2011-01-23 18:03:59 +00:00
/**
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
*
* @ file worldmagmodel . cpp
* @ author The OpenPilot Team , http : //www.openpilot.org Copyright (C) 2010.
* @ brief Utilities to find the location of openpilot GCS files :
* - Plugins Share directory path
*
* @ brief Source file for the World Magnetic Model
* This is a port of code available from the US NOAA .
*
* The hard coded coefficients should be valid until 2015.
*
* Updated coeffs from . .
* http : //www.ngdc.noaa.gov/geomag/WMM/wmm_ddownload.shtml
*
* NASA C source code . .
* http : //www.ngdc.noaa.gov/geomag/WMM/wmm_wdownload.shtml
*
* Major changes include :
* - No geoid model ( altitude must be geodetic WGS - 84 )
* - Floating point calculation ( not double precision )
* - Hard coded coefficients for model
* - Elimination of user interface
* - Elimination of dynamic memory allocation
*
* @ see The GNU Public License ( GPL ) Version 3
*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/*
* This program is free software ; you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation ; either version 3 of the License , or
* ( at your option ) any later version .
*
* This program is distributed in the hope that it will be useful , but
* WITHOUT ANY WARRANTY ; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE . See the GNU General Public License
* for more details .
*
* You should have received a copy of the GNU General Public License along
* with this program ; if not , write to the Free Software Foundation , Inc . ,
* 59 Temple Place , Suite 330 , Boston , MA 02111 - 1307 USA
*/
# include "worldmagmodel.h"
# include <stdint.h>
# include <QDebug>
# include <math.h>
# define RAD2DEG(rad) ((rad) * (180.0 / M_PI))
# define DEG2RAD(deg) ((deg) * (M_PI / 180.0))
// updated coeffs available from http://www.ngdc.noaa.gov/geomag/WMM/wmm_ddownload.shtml
const double CoeffFile [ 91 ] [ 6 ] = {
{ 0 , 0 , 0 , 0 , 0 , 0 } ,
{ 1 , 0 , - 29496.6 , 0.0 , 11.6 , 0.0 } ,
{ 1 , 1 , - 1586.3 , 4944.4 , 16.5 , - 25.9 } ,
{ 2 , 0 , - 2396.6 , 0.0 , - 12.1 , 0.0 } ,
{ 2 , 1 , 3026.1 , - 2707.7 , - 4.4 , - 22.5 } ,
{ 2 , 2 , 1668.6 , - 576.1 , 1.9 , - 11.8 } ,
{ 3 , 0 , 1340.1 , 0.0 , 0.4 , 0.0 } ,
{ 3 , 1 , - 2326.2 , - 160.2 , - 4.1 , 7.3 } ,
{ 3 , 2 , 1231.9 , 251.9 , - 2.9 , - 3.9 } ,
{ 3 , 3 , 634.0 , - 536.6 , - 7.7 , - 2.6 } ,
{ 4 , 0 , 912.6 , 0.0 , - 1.8 , 0.0 } ,
{ 4 , 1 , 808.9 , 286.4 , 2.3 , 1.1 } ,
{ 4 , 2 , 166.7 , - 211.2 , - 8.7 , 2.7 } ,
{ 4 , 3 , - 357.1 , 164.3 , 4.6 , 3.9 } ,
{ 4 , 4 , 89.4 , - 309.1 , - 2.1 , - 0.8 } ,
{ 5 , 0 , - 230.9 , 0.0 , - 1.0 , 0.0 } ,
{ 5 , 1 , 357.2 , 44.6 , 0.6 , 0.4 } ,
{ 5 , 2 , 200.3 , 188.9 , - 1.8 , 1.8 } ,
{ 5 , 3 , - 141.1 , - 118.2 , - 1.0 , 1.2 } ,
{ 5 , 4 , - 163.0 , 0.0 , 0.9 , 4.0 } ,
{ 5 , 5 , - 7.8 , 100.9 , 1.0 , - 0.6 } ,
{ 6 , 0 , 72.8 , 0.0 , - 0.2 , 0.0 } ,
{ 6 , 1 , 68.6 , - 20.8 , - 0.2 , - 0.2 } ,
{ 6 , 2 , 76.0 , 44.1 , - 0.1 , - 2.1 } ,
{ 6 , 3 , - 141.4 , 61.5 , 2.0 , - 0.4 } ,
{ 6 , 4 , - 22.8 , - 66.3 , - 1.7 , - 0.6 } ,
{ 6 , 5 , 13.2 , 3.1 , - 0.3 , 0.5 } ,
{ 6 , 6 , - 77.9 , 55.0 , 1.7 , 0.9 } ,
{ 7 , 0 , 80.5 , 0.0 , 0.1 , 0.0 } ,
{ 7 , 1 , - 75.1 , - 57.9 , - 0.1 , 0.7 } ,
{ 7 , 2 , - 4.7 , - 21.1 , - 0.6 , 0.3 } ,
{ 7 , 3 , 45.3 , 6.5 , 1.3 , - 0.1 } ,
{ 7 , 4 , 13.9 , 24.9 , 0.4 , - 0.1 } ,
{ 7 , 5 , 10.4 , 7.0 , 0.3 , - 0.8 } ,
{ 7 , 6 , 1.7 , - 27.7 , - 0.7 , - 0.3 } ,
{ 7 , 7 , 4.9 , - 3.3 , 0.6 , 0.3 } ,
{ 8 , 0 , 24.4 , 0.0 , - 0.1 , 0.0 } ,
{ 8 , 1 , 8.1 , 11.0 , 0.1 , - 0.1 } ,
{ 8 , 2 , - 14.5 , - 20.0 , - 0.6 , 0.2 } ,
{ 8 , 3 , - 5.6 , 11.9 , 0.2 , 0.4 } ,
{ 8 , 4 , - 19.3 , - 17.4 , - 0.2 , 0.4 } ,
{ 8 , 5 , 11.5 , 16.7 , 0.3 , 0.1 } ,
{ 8 , 6 , 10.9 , 7.0 , 0.3 , - 0.1 } ,
{ 8 , 7 , - 14.1 , - 10.8 , - 0.6 , 0.4 } ,
{ 8 , 8 , - 3.7 , 1.7 , 0.2 , 0.3 } ,
{ 9 , 0 , 5.4 , 0.0 , 0.0 , 0.0 } ,
{ 9 , 1 , 9.4 , - 20.5 , - 0.1 , 0.0 } ,
{ 9 , 2 , 3.4 , 11.5 , 0.0 , - 0.2 } ,
{ 9 , 3 , - 5.2 , 12.8 , 0.3 , 0.0 } ,
{ 9 , 4 , 3.1 , - 7.2 , - 0.4 , - 0.1 } ,
{ 9 , 5 , - 12.4 , - 7.4 , - 0.3 , 0.1 } ,
{ 9 , 6 , - 0.7 , 8.0 , 0.1 , 0.0 } ,
{ 9 , 7 , 8.4 , 2.1 , - 0.1 , - 0.2 } ,
{ 9 , 8 , - 8.5 , - 6.1 , - 0.4 , 0.3 } ,
{ 9 , 9 , - 10.1 , 7.0 , - 0.2 , 0.2 } ,
