT_COUNTER(counterUpd, 0xA7710001);
PERF_INIT_COUNTER(counterAtt, 0xA7710002);
PERF_INIT_COUNTER(counterPeriod, 0xA7710003);
PERF_INIT_COUNTER(counterAccelSamples, 0xA7710004);
// Force settings update to make sure rotation loaded
settingsUpdatedCb(AttitudeSettingsHandle());
PIOS_DELTATIME_Init(&dtconfig, UPDATE_EXPECTED, UPDATE_MIN, UPDATE_MAX, UPDATE_ALPHA);
// Main task loop
while (1) {
FlightStatusData flightStatus;
FlightStatusGet(&flightStatus);
if ((xTaskGetTickCount() < 7000) && (xTaskGetTickCount() > 1000)) {
// Use accels to initialise attitude and calculate gyro bias
accelKp = 1.0f;
accelKi = 0.0f;
yawBiasRate = 0.01f;
rollPitchBiasRate = 0.01f;
accel_filter_enabled = false;
init = 0;
PIOS_NOTIFY_StartNotification(NOTIFY_DRAW_ATTENTION, NOTIFY_PRIORITY_REGULAR);
} else if (zero_during_arming && (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMING)) {
accelKp = 1.0f;
accelKi = 0.0f;
yawBiasRate = 0.01f;
rollPitchBiasRate = 0.01f;
accel_filter_enabled = false;
init = 0;
PIOS_NOTIFY_StartNotification(NOTIFY_DRAW_ATTENTION, NOTIFY_PRIORITY_REGULAR);
} else if (init == 0) {
// Reload settings (all the rates)
AttitudeSettingsAccelKiGet(&accelKi);
AttitudeSettingsAccelKpGet(&accelKp);
AttitudeSettingsYawBiasRateGet(&yawBiasRate);
rollPitchBiasRate = 0.0f;
if (accel_alpha > 0.0f) {
accel_filter_enabled = true;
}
init = 1;
}
PIOS_WDG_UpdateFlag(PIOS_WDG_ATTITUDE);
AccelStateData accelState;
GyroStateData gyros;
int32_t retval = 0;
if (cc3d) {
retval = updateSensorsCC3D(&accelState, &gyros);
} else {
retval = updateSensors(&accelState, &gyros);
}
// Only update attitude when sensor data is good
if (retval != 0) {
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_ERROR);
} else {
// Do not update attitude data in simulation mode
if (!AttitudeStateReadOnly()) {
PERF_TIMED_SECTION_START(counterAtt);
updateAttitude(&accelState, &gyros);
PERF_TIMED_SECTION_END(counterAtt);
}
PERF_MEASURE_PERIOD(counterPeriod);
AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE);
}
}
}
/**
* Get an update from the sensors
* @param[in] attitudeRaw Populate the UAVO instead of saving right here
* @return 0 if successfull, -1 if not
*/
static int32_t updateSensors(AccelStateData *accelState, GyroStateData *gyros)
{
struct pios_adxl345_data accel_data;
float gyro[4];
// Only wait the time for two nominal updates before setting an alarm
if (xQueueReceive(gyro_queue, (void *const)gyro, UPDATE_RATE * 2) == errQUEUE_EMPTY) {
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_ERROR);
return -1;
}
// Do not read raw sensor data in simulation mode
if (GyroStateReadOnly() || AccelStateReadOnly()) {
return 0;
}
// No accel data available
uint8_t fifoSamples = PIOS_ADXL345_FifoElements();
if (fifoSamples == 0) {
return -1;
}
PERF_TIMED_SECTION_START(counterUpd);
// First sample is temperature
gyros->x = -(gyro[1] - STD_CC_ANALOG_GYRO_NEUTRAL) * gyro_scale.X;
gyros->y = (gyro[2] - STD_CC_ANALOG_GYRO_NEUTRAL) * gyro_scale.Y;
gyros->z = -(gyro[3] - STD_CC_ANALOG_GYRO_NEUTRAL) * gyro_scale.Z;
int32_t x = 0;
int32_t y = 0;
int32_t z = 0;
uint8_t i = fifoSamples;
uint8_t samples_remaining;
