1
0
mirror of https://github.com/doitsujin/dxvk.git synced 2024-12-14 00:48:44 +01:00
dxvk/src/dxgi/dxgi_presenter.cpp

546 lines
20 KiB
C++
Raw Normal View History

#include "dxgi_presenter.h"
#include "../spirv/spirv_module.h"
namespace dxvk {
DxgiPresenter::DxgiPresenter(
const Rc<DxvkDevice>& device,
HWND window)
: m_device (device),
m_context (device->createContext()) {
// Create Vulkan surface for the window
HINSTANCE instance = reinterpret_cast<HINSTANCE>(
GetWindowLongPtr(window, GWLP_HINSTANCE));
m_surface = m_device->adapter()->createSurface(instance, window);
// Reset options for the swap chain itself. We will
// create a swap chain object before presentation.
m_options.preferredSurfaceFormat = { VK_FORMAT_UNDEFINED, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR };
m_options.preferredPresentMode = VK_PRESENT_MODE_FIFO_KHR;
m_options.preferredBufferSize = { 0u, 0u };
// Sampler for presentation
DxvkSamplerCreateInfo samplerInfo;
samplerInfo.magFilter = VK_FILTER_NEAREST;
samplerInfo.minFilter = VK_FILTER_NEAREST;
samplerInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST;
samplerInfo.mipmapLodBias = 0.0f;
samplerInfo.mipmapLodMin = 0.0f;
samplerInfo.mipmapLodMax = 0.0f;
samplerInfo.useAnisotropy = VK_FALSE;
samplerInfo.maxAnisotropy = 1.0f;
samplerInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER;
samplerInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER;
samplerInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER;
samplerInfo.compareToDepth = VK_FALSE;
samplerInfo.compareOp = VK_COMPARE_OP_ALWAYS;
samplerInfo.borderColor = VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK;
samplerInfo.usePixelCoord = VK_FALSE;
m_samplerFitting = m_device->createSampler(samplerInfo);
samplerInfo.magFilter = VK_FILTER_LINEAR;
samplerInfo.minFilter = VK_FILTER_LINEAR;
m_samplerScaling = m_device->createSampler(samplerInfo);
// Set up context state. The shader bindings and the
// constant state objects will never be modified.
DxvkInputAssemblyState iaState;
iaState.primitiveTopology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP;
iaState.primitiveRestart = VK_FALSE;
iaState.patchVertexCount = 0;
m_context->setInputAssemblyState(iaState);
m_context->setInputLayout(
2017-12-08 00:44:58 +01:00
0, nullptr, 0, nullptr);
DxvkRasterizerState rsState;
rsState.enableDepthClamp = VK_FALSE;
rsState.enableDiscard = VK_FALSE;
rsState.polygonMode = VK_POLYGON_MODE_FILL;
rsState.cullMode = VK_CULL_MODE_BACK_BIT;
rsState.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
rsState.depthBiasEnable = VK_FALSE;
rsState.depthBiasConstant = 0.0f;
rsState.depthBiasClamp = 0.0f;
rsState.depthBiasSlope = 0.0f;
m_context->setRasterizerState(rsState);
DxvkMultisampleState msState;
msState.sampleMask = 0xffffffff;
msState.enableAlphaToCoverage = VK_FALSE;
msState.enableAlphaToOne = VK_FALSE;
m_context->setMultisampleState(msState);
VkStencilOpState stencilOp;
stencilOp.failOp = VK_STENCIL_OP_KEEP;
stencilOp.passOp = VK_STENCIL_OP_KEEP;
stencilOp.depthFailOp = VK_STENCIL_OP_KEEP;
stencilOp.compareOp = VK_COMPARE_OP_ALWAYS;
stencilOp.compareMask = 0xFFFFFFFF;
stencilOp.writeMask = 0xFFFFFFFF;
stencilOp.reference = 0;
DxvkDepthStencilState dsState;
2017-12-08 01:06:48 +01:00
dsState.enableDepthTest = VK_FALSE;
dsState.enableDepthWrite = VK_FALSE;
dsState.enableDepthBounds = VK_FALSE;
dsState.enableStencilTest = VK_FALSE;
dsState.depthCompareOp = VK_COMPARE_OP_ALWAYS;
dsState.stencilOpFront = stencilOp;
dsState.stencilOpBack = stencilOp;
dsState