{ 10 , 0 , - 2.0 , 0.0 , 0.0 , 0.0 } ,
{ 10 , 1 , - 6.3 , 2.8 , 0.0 , 0.1 } ,
{ 10 , 2 , 0.9 , - 0.1 , - 0.1 , - 0.1 } ,
{ 10 , 3 , - 1.1 , 4.7 , 0.2 , 0.0 } ,
{ 10 , 4 , - 0.2 , 4.4 , 0.0 , - 0.1 } ,
{ 10 , 5 , 2.5 , - 7.2 , - 0.1 , - 0.1 } ,
{ 10 , 6 , - 0.3 , - 1.0 , - 0.2 , 0.0 } ,
{ 10 , 7 , 2.2 , - 3.9 , 0.0 , - 0.1 } ,
{ 10 , 8 , 3.1 , - 2.0 , - 0.1 , - 0.2 } ,
{ 10 , 9 , - 1.0 , - 2.0 , - 0.2 , 0.0 } ,
{ 10 , 10 , - 2.8 , - 8.3 , - 0.2 , - 0.1 } ,
{ 11 , 0 , 3.0 , 0.0 , 0.0 , 0.0 } ,
{ 11 , 1 , - 1.5 , 0.2 , 0.0 , 0.0 } ,
{ 11 , 2 , - 2.1 , 1.7 , 0.0 , 0.1 } ,
{ 11 , 3 , 1.7 , - 0.6 , 0.1 , 0.0 } ,
{ 11 , 4 , - 0.5 , - 1.8 , 0.0 , 0.1 } ,
{ 11 , 5 , 0.5 , 0.9 , 0.0 , 0.0 } ,
{ 11 , 6 , - 0.8 , - 0.4 , 0.0 , 0.1 } ,
{ 11 , 7 , 0.4 , - 2.5 , 0.0 , 0.0 } ,
{ 11 , 8 , 1.8 , - 1.3 , 0.0 , - 0.1 } ,
{ 11 , 9 , 0.1 , - 2.1 , 0.0 , - 0.1 } ,
{ 11 , 10 , 0.7 , - 1.9 , - 0.1 , 0.0 } ,
{ 11 , 11 , 3.8 , - 1.8 , 0.0 , - 0.1 } ,
{ 12 , 0 , - 2.2 , 0.0 , 0.0 , 0.0 } ,
{ 12 , 1 , - 0.2 , - 0.9 , 0.0 , 0.0 } ,
{ 12 , 2 , 0.3 , 0.3 , 0.1 , 0.0 } ,
{ 12 , 3 , 1.0 , 2.1 , 0.1 , 0.0 } ,
{ 12 , 4 , - 0.6 , - 2.5 , - 0.1 , 0.0 } ,
{ 12 , 5 , 0.9 , 0.5 , 0.0 , 0.0 } ,
{ 12 , 6 , - 0.1 , 0.6 , 0.0 , 0.1 } ,
{ 12 , 7 , 0.5 , 0.0 , 0.0 , 0.0 } ,
{ 12 , 8 , - 0.4 , 0.1 , 0.0 , 0.0 } ,
{ 12 , 9 , - 0.4 , 0.3 , 0.0 , 0.0 } ,
{ 12 , 10 , 0.2 , - 0.9 , 0.0 , 0.0 } ,
{ 12 , 11 , - 0.8 , - 0.2 , - 0.1 , 0.0 } ,
{ 12 , 12 , 0.0 , 0.9 , 0.1 , 0.0 }
} ;
namespace Utils {
WorldMagModel : : WorldMagModel ( )
{
Initialize ( ) ;
}
int WorldMagModel : : GetMagVector ( double LLA [ 3 ] , int Month , int Day , int Year , double Be [ 3 ] )
{
double Lat = LLA [ 0 ] ;
double Lon = LLA [ 1 ] ;
2012-07-31 00:18:10 +02:00
double AltEllipsoid = LLA [ 2 ] / 1000.0 ; // convert to km
2011-01-23 18:03:59 +00:00
// ***********
// range check supplied params
if ( Lat < - 90 ) return - 1 ; // error
if ( Lat > 90 ) return - 2 ; // error
if ( Lon < - 180 ) return - 3 ; // error
if ( Lon > 180 ) return - 4 ; // error
// ***********
WMMtype_CoordSpherical CoordSpherical ;
WMMtype_CoordGeodetic CoordGeodetic ;
WMMtype_GeoMagneticElements GeoMagneticElements ;
Initialize ( ) ;
CoordGeodetic . lambda = Lon ;
CoordGeodetic . phi = Lat ;
CoordGeodetic . HeightAboveEllipsoid = AltEllipsoid ;
// Convert from geodeitic to Spherical Equations: 17-18, WMM Technical report
GeodeticToSpherical ( & CoordGeodetic , & CoordSpherical ) ;
if ( DateToYear ( Month , Day , Year ) < 0 )
return - 5 ; // error
// Compute the geoMagnetic field elements and their time change
if ( Geomag ( & CoordSpherical , & CoordGeodetic , & GeoMagneticElements ) < 0 )
return - 6 ; // error
// set the returned values
2011-03-28 10:40:26 +00:00
Be [ 0 ] = GeoMagneticElements . X * 1e-2 ;
Be [ 1 ] = GeoMagneticElements . Y * 1e-2 ;
Be [ 2 ] = GeoMagneticElements . Z * 1e-2 ;
2011-01-23 18:03:59 +00:00
// ***********
return 0 ; // OK
}
void WorldMagModel : : Initialize ( )
{ // Sets default values for WMM subroutines.
// UPDATES : Ellip and MagneticModel
// Sets WGS-84 parameters
Ellip . a = 6378.137 ; // semi-major axis of the ellipsoid in km
Ellip . b = 6356.7523142 ; // semi-minor axis of the ellipsoid in km
Ellip . fla = 1 / 298.257223563 ; // flattening
Ellip . eps = sqrt ( 1 - ( Ellip . b * Ellip . b ) / ( Ellip . a * Ellip . a ) ) ; // first eccentricity
Ellip . epssq = ( Ellip . eps * Ellip . eps ) ; // first eccentricity squared
Ellip . re = 6371.2 ; // Earth's radius in km
// Sets Magnetic Model parameters
MagneticModel . nMax = WMM_MAX_MODEL_DEGREES ;
MagneticModel . nMaxSecVar = WMM_MAX_SECULAR_VARIATION_MODEL_DEGREES ;
MagneticModel . SecularVariationUsed = 0 ;
// Really, Really needs to be read from a file - out of date in 2015 at latest
MagneticModel . EditionDate = 5.7863328170559505e-307 ;
MagneticModel . epoch = 2010.0 ;
sprintf ( MagneticModel . ModelName , " WMM-2010 " ) ;
}
int WorldMagModel : : Geomag ( WMMtype_CoordSpherical * CoordSpherical , WMMtype_CoordGeodetic * CoordGeodetic , WMMtype_GeoMagneticElements * GeoMagneticElements )
/*
The main subroutine that calls a sequence of WMM sub - functions to calculate the magnetic field elements for a single point .