samples_remaining = PIOS_ADXL345_ReadAndAccumulateSamples(&accel_data, fifoSamples);
x = accel_data.x;
y = -accel_data.y;
z = -accel_data.z;
if (samples_remaining > 0) {
do {
i++;
samples_remaining = PIOS_ADXL345_Read(&accel_data);
x += accel_data.x;
y += -accel_data.y;
z += -accel_data.z;
} while ((i < 32) && (samples_remaining > 0));
}
PERF_TRACK_VALUE(counterAccelSamples, i);
float accel[3] = { accel_scale.X * (float)x / i,
accel_scale.Y * (float)y / i,
accel_scale.Z * (float)z / i };
if (rotate) {
// TODO: rotate sensors too so stabilization is well behaved
float vec_out[3];
rot_mult(R, accel, vec_out);
accelState->x = vec_out[0];
accelState->y = vec_out[1];
accelState->z = vec_out[2];
rot_mult(R, &gyros->x, vec_out);
gyros->x = vec_out[0];
gyros->y = vec_out[1];
gyros->z = vec_out[2];
} else {
accelState->x = accel[0];
accelState->y = accel[1];
accelState->z = accel[2];
}
if (trim_requested) {
if (trim_samples >= MAX_TRIM_FLIGHT_SAMPLES) {
trim_requested = false;
} else {
uint8_t armed;
float throttle;
FlightStatusArmedGet(&armed);
ManualControlCommandThrottleGet(&throttle); // Until flight status indicates airborne
if ((armed == FLIGHTSTATUS_ARMED_ARMED) && (throttle > 0.0f)) {
trim_samples++;
// Store the digitally scaled version since that is what we use for bias
trim_accels[0] += accelState->x;
trim_accels[1] += accelState->y;
trim_accels[2] += accelState->z;
}
}
}
// Scale accels and correct bias
accelState->x -= accel_bias.X;
accelState->y -= accel_bias.Y;
accelState->z -= accel_bias.Z;
if (bias_correct_gyro) {
// Applying integral component here so it can be seen on the gyros and correct bias
gyros->x += gyro_correct_int[0];
gyros->y += gyro_correct_int[1];
gyros->z += gyro_correct_int[2];
}
// Force the roll & pitch gyro rates to average to zero during initialisation
gyro_correct_int[0] += -gyros->x * rollPitchBiasRate;
gyro_correct_int[1] += -gyros->y * rollPitchBiasRate;
// Because most crafts wont get enough information from gravity to zero yaw gyro, we try
// and make it average zero (weakly)
gyro_correct_int[2] += -gyros->z * yawBiasRate;
PERF_TIMED_SECTION_END(counterUpd);
GyroStateSet(gyros);
AccelStateSet(accelState);
return 0;
}
/**
* Get an update from the sensors
* @param[in] attitudeRaw Populate the UAVO instead of saving right here
* @return 0 if successfull, -1 if not
*/
static struct pios_mpu6000_data mpu6000_data;
static int32_t updateSensorsCC3D(AccelStateData *accelStateData, GyroStateData *gyrosData)
{
float accels[3], gyros[3];
#if defined(PIOS_INCLUDE_MPU6000)
xQueueHandle queue = PIOS_MPU6000_GetQueue();
if (xQueueReceive(queue, (void *)&mpu6000_data, SENSOR_PERIOD) == errQUEUE_EMPTY) {
return -1; // Error, no data
}
// Do not read raw sensor data in simulation mode
if (GyroStateReadOnly() || AccelStateReadOnly()) {
return 0;
}
PERF_TIMED_SECTION_START(counterUpd);
gyros[0] = mpu6000_data.gyro_x * gyro_scale.X;
gyros[1] = mpu6000_data.gyro_y * gyro_scale.Y;
gyros[2] = mpu6000_data.gyro_z * gyro_scale.Z;
accels[0] = mpu6000_data.accel_x * accel_scale.X;
accels[1] = mpu6000_data.accel_y * accel_scale.Y;
accels[2] = mpu6000_data.accel_z * accel_scale.Z;