The function expects the model coefficients and point coordinates as input and returns the magnetic field elements and
their rate of change . Though , this subroutine can be called successively to calculate a time series , profile or grid
of magnetic field , these are better achieved by the subroutine WMM_Grid .
INPUT : Ellip
CoordSpherical
CoordGeodetic
TimedMagneticModel
OUTPUT : GeoMagneticElements
*/
{
WMMtype_MagneticResults MagneticResultsSph ;
WMMtype_MagneticResults MagneticResultsGeo ;
WMMtype_MagneticResults MagneticResultsSphVar ;
WMMtype_MagneticResults MagneticResultsGeoVar ;
WMMtype_LegendreFunction LegendreFunction ;
WMMtype_SphericalHarmonicVariables SphVariables ;
// Compute Spherical Harmonic variables
ComputeSphericalHarmonicVariables ( CoordSpherical , MagneticModel . nMax , & SphVariables ) ;
// Compute ALF
if ( AssociatedLegendreFunction ( CoordSpherical , MagneticModel . nMax , & LegendreFunction ) < 0 )
return - 1 ; // error
// Accumulate the spherical harmonic coefficients
Summation ( & LegendreFunction , & SphVariables , CoordSpherical , & MagneticResultsSph ) ;
// Sum the Secular Variation Coefficients
SecVarSummation ( & LegendreFunction , & SphVariables , CoordSpherical , & MagneticResultsSphVar ) ;
// Map the computed Magnetic fields to Geodeitic coordinates
RotateMagneticVector ( CoordSpherical , CoordGeodetic , & MagneticResultsSph , & MagneticResultsGeo ) ;
// Map the secular variation field components to Geodetic coordinates
RotateMagneticVector ( CoordSpherical , CoordGeodetic , & MagneticResultsSphVar , & MagneticResultsGeoVar ) ;
// Calculate the Geomagnetic elements, Equation 18 , WMM Technical report
CalculateGeoMagneticElements ( & MagneticResultsGeo , GeoMagneticElements ) ;
// Calculate the secular variation of each of the Geomagnetic elements
CalculateSecularVariation ( & MagneticResultsGeoVar , GeoMagneticElements ) ;
return 0 ; // OK
}
void WorldMagModel : : ComputeSphericalHarmonicVariables ( WMMtype_CoordSpherical * CoordSpherical , int nMax , WMMtype_SphericalHarmonicVariables * SphVariables )
{
/* Computes Spherical variables
Variables computed are ( a / r ) ^ ( n + 2 ) , cos_m ( lamda ) and sin_m ( lambda ) for spherical harmonic
summations . ( Equations 10 - 12 in the WMM Technical Report )
INPUT Ellip data structure with the following elements
float a ; semi - major axis of the ellipsoid
float b ; semi - minor axis of the ellipsoid
float fla ; flattening
float epssq ; first eccentricity squared
float eps ; first eccentricity
float re ; mean radius of ellipsoid
CoordSpherical A data structure with the following elements
float lambda ; ( longitude )
float phig ; ( geocentric latitude )
float r ; ( distance from the center of the ellipsoid )
nMax integer ( Maxumum degree of spherical harmonic secular model ) \
OUTPUT SphVariables Pointer to the data structure with the following elements
float RelativeRadiusPower [ WMM_MAX_MODEL_DEGREES + 1 ] ; [ earth_reference_radius_km sph . radius ] ^ n
float cos_mlambda [ WMM_MAX_MODEL_DEGREES + 1 ] ; cp ( m ) - cosine of ( mspherical coord . longitude )
float sin_mlambda [ WMM_MAX_MODEL_DEGREES + 1 ] ; sp ( m ) - sine of ( mspherical coord . longitude )
*/
double cos_lambda = cos ( DEG2RAD ( CoordSpherical - > lambda ) ) ;
double sin_lambda = sin ( DEG2RAD ( CoordSpherical - > lambda ) ) ;
/* for n = 0 ... model_order, compute (Radius of Earth / Spherica radius r)^(n+2)
for n 1. . nMax - 1 ( this is much faster than calling pow MAX_N + 1 times ) . */
SphVariables - > RelativeRadiusPower [ 0 ] = ( Ellip . re / CoordSpherical - > r ) * ( Ellip . re / CoordSpherical - > r ) ;
for ( int n = 1 ; n < = nMax ; n + + )
SphVariables - > RelativeRadiusPower [ n ] = SphVariables - > RelativeRadiusPower [ n - 1 ] * ( Ellip . re / CoordSpherical - > r ) ;
/*
Compute cos ( m * lambda ) , sin ( m * lambda ) for m = 0 . . . nMax
cos ( a + b ) = cos ( a ) * cos ( b ) - sin ( a ) * sin ( b )
sin ( a + b ) = cos ( a ) * sin ( b ) + sin ( a ) * cos ( b )
*/
SphVariables - > cos_mlambda [ 0 ] = 1.0 ;
SphVariables - > sin_mlambda [ 0 ] = 0.0 ;
SphVariables - > cos_mlambda [ 1 ] = cos_lambda ;
SphVariables - > sin_mlambda [ 1 ] = sin_lambda ;
for ( int m = 2 ; m < = nMax ; m + + )
{
SphVariables - > cos_mlambda [ m ] = SphVariables - > cos_mlambda [ m - 1 ] * cos_lambda - SphVariables - > sin_mlambda [ m - 1 ] * sin_lambda ;
SphVariables - > sin_mlambda [ m ] = SphVariables - > cos_mlambda [ m - 1 ] * sin_lambda + SphVariables - > sin_mlambda [ m - 1 ] * cos_lambda ;
}
}
int WorldMagModel : : AssociatedLegendreFunction ( WMMtype_CoordSpherical * CoordSpherical , int nMax , WMMtype_LegendreFunction * LegendreFunction )
{
/* Computes all of the Schmidt-semi normalized associated Legendre
functions up to degree nMax . If nMax < = 16 , function WMM_PcupLow is used .
Otherwise WMM_PcupHigh is called .
INPUT CoordSpherical A data structure with the following elements
float lambda ; ( longitude )
float phig ; ( geocentric latitude )
float r ; ( distance from the center of the ellipsoid )
nMax integer ( Maxumum degree of spherical harmonic secular model )
LegendreFunction Pointer to data structure with the following elements
float * Pcup ; ( pointer to store Legendre Function )
float * dPcup ; ( pointer to store Derivative of Lagendre function )
OUTPUT LegendreFunction Calculated Legendre variables in the data structure
*/
double sin_phi = sin ( DEG2RAD ( CoordSpherical - > phig ) ) ; // sin (geocentric latitude)
if ( nMax < = 16 | | ( 1 - fabs ( sin_phi ) ) < 1.0e-10 ) /* If nMax is less tha 16 or at the poles */
PcupLow ( LegendreFunction - > Pcup , LegendreFunction - > dPcup , sin_phi , nMax ) ;
else
{
if ( PcupHigh ( LegendreFunction - > Pcup , LegendreFunction - > dPcup , sin_phi , nMax ) < 0 )
return - 1 ; // error
}
return 0 ; // OK
}
void WorldMagModel : : Summation ( WMMtype_LegendreFunction * LegendreFunction ,
WMMtype_SphericalHarmonicVariables * SphVariables ,
WMMtype_CoordSpherical * CoordSpherical ,
WMMtype_MagneticResults * MagneticResults )
{
/* Computes Geomagnetic Field Elements X, Y and Z in Spherical coordinate system using spherical harmonic summation.
The vector Magnetic field is given by - grad V , where V is Geomagnetic scalar potential
The gradient in spherical coordinates is given by :
dV ^ 1 dV ^ 1 dV ^
grad V = - - r + - - - t + - - - - - - - - - - p
dr r dt r sin ( t ) dp
INPUT : LegendreFunction
MagneticModel
SphVariables
CoordSpherical
OUTPUT : MagneticResults
Manoj Nair , June , 2009 Manoj . C . Nair @ Noaa . Gov
*/
MagneticResults - > Bz = 0.0 ;
MagneticResults - > By = 0.0 ;
MagneticResults - > Bx = 0.0 ;
for ( int n = 1 ; n < = MagneticModel . nMax ; n + + )
{
for ( int m = 0 ; m < = n ; m + + )
{
int index = ( n * ( n + 1 ) / 2 + m ) ;
/* nMax (n+2) n m m m
Bz = - SUM ( a / r ) ( n + 1 ) SUM [ g cos ( m p ) + h sin ( m p ) ] P ( sin ( phi ) )
n = 1 m = 0 n n n */
/* Equation 12 in the WMM Technical report. Derivative with respect to radius.*/
MagneticResults - > Bz - =
SphVariables - > RelativeRadiusPower [ n ] *
( get_main_field_coeff_g ( index ) *
SphVariables - > cos_mlambda [ m ] + get_main_field_coeff_h ( index ) * SphVariables - > sin_mlambda [ m ] )
* ( double ) ( n + 1 ) * LegendreFunction - > Pcup [ index ] ;
/* 1 nMax (n+2) n m m m
By = SUM ( a / r ) ( m ) SUM [ g cos ( m p ) + h sin ( m p ) ] dP ( sin ( phi ) )
n = 1 m = 0 n n n */
/* Equation 11 in the WMM Technical report. Derivative with respect to longitude, divided by radius. */
MagneticResults - > By + =
SphVariables - > RelativeRadiusPower [ n ] *
( get_main_field_coeff_g ( index ) *
SphVariables - > sin_mlambda [ m ] - get_main_field_coeff_h ( index ) * SphVariables - > cos_mlambda [ m ] )
* ( double ) ( m ) * LegendreFunction - > Pcup [ index ] ;
/* nMax (n+2) n m m m
Bx = - SUM ( a / r ) SUM [ g cos ( m p ) + h sin ( m p ) ] dP ( sin ( phi ) )
n = 1 m = 0 n n n */
/* Equation 10 in the WMM Technical report. Derivative with respect to latitude, divided by radius. */
MagneticResults - > Bx - =
SphVariables - > RelativeRadiusPower [ n ] *
( get_main_field_coeff_g ( index ) *
SphVariables - > cos_mlambda [ m ] + get_main_field_coeff_h ( index ) * SphVariables - > sin_mlambda [ m ] )
* LegendreFunction - > dPcup [ index ] ;
}
}
double cos_phi = cos ( DEG2RAD ( CoordSpherical - > phig ) ) ;
if ( fabs ( cos_phi ) > 1.0e-10 )
{
MagneticResults - > By = MagneticResults - > By / cos_phi ;
}
else
{
/* Special calculation for component - By - at Geographic poles.
* If the user wants to avoid using this function , please make sure that
* the latitude is not exactly + / - 90. An option is to make use the function
* WMM_CheckGeographicPoles .
*/
SummationSpecial ( SphVariables , CoordSpherical , MagneticResults ) ;
}
}
void WorldMagModel : : SecVarSummation ( WMMtype_LegendreFunction * LegendreFunction ,
WMMtype_SphericalHarmonicVariables * SphVariables ,
WMMtype_CoordSpherical * CoordSpherical ,
WMMtype_MagneticResults * MagneticResults )
{
/*This Function sums the secular variation coefficients to get the secular variation of the Magnetic vector.