float ctemp = mpu6000_data.temperature > temp_calibrated_extent.max ? temp_calibrated_extent.max :
(mpu6000_data.temperature < temp_calibrated_extent.min ? temp_calibrated_extent.min
: mpu6000_data.temperature);
2013-12-29 18:45:44 +01:00
if (apply_gyro_temp) {
gyros[0] -= (gyro_temp_coeff.X + gyro_temp_coeff.X2 * ctemp) * ctemp;
gyros[1] -= (gyro_temp_coeff.Y + gyro_temp_coeff.Y2 * ctemp) * ctemp;
gyros[2] -= (gyro_temp_coeff.Z + gyro_temp_coeff.Z2 * ctemp) * ctemp;
}
2013-12-29 18:45:44 +01:00
if (apply_accel_temp) {
accels[0] -= accel_temp_coeff.X * ctemp;
accels[1] -= accel_temp_coeff.Y * ctemp;
accels[2] -= accel_temp_coeff.Z * ctemp;
}
// gyrosData->temperature = 35.0f + ((float)mpu6000_data.temperature + 512.0f) / 340.0f;
// accelsData->temperature = 35.0f + ((float)mpu6000_data.temperature + 512.0f) / 340.0f;
#endif /* if defined(PIOS_INCLUDE_MPU6000) */
if (rotate) {
// TODO: rotate sensors too so stabilization is well behaved
float vec_out[3];
rot_mult(R, accels, vec_out);
accels[0] = vec_out[0];
accels[1] = vec_out[1];
accels[2] = vec_out[2];
rot_mult(R, gyros, vec_out);
gyros[0] = vec_out[0];
gyros[1] = vec_out[1];
gyros[2] = vec_out[2];
}
accelStateData->x = accels[0] - accel_bias.X;
accelStateData->y = accels[1] - accel_bias.Y;
accelStateData->z = accels[2] - accel_bias.Z;
gyrosData->x = gyros[0];
gyrosData->y = gyros[1];
gyrosData->z = gyros[2];
if (bias_correct_gyro) {
// Applying integral component here so it can be seen on the gyros and correct bias
gyrosData->x += gyro_correct_int[0];
gyrosData->y += gyro_correct_int[1];
gyrosData->z += gyro_correct_int[2];
}
// Force the roll & pitch gyro rates to average to zero during initialisation
gyro_correct_int[0] += -gyrosData->x * rollPitchBiasRate;
gyro_correct_int[1] += -gyrosData->y * rollPitchBiasRate;
// Because most crafts wont get enough information from gravity to zero yaw gyro, we try
// and make it average zero (weakly)
gyro_correct_int[2] += -gyrosData->z * yawBiasRate;
PERF_TIMED_SECTION_END(counterUpd);
GyroStateSet(gyrosData);
AccelStateSet(accelStateData);
return 0;
}
2012-11-11 21:10:52 +01:00
static inline void apply_accel_filter(const float *raw, float *filtered)
{
if (accel_filter_enabled) {
filtered[0] = filtered[0] * accel_alpha + raw[0] * (1 - accel_alpha);
filtered[1] = filtered[1] * accel_alpha + raw[1] * (1 - accel_alpha);
filtered[2] = filtered[2] * accel_alpha + raw[2] * (1 - accel_alpha);
} else {
filtered[0] = raw[0];
filtered[1] = raw[1];
filtered[2] = raw[2];
}
}
__attribute__((optimize("O3"))) static void updateAttitude(AccelStateData *accelStateData, GyroStateData *gyrosData)
{
float dT = PIOS_DELTATIME_GetAverageSeconds(&dtconfig);
// Bad practice to assume structure order, but saves memory
float *gyros = &gyrosData->x;
float *accels = &accelStateData->x;
float grot[3];
float accel_err[3];
// Apply smoothing to accel values, to reduce vibration noise before main calculations.
apply_accel_filter(accels, accels_filtered);
// Rotate gravity unit vector to body frame, filter and cross with accels
grot[0] = -(2 * (q[1] * q[3] - q[0] * q[2]));
grot[1] = -(2 * (q[2] * q[3] + q[0] * q[1]));
grot[2] = -(q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
apply_accel_filter(grot, grot_filtered);
CrossProduct((const float *)accels_filtered, (const float *)grot_filtered, accel_err);
// Account for accel magnitude
float accel_mag = sqrtf(accels_filtered[0] * accels_filtered[0] + accels_filtered[1] * accels_filtered[1] + accels_filtered[2] * accels_filtered[2]);
if (accel_mag < 1.0e-3f) {
return;
}
// Account for filtered gravity vector magnitude
float grot_mag;
if (accel_filter_enabled) {
grot_mag = sqrtf(grot_filtered[0] * grot_filtered[0] + grot_filtered[1] * grot_filtered[1] + grot_filtered[2] * grot_filtered[2]);
} else {
grot_mag = 1.0f;
}
if (grot_mag < 1.0e-3f) {
return;
}
const float invMag = 1.0f / (accel_mag * grot_mag);
accel_err[0] *= invMag;
accel_err[1] *= invMag;
accel_err[2] *= invMag;
// Accumulate integral of error. Scale here so that units are (deg/s) but Ki has units of s
gyro_correct_int[0] += accel_err[0] * accelKi;
gyro_correct_int[1] += accel_err[1] * accelKi;
// gyro_correct_int[2] += accel_err[2] * accelKi;
// Correct rates based on error, integral component dealt with in updateSensors
const float kpInvdT = accelKp / dT;
gyros[0] += accel_err[0] * kpInvdT;
gyros[1] += accel_err[1] * kpInvdT;
gyros[2] += accel_err[2] * kpInvdT;
{ // scoping variables to save memory
// Work out time derivative from INSAlgo writeup
// Also accounts for the fact that gyros are in deg/s
float qdot[4];
qdot[0] = (-q[1] * gyros[0] - q[2] * gyros[1] - q[3] * gyros[2]) * dT * (M_PI_F / 180.0f / 2.0f);
qdot[1] = (q[0] * gyros[0] - q[3] * gyros[1] + q[2] * gyros[2]) * dT * (M_PI_F / 180.0f / 2.0f);
qdot[2] = (q[3] * gyros[0] + q[0] * gyros[1] - q[1] * gyros[2]) * dT * (M_PI_F / 180.0f / 2.0f);
qdot[3] = (-q[2] * gyros[0] + q[1] * gyros[1] + q[0] * gyros[2]) * dT * (M_PI_F / 180.0f / 2.0f);
// Take a time step
q[0] = q[0] + qdot[0];
q[1] = q[1] + qdot[1];
q[2] = q[2] + qdot[2];
q[3] = q[3] + qdot[3];
if (q[0] < 0) {
q[0] = -q[0];
q[1] = -q[1];
q[2] = -q[2];
q[3] = -q[3];
}
}
// Renomalize
float qmag = sqrtf(q[0] * q[0] + q[1] * q[1] + q[2] * q[2] + q[3] * q[3]);
// If quaternion has become inappropriately short or is nan reinit.
// THIS SHOULD NEVER ACTUALLY HAPPEN
if ((fabsf(qmag) < 1e-3f) || isnan(qmag)) {
q[0] = 1;
q[1] = 0;
q[2] = 0;
q[3] = 0;
} else {
const float invQmag = 1.0f / qmag;
q[0] = q[0] * invQmag;
q[1] = q[1] * invQmag;
q[2] = q[2] * invQmag;
q[3] = q[3] * invQmag;
}
AttitudeStateData attitudeState;
AttitudeStateGet(&attitudeState);
quat_copy(q, &attitudeState.q1);
// Convert into eueler degrees (makes assumptions about RPY order)
Quaternion2RPY(&attitudeState.q1, &attitudeState.Roll);
AttitudeStateSet(&attitudeState);
}
static void settingsUpdatedCb(__attribute__((unused)) UAVObjEvent *objEv)
{
AttitudeSettingsData attitudeSettings;
AccelGyroSettingsData accelGyroSettings;
AttitudeSettingsGet(&attitudeSettings);
AccelGyroSettingsGet(&accelGyroSettings);
accelKp = attitudeSettings.AccelKp;
accelKi = attitudeSettings.AccelKi;
yawBiasRate = attitudeSettings.YawBiasRate;
// Calculate accel filter alpha, in the same way as for gyro data in stabilization module.