INPUT : LegendreFunction
MagneticModel
SphVariables
CoordSpherical
OUTPUT : MagneticResults
*/
MagneticModel . SecularVariationUsed = true ;
MagneticResults - > Bz = 0.0 ;
MagneticResults - > By = 0.0 ;
MagneticResults - > Bx = 0.0 ;
for ( int n = 1 ; n < = MagneticModel . nMaxSecVar ; n + + )
{
for ( int m = 0 ; m < = n ; m + + )
{
int index = ( n * ( n + 1 ) / 2 + m ) ;
/* nMax (n+2) n m m m
Bz = - SUM ( a / r ) ( n + 1 ) SUM [ g cos ( m p ) + h sin ( m p ) ] P ( sin ( phi ) )
n = 1 m = 0 n n n */
/* Derivative with respect to radius.*/
MagneticResults - > Bz - =
SphVariables - > RelativeRadiusPower [ n ] *
( get_secular_var_coeff_g ( index ) *
SphVariables - > cos_mlambda [ m ] + get_secular_var_coeff_h ( index ) * SphVariables - > sin_mlambda [ m ] )
* ( double ) ( n + 1 ) * LegendreFunction - > Pcup [ index ] ;
/* 1 nMax (n+2) n m m m
By = SUM ( a / r ) ( m ) SUM [ g cos ( m p ) + h sin ( m p ) ] dP ( sin ( phi ) )
n = 1 m = 0 n n n */
/* Derivative with respect to longitude, divided by radius. */
MagneticResults - > By + =
SphVariables - > RelativeRadiusPower [ n ] *
( get_secular_var_coeff_g ( index ) *
SphVariables - > sin_mlambda [ m ] - get_secular_var_coeff_h ( index ) * SphVariables - > cos_mlambda [ m ] )
* ( double ) ( m ) * LegendreFunction - > Pcup [ index ] ;
/* nMax (n+2) n m m m
Bx = - SUM ( a / r ) SUM [ g cos ( m p ) + h sin ( m p ) ] dP ( sin ( phi ) )
n = 1 m = 0 n n n */
/* Derivative with respect to latitude, divided by radius. */
MagneticResults - > Bx - =
SphVariables - > RelativeRadiusPower [ n ] *
( get_secular_var_coeff_g ( index ) *
SphVariables - > cos_mlambda [ m ] + get_secular_var_coeff_h ( index ) * SphVariables - > sin_mlambda [ m ] )
* LegendreFunction - > dPcup [ index ] ;
}
}
double cos_phi = cos ( DEG2RAD ( CoordSpherical - > phig ) ) ;
if ( fabs ( cos_phi ) > 1.0e-10 )
{
MagneticResults - > By = MagneticResults - > By / cos_phi ;
}
else
{ /* Special calculation for component By at Geographic poles */
SecVarSummationSpecial ( SphVariables , CoordSpherical , MagneticResults ) ;
}
}
void WorldMagModel : : RotateMagneticVector ( WMMtype_CoordSpherical * CoordSpherical ,
WMMtype_CoordGeodetic * CoordGeodetic ,
WMMtype_MagneticResults * MagneticResultsSph ,
WMMtype_MagneticResults * MagneticResultsGeo )
{
/* Rotate the Magnetic Vectors to Geodetic Coordinates
Manoj Nair , June , 2009 Manoj . C . Nair @ Noaa . Gov
Equation 16 , WMM Technical report
INPUT : CoordSpherical : Data structure WMMtype_CoordSpherical with the following elements
float lambda ; ( longitude )
float phig ; ( geocentric latitude )
float r ; ( distance from the center of the ellipsoid )
CoordGeodetic : Data structure WMMtype_CoordGeodetic with the following elements
float lambda ; ( longitude )
float phi ; ( geodetic latitude )
float HeightAboveEllipsoid ; ( height above the ellipsoid ( HaE ) )
float HeightAboveGeoid ; ( height above the Geoid )
MagneticResultsSph : Data structure WMMtype_MagneticResults with the following elements
float Bx ; North
float By ; East
float Bz ; Down
OUTPUT : MagneticResultsGeo Pointer to the data structure WMMtype_MagneticResults , with the following elements
float Bx ; North
float By ; East
float Bz ; Down
*/
/* Difference between the spherical and Geodetic latitudes */
double Psi = DEG2RAD ( CoordSpherical - > phig - CoordGeodetic - > phi ) ;
/* Rotate spherical field components to the Geodeitic system */
MagneticResultsGeo - > Bz = MagneticResultsSph - > Bx * sin ( Psi ) + MagneticResultsSph - > Bz * cos ( Psi ) ;
MagneticResultsGeo - > Bx = MagneticResultsSph - > Bx * cos ( Psi ) - MagneticResultsSph - > Bz * sin ( Psi ) ;
MagneticResultsGeo - > By = MagneticResultsSph - > By ;
}
void WorldMagModel : : CalculateGeoMagneticElements ( WMMtype_MagneticResults * MagneticResultsGeo , WMMtype_GeoMagneticElements * GeoMagneticElements )
{
/* Calculate all the Geomagnetic elements from X,Y and Z components
INPUT MagneticResultsGeo Pointer to data structure with the following elements
float Bx ; ( North )
float By ; ( East )
float Bz ; ( Down )
OUTPUT GeoMagneticElements Pointer to data structure with the following elements
float Decl ; ( Angle between the magnetic field vector and true north , positive east )
float Incl ; Angle between the magnetic field vector and the horizontal plane , positive down
float F ; Magnetic Field Strength
float H ; Horizontal Magnetic Field Strength
float X ; Northern component of the magnetic field vector
float Y ; Eastern component of the magnetic field vector
float Z ; Downward component of the magnetic field vector
*/
GeoMagneticElements - > X = MagneticResultsGeo - > Bx ;
GeoMagneticElements - > Y = MagneticResultsGeo - > By ;
GeoMagneticElements - > Z = MagneticResultsGeo - > Bz ;
GeoMagneticElements - > H = sqrt ( MagneticResultsGeo - > Bx * MagneticResultsGeo - > Bx + MagneticResultsGeo - > By * MagneticResultsGeo - > By ) ;
GeoMagneticElements - > F = sqrt ( GeoMagneticElements - > H * GeoMagneticElements - > H + MagneticResultsGeo - > Bz * MagneticResultsGeo - > Bz ) ;
GeoMagneticElements - > Decl = RAD2DEG ( atan2 ( GeoMagneticElements - > Y , GeoMagneticElements - > X ) ) ;
GeoMagneticElements - > Incl = RAD2DEG ( atan2 ( GeoMagneticElements - > Z , GeoMagneticElements - > H ) ) ;
}
void WorldMagModel : : CalculateSecularVariation ( WMMtype_MagneticResults * MagneticVariation , WMMtype_GeoMagneticElements * MagneticElements )
{
/* This takes the Magnetic Variation in x, y, and z and uses it to calculate the secular variation of each of the Geomagnetic elements.
INPUT MagneticVariation Data structure with the following elements
float Bx ; ( North )
float By ; ( East )
float Bz ; ( Down )
OUTPUT MagneticElements Pointer to the data structure with the following elements updated
float Decldot ; Yearly Rate of change in declination
float Incldot ; Yearly Rate of change in inclination
float Fdot ; Yearly rate of change in Magnetic field strength
float Hdot ; Yearly rate of change in horizontal field strength
float Xdot ; Yearly rate of change in the northern component
float Ydot ; Yearly rate of change in the eastern component
float Zdot ; Yearly rate of change in the downward component
float GVdot ; Yearly rate of chnage in grid variation
*/
MagneticElements - > Xdot = MagneticVariation - > Bx ;
MagneticElements - > Ydot = MagneticVariation - > By ;
MagneticElements - > Zdot = MagneticVariation - > Bz ;
MagneticElements - > Hdot = ( MagneticElements - > X * MagneticElements - > Xdot + MagneticElements - > Y * MagneticElements - > Ydot ) / MagneticElements - > H ; //See equation 19 in the WMM technical report
MagneticElements - > Fdot =
( MagneticElements - > X * MagneticElements - > Xdot +
MagneticElements - > Y * MagneticElements - > Ydot + MagneticElements - > Z * MagneticElements - > Zdot ) / MagneticElements - > F ;
MagneticElements - > Decldot =
180.0 / M_PI * ( MagneticElements - > X * MagneticElements - > Ydot -
MagneticElements - > Y * MagneticElements - > Xdot ) / ( MagneticElements - > H * MagneticElements - > H ) ;
MagneticElements - > Incldot =
180.0 / M_PI * ( MagneticElements - > H * MagneticElements - > Zdot -
MagneticElements - > Z * MagneticElements - > Hdot ) / ( MagneticElements - > F * MagneticElements - > F ) ;
MagneticElements - > GVdot = MagneticElements - > Decldot ;
}
int WorldMagModel : : PcupHigh ( double * Pcup , double * dPcup , double x , int nMax )
{
/* This function evaluates all of the Schmidt-semi normalized associated Legendre
functions up to degree nMax . The functions are initially scaled by
10 ^ 280 sin ^ m in order to minimize the effects of underflow at large m
near the poles ( see Holmes and Featherstone 2002 , J . Geodesy , 76 , 279 - 299 ) .
Note that this function performs the same operation as WMM_PcupLow .
However this function also can be used for high degree ( large nMax ) models .
Calling Parameters :
INPUT
nMax : Maximum spherical harmonic degree to compute .
x : cos ( colatitude ) or sin ( latitude ) .
OUTPUT
Pcup : A vector of all associated Legendgre polynomials evaluated at
x up to nMax . The lenght must by greater or equal to ( nMax + 1 ) * ( nMax + 2 ) / 2.
dPcup : Derivative of Pcup ( x ) with respect to latitude
Notes :
Adopted from the FORTRAN code written by Mark Wieczorek September 25 , 2005.
Manoj Nair , Nov , 2009 Manoj . C . Nair @ Noaa . Gov
Change from the previous version
The prevous version computes the derivatives as
dP ( n , m ) ( x ) / dx , where x = sin ( latitude ) ( or cos ( colatitude ) ) .
However , the WMM Geomagnetic routines requires dP ( n , m ) ( x ) / dlatitude .
Hence the derivatives are multiplied by sin ( latitude ) .
Removed the options for CS phase and normalizations .
Note : In geomagnetism , the derivatives of ALF are usually found with
respect to the colatitudes . Here the derivatives are found with respect
to the latitude . The difference is a sign reversal for the derivative of
the Associated Legendre Functions .
The derivates can ' t be computed for latitude = | 90 | degrees .
*/
double f1 [ WMM_NUMPCUP ] ;
double f2 [ WMM_NUMPCUP ] ;
double PreSqr [ WMM_NUMPCUP ] ;
int m ;
if ( fabs ( x ) = = 1.0 )
{
// printf("Error in PcupHigh: derivative cannot be calculated at poles\n");
return - 2 ;
}
double scalef = 1.0e-280 ;
for ( int n = 0 ; n < = 2 * nMax + 1 ; + + n )
PreSqr [ n ] = sqrt ( ( double ) ( n ) ) ;
int k = 2 ;
for ( int n = 2 ; n < = nMax ; n + + )
{
k = k + 1 ;
f1 [ k ] = ( double ) ( 2 * n - 1 ) / n ;
f2 [ k ] = ( double ) ( n - 1 ) / n ;
for ( int m = 1 ; m < = n - 2 ; m + + )
{
k = k + 1 ;
f1 [ k ] = ( double ) ( 2 * n - 1 ) / PreSqr [ n + m ] / PreSqr [ n - m ] ;
f2 [ k ] = PreSqr [ n - m - 1 ] * PreSqr [ n + m - 1 ] / PreSqr [ n + m ] / PreSqr [ n - m ] ;
}
k = k + 2 ;
}
/*z = sin (geocentric latitude) */
double z = sqrt ( ( 1.0 - x ) * ( 1.0 + x ) ) ;
double pm2 = 1.0 ;
Pcup [ 0 ] = 1.0 ;
dPcup [ 0 ] = 0.0 ;
if ( nMax = = 0 )
return - 3 ;
double pm1 = x ;
Pcup [ 1 ] = pm1 ;
dPcup [ 1 ] = z ;
k = 1 ;
for ( int n = 2 ; n < = nMax ; n + + )
{
k = k + n ;
double plm = f1 [ k ] * x * pm1 - f2 [ k ] * pm2 ;
Pcup [ k ] = plm ;
dPcup [ k ] = ( double ) ( n ) * ( pm1 - x * plm ) / z ;
pm2 = pm1 ;
pm1 = plm ;
}
double pmm = PreSqr [ 2 ] * scalef ;
double rescalem = 1.0 / scalef ;
int kstart = 0 ;
for ( m = 1 ; m < = nMax - 1 ; + + m )
{
rescalem = rescalem * z ;
/* Calculate Pcup(m,m) */
kstart = kstart + m + 1 ;
pmm = pmm * PreSqr [ 2 * m + 1 ] / PreSqr [ 2 * m ] ;
Pcup [ kstart ] = pmm * rescalem / PreSqr [ 2 * m + 1 ] ;
dPcup [ kstart ] = - ( ( double ) ( m ) * x * Pcup [ kstart ] / z ) ;
pm2 = pmm / PreSqr [ 2 * m + 1 ] ;
/* Calculate Pcup(m+1,m) */
k = kstart + m + 1 ;
pm1 = x * PreSqr [ 2 * m + 1 ] * pm2 ;
Pcup [ k ] = pm1 * rescalem ;
dPcup [ k ] = ( ( pm2 * rescalem ) * PreSqr [ 2 * m + 1 ] - x * ( double ) ( m + 1 ) * Pcup [ k ] ) / z ;
/* Calculate Pcup(n,m) */
for ( int n = m + 2 ; n < = nMax ; + + n )
{
k = k + n ;
double plm = x * f1 [ k ] * pm1 - f2 [ k ] * pm2 ;
Pcup [ k ] = plm * rescalem ;
dPcup [ k ] = ( PreSqr [ n + m ] * PreSqr [ n - m ] * ( pm1 * rescalem ) - ( double ) ( n ) * x * Pcup [ k ] ) / z ;
pm2 = pm1 ;
pm1 = plm ;
}
}
/* Calculate Pcup(nMax,nMax) */
rescalem = rescalem * z ;
kstart = kstart + m + 1 ;
pmm = pmm / PreSqr [ 2 * nMax ] ;
Pcup [ kstart ] = pmm * rescalem ;
dPcup [ kstart ] = - ( double ) ( nMax ) * x * Pcup [ kstart ] / z ;
// *********
return 0 ; // OK
}
void WorldMagModel : : PcupLow ( double * Pcup , double * dPcup , double x , int nMax )
{
/* This function evaluates all of the Schmidt-semi normalized associated Legendre functions up to degree nMax.
Calling Parameters :
INPUT
nMax : Maximum spherical harmonic degree to compute .
x : cos ( colatitude ) or sin ( latitude ) .
OUTPUT
Pcup : A vector of all associated Legendgre polynomials evaluated at
x up to nMax .
dPcup : Derivative of Pcup ( x ) with respect to latitude
Notes : Overflow may occur if nMax > 20 , especially for high - latitudes .
Use WMM_PcupHigh for large nMax .
Writted by Manoj Nair , June , 2009 . Manoj . C . Nair @ Noaa . Gov .
Note : In geomagnetism , the derivatives of ALF are usually found with
respect to the colatitudes . Here the derivatives are found with respect
to the latitude . The difference is a sign reversal for the derivative of
the Associated Legendre Functions .