const float fakeDt = 0.0025f;
if (attitudeSettings.AccelTau < 0.0001f) {
accel_alpha = 0; // not trusting this to resolve to 0
accel_filter_enabled = false;
} else {
accel_alpha = expf(-fakeDt / attitudeSettings.AccelTau);
accel_filter_enabled = true;
}
zero_during_arming = attitudeSettings.ZeroDuringArming == ATTITUDESETTINGS_ZERODURINGARMING_TRUE;
bias_correct_gyro = attitudeSettings.BiasCorrectGyro == ATTITUDESETTINGS_BIASCORRECTGYRO_TRUE;
memcpy(&gyro_temp_coeff, &accelGyroSettings.gyro_temp_coeff, sizeof(AccelGyroSettingsgyro_temp_coeffData));
memcpy(&accel_temp_coeff, &accelGyroSettings.accel_temp_coeff, sizeof(AccelGyroSettingsaccel_temp_coeffData));
apply_gyro_temp = (fabsf(gyro_temp_coeff.X) > 1e-6f ||
fabsf(gyro_temp_coeff.Y) > 1e-6f ||
fabsf(gyro_temp_coeff.Z) > 1e-6f ||
fabsf(gyro_temp_coeff.X2) > 1e-6f ||
fabsf(gyro_temp_coeff.Y2) > 1e-6f ||
fabsf(gyro_temp_coeff.Z2) > 1e-6f);
apply_accel_temp = (fabsf(accel_temp_coeff.X) > 1e-6f ||
fabsf(accel_temp_coeff.Y) > 1e-6f ||
fabsf(accel_temp_coeff.Z) > 1e-6f);
gyro_correct_int[0] = accelGyroSettings.gyro_bias.X;
gyro_correct_int[1] = accelGyroSettings.gyro_bias.Y;
gyro_correct_int[2] = accelGyroSettings.gyro_bias.Z;
temp_calibrated_extent.min = accelGyroSettings.temp_calibrated_extent.min;
temp_calibrated_extent.max = accelGyroSettings.temp_calibrated_extent.max;
2013-12-29 18:45:44 +01:00
if (BOARDISCC3D) {
accel_bias.X = accelGyroSettings.accel_bias.X;
accel_bias.Y = accelGyroSettings.accel_bias.Y;
accel_bias.Z = accelGyroSettings.accel_bias.Z;
gyro_scale.X = accelGyroSettings.gyro_scale.X * PIOS_MPU6000_GetScale();
gyro_scale.Y = accelGyroSettings.gyro_scale.Y * PIOS_MPU6000_GetScale();
gyro_scale.Z = accelGyroSettings.gyro_scale.Z * PIOS_MPU6000_GetScale();
accel_scale.X = accelGyroSettings.accel_scale.X * PIOS_MPU6000_GetAccelScale();
accel_scale.Y = accelGyroSettings.accel_scale.Y * PIOS_MPU6000_GetAccelScale();
accel_scale.Z = accelGyroSettings.accel_scale.Z * PIOS_MPU6000_GetAccelScale();
} else {
// Original CC with analog gyros and ADXL accel
accel_bias.X = accelGyroSettings.accel_bias.X;
accel_bias.Y = accelGyroSettings.accel_bias.Y;
accel_bias.Z = accelGyroSettings.accel_bias.Z;
gyro_scale.X = accelGyroSettings.gyro_scale.X * STD_CC_ANALOG_GYRO_GAIN;
gyro_scale.Y = accelGyroSettings.gyro_scale.Y * STD_CC_ANALOG_GYRO_GAIN;
gyro_scale.Z = accelGyroSettings.gyro_scale.Z * STD_CC_ANALOG_GYRO_GAIN;
accel_scale.X = accelGyroSettings.accel_scale.X * STD_CC_ACCEL_SCALE;
accel_scale.Y = accelGyroSettings.accel_scale.Y * STD_CC_ACCEL_SCALE;
accel_scale.Z = accelGyroSettings.accel_scale.Z * STD_CC_ACCEL_SCALE;
}
// Indicates not to expend cycles on rotation
if (fabsf(attitudeSettings.BoardRotation.Pitch) < 0.00001f &&
fabsf(attitudeSettings.BoardRotation.Roll) < 0.00001f &&
fabsf(attitudeSettings.BoardRotation.Yaw) < 0.00001f) {
rotate = 0;
// Shouldn't be used but to be safe
float rotationQuat[4] = { 1, 0, 0, 0 };
Quaternion2R(rotationQuat, R);
} else {
float rotationQuat[4];
const float rpy[3] = { attitudeSettings.BoardRotation.Roll,
attitudeSettings.BoardRotation.Pitch,
attitudeSettings.BoardRotation.Yaw };
RPY2Quaternion(rpy, rotationQuat);
Quaternion2R(rotationQuat, R);
rotate = 1;
}
if (attitudeSettings.TrimFlight == ATTITUDESETTINGS_TRIMFLIGHT_START) {
trim_accels[0] = 0;
trim_accels[1] = 0;
trim_accels[2] = 0;
trim_samples = 0;
trim_requested = true;
} else if (attitudeSettings.TrimFlight == ATTITUDESETTINGS_TRIMFLIGHT_LOAD) {
trim_requested = false;
accelGyroSettings.accel_scale.X = trim_accels[0] / trim_samples;
accelGyroSettings.accel_scale.Y = trim_accels[1] / trim_samples;
// Z should average -grav
accelGyroSettings.accel_scale.Z = trim_accels[2] / trim_samples + GRAV;
2013-12-29 18:45:44 +01:00
attitudeSettings.TrimFlight = ATTITUDESETTINGS_TRIMFLIGHT_NORMAL;
AttitudeSettingsSet(&attitudeSettings);
} else {
trim_requested = false;
}
}
/**
* @}
* @}
*/