*/
double schmidtQuasiNorm [ WMM_NUMPCUP ] ;
Pcup [ 0 ] = 1.0 ;
dPcup [ 0 ] = 0.0 ;
/*sin (geocentric latitude) - sin_phi */
double z = sqrt ( ( 1.0 - x ) * ( 1.0 + x ) ) ;
/* First, Compute the Gauss-normalized associated Legendre functions */
for ( int n = 1 ; n < = nMax ; n + + )
{
for ( int m = 0 ; m < = n ; m + + )
{
int index = ( n * ( n + 1 ) / 2 + m ) ;
if ( n = = m )
{
int index1 = ( n - 1 ) * n / 2 + m - 1 ;
Pcup [ index ] = z * Pcup [ index1 ] ;
dPcup [ index ] = z * dPcup [ index1 ] + x * Pcup [ index1 ] ;
}
else
if ( n = = 1 & & m = = 0 )
{
int index1 = ( n - 1 ) * n / 2 + m ;
Pcup [ index ] = x * Pcup [ index1 ] ;
dPcup [ index ] = x * dPcup [ index1 ] - z * Pcup [ index1 ] ;
}
else
if ( n > 1 & & n ! = m )
{
int index1 = ( n - 2 ) * ( n - 1 ) / 2 + m ;
int index2 = ( n - 1 ) * n / 2 + m ;
if ( m > n - 2 )
{
Pcup [ index ] = x * Pcup [ index2 ] ;
dPcup [ index ] = x * dPcup [ index2 ] - z * Pcup [ index2 ] ;
}
else
{
double k = ( double ) ( ( ( n - 1 ) * ( n - 1 ) ) - ( m * m ) ) / ( double ) ( ( 2 * n - 1 ) * ( 2 * n - 3 ) ) ;
Pcup [ index ] = x * Pcup [ index2 ] - k * Pcup [ index1 ] ;
dPcup [ index ] = x * dPcup [ index2 ] - z * Pcup [ index2 ] - k * dPcup [ index1 ] ;
}
}
}
}
/*Compute the ration between the Gauss-normalized associated Legendre
functions and the Schmidt quasi - normalized version . This is equivalent to
sqrt ( ( m = = 0 ? 1 : 2 ) * ( n - m ) ! / ( n + m ! ) ) * ( 2 n - 1 ) ! ! / ( n - m ) ! */
schmidtQuasiNorm [ 0 ] = 1.0 ;
for ( int n = 1 ; n < = nMax ; n + + )
{
int index = ( n * ( n + 1 ) / 2 ) ;
int index1 = ( n - 1 ) * n / 2 ;
/* for m = 0 */
schmidtQuasiNorm [ index ] = schmidtQuasiNorm [ index1 ] * ( double ) ( 2 * n - 1 ) / ( double ) n ;
for ( int m = 1 ; m < = n ; m + + )
{
index = ( n * ( n + 1 ) / 2 + m ) ;
index1 = ( n * ( n + 1 ) / 2 + m - 1 ) ;
schmidtQuasiNorm [ index ] = schmidtQuasiNorm [ index1 ] * sqrt ( ( double ) ( ( n - m + 1 ) * ( m = = 1 ? 2 : 1 ) ) / ( double ) ( n + m ) ) ;
}
}
/* Converts the Gauss-normalized associated Legendre
functions to the Schmidt quasi - normalized version using pre - computed
relation stored in the variable schmidtQuasiNorm */
for ( int n = 1 ; n < = nMax ; n + + )
{
for ( int m = 0 ; m < = n ; m + + )
{
int index = ( n * ( n + 1 ) / 2 + m ) ;
Pcup [ index ] = Pcup [ index ] * schmidtQuasiNorm [ index ] ;
dPcup [ index ] = - dPcup [ index ] * schmidtQuasiNorm [ index ] ;
/* The sign is changed since the new WMM routines use derivative with respect to latitude insted of co-latitude */
}
}
}
void WorldMagModel : : SummationSpecial ( WMMtype_SphericalHarmonicVariables * SphVariables , WMMtype_CoordSpherical * CoordSpherical , WMMtype_MagneticResults * MagneticResults )
{
/* Special calculation for the component By at Geographic poles.
Manoj Nair , June , 2009 manoj . c . nair @ noaa . gov
INPUT : MagneticModel
SphVariables
CoordSpherical
OUTPUT : MagneticResults
CALLS : none
See Section 1.4 , " SINGULARITIES AT THE GEOGRAPHIC POLES " , WMM Technical report
*/
double PcupS [ WMM_NUMPCUPS ] ;
PcupS [ 0 ] = 1 ;
double schmidtQuasiNorm1 = 1.0 ;
MagneticResults - > By = 0.0 ;
double sin_phi = sin ( DEG2RAD ( CoordSpherical - > phig ) ) ;
for ( int n = 1 ; n < = MagneticModel . nMax ; n + + )
{
/*Compute the ration between the Gauss-normalized associated Legendre
functions and the Schmidt quasi - normalized version . This is equivalent to
sqrt ( ( m = = 0 ? 1 : 2 ) * ( n - m ) ! / ( n + m ! ) ) * ( 2 n - 1 ) ! ! / ( n - m ) ! */
int index = ( n * ( n + 1 ) / 2 + 1 ) ;
double schmidtQuasiNorm2 = schmidtQuasiNorm1 * ( double ) ( 2 * n - 1 ) / ( double ) n ;
double schmidtQuasiNorm3 = schmidtQuasiNorm2 * sqrt ( ( double ) ( n * 2 ) / ( double ) ( n + 1 ) ) ;
schmidtQuasiNorm1 = schmidtQuasiNorm2 ;
if ( n = = 1 )
{
PcupS [ n ] = PcupS [ n - 1 ] ;
}
else
{
double k = ( double ) ( ( ( n - 1 ) * ( n - 1 ) ) - 1 ) / ( double ) ( ( 2 * n - 1 ) * ( 2 * n - 3 ) ) ;
PcupS [ n ] = sin_phi * PcupS [ n - 1 ] - k * PcupS [ n - 2 ] ;
}
/* 1 nMax (n+2) n m m m
By = SUM ( a / r ) ( m ) SUM [ g cos ( m p ) + h sin ( m p ) ] dP ( sin ( phi ) )
n = 1 m = 0 n n n */
/* Equation 11 in the WMM Technical report. Derivative with respect to longitude, divided by radius. */
MagneticResults - > By + =
SphVariables - > RelativeRadiusPower [ n ] *
( get_main_field_coeff_g ( index ) *
SphVariables - > sin_mlambda [ 1 ] - get_main_field_coeff_h ( index ) * SphVariables - > cos_mlambda [ 1 ] )
* PcupS [ n ] * schmidtQuasiNorm3 ;
}
}
void WorldMagModel : : SecVarSummationSpecial ( WMMtype_SphericalHarmonicVariables * SphVariables , WMMtype_CoordSpherical * CoordSpherical , WMMtype_MagneticResults * MagneticResults )
{
/*Special calculation for the secular variation summation at the poles.
INPUT : MagneticModel
SphVariables
CoordSpherical
OUTPUT : MagneticResults
*/
double PcupS [ WMM_NUMPCUPS ] ;
PcupS [ 0 ] = 1 ;
double schmidtQuasiNorm1 = 1.0 ;
MagneticResults - > By = 0.0 ;
double sin_phi = sin ( DEG2RAD ( CoordSpherical - > phig ) ) ;
for ( int n = 1 ; n < = MagneticModel . nMaxSecVar ; n + + )
{
int index = ( n * ( n + 1 ) / 2 + 1 ) ;
double schmidtQuasiNorm2 = schmidtQuasiNorm1 * ( double ) ( 2 * n - 1 ) / ( double ) n ;
double schmidtQuasiNorm3 = schmidtQuasiNorm2 * sqrt ( ( double ) ( n * 2 ) / ( double ) ( n + 1 ) ) ;
schmidtQuasiNorm1 = schmidtQuasiNorm2 ;
if ( n = = 1 )
{
PcupS [ n ] = PcupS [ n - 1 ] ;
}
else
{
double k = ( double ) ( ( ( n - 1 ) * ( n - 1 ) ) - 1 ) / ( double ) ( ( 2 * n - 1 ) * ( 2 * n - 3 ) ) ;
PcupS [ n ] = sin_phi * PcupS [ n - 1 ] - k * PcupS [ n - 2 ] ;
}
/* 1 nMax (n+2) n m m m
By = SUM ( a / r ) ( m ) SUM [ g cos ( m p ) + h sin ( m p ) ] dP ( sin ( phi ) )
n = 1 m = 0 n n n */
/* Derivative with respect to longitude, divided by radius. */
MagneticResults - > By + =
SphVariables - > RelativeRadiusPower [ n ] *
( get_secular_var_coeff_g ( index ) *
SphVariables - > sin_mlambda [ 1 ] - get_secular_var_coeff_h ( index ) * SphVariables - > cos_mlambda [ 1 ] )
* PcupS [ n ] * schmidtQuasiNorm3 ;
}
}
// brief Comput the MainFieldCoeffH accounting for the date
double WorldMagModel : : get_main_field_coeff_g ( int index )
{
if ( index > = WMM_NUMTERMS )
return 0 ;
double coeff = CoeffFile [ index ] [ 2 ] ;
int a = MagneticModel . nMaxSecVar ;
int b = ( a * ( a + 1 ) / 2 + a ) ;
for ( int n = 1 ; n < = MagneticModel . nMax ; n + + )
{
for ( int m = 0 ; m < = n ; m + + )
{
int sum_index = ( n * ( n + 1 ) / 2 + m ) ;
/* Hacky for now, will solve for which conditions need summing analytically */
if ( sum_index ! = index )
continue ;
if ( index < = b )
coeff + = ( decimal_date - MagneticModel . epoch ) * get_secular_var_coeff_g ( sum_index ) ;
}
}
return coeff ;
}
double WorldMagModel : : get_main_field_coeff_h ( int index )
{
if ( index > = WMM_NUMTERMS )
return 0 ;
double coeff = CoeffFile [ index ] [ 3 ] ;
int a = MagneticModel . nMaxSecVar ;
int b = ( a * ( a + 1 ) / 2 + a ) ;
for ( int n = 1 ; n < = MagneticModel . nMax ; n + + )
{
for ( int m = 0 ; m < = n ; m + + )
{
int sum_index = ( n * ( n + 1 ) / 2 + m ) ;
/* Hacky for now, will solve for which conditions need summing analytically */
if ( sum_index ! = index )
continue ;
if ( index < = b )
coeff + = ( decimal_date - MagneticModel . epoch ) * get_secular_var_coeff_h ( sum_index ) ;
}
}
return coeff ;
}
double WorldMagModel : : get_secular_var_coeff_g ( int index )
{
if ( index > = WMM_NUMTERMS )
return 0 ;
return CoeffFile [ index ] [ 4 ] ;
}
double WorldMagModel : : get_secular_var_coeff_h ( int index )
{
if ( index > = WMM_NUMTERMS )
return 0 ;
return CoeffFile [ index ] [ 5 ] ;
}
int WorldMagModel : : DateToYear ( int month , int day , int year )
{
// Converts a given calendar date into a decimal year
int temp = 0 ; // Total number of days
int MonthDays [ 13 ] = { 0 , 31 , 28 , 31 , 30 , 31 , 30 , 31 , 31 , 30 , 31 , 30 , 31 } ;
int ExtraDay = 0 ;
if ( ( year % 4 = = 0 & & year % 100 ! = 0 ) | | ( year % 400 = = 0 ) )
ExtraDay = 1 ;
MonthDays [ 2 ] + = ExtraDay ;
/******************Validation********************************/
if ( month < = 0 | | month > 12 )
return - 1 ; // error
if ( day < = 0 | | day > MonthDays [ month ] )
return - 2 ; // error
/****************Calculation of t***************************/
for ( int i = 1 ; i < = month ; i + + )
temp + = MonthDays [ i - 1 ] ;
temp + = day ;
decimal_date = year + ( temp - 1 ) / ( 365.0 + ExtraDay ) ;
return 0 ; // OK
}
void WorldMagModel : : GeodeticToSpherical ( WMMtype_CoordGeodetic * CoordGeodetic , WMMtype_CoordSpherical * CoordSpherical )
{
// Converts Geodetic coordinates to Spherical coordinates
// Convert geodetic coordinates, (defined by the WGS-84
// reference ellipsoid), to Earth Centered Earth Fixed Cartesian
// coordinates, and then to spherical coordinates.
double CosLat = cos ( DEG2RAD ( CoordGeodetic - > phi ) ) ;
double SinLat = sin ( DEG2RAD ( CoordGeodetic - > phi ) ) ;
// compute the local radius of curvature on the WGS-84 reference ellipsoid
double rc = Ellip . a / sqrt ( 1.0 - Ellip . epssq * SinLat * SinLat ) ;
// compute ECEF Cartesian coordinates of specified point (for longitude=0)
double xp = ( rc + CoordGeodetic - > HeightAboveEllipsoid ) * CosLat ;
double zp = ( rc * ( 1.0 - Ellip . epssq ) + CoordGeodetic - > HeightAboveEllipsoid ) * SinLat ;
// compute spherical radius and angle lambda and phi of specified point
CoordSpherical - > r = sqrt ( xp * xp + zp * zp ) ;
CoordSpherical - > phig = RAD2DEG ( asin ( zp / CoordSpherical - > r ) ) ; // geocentric latitude
CoordSpherical - > lambda = CoordGeodetic - > lambda ; // longitude
}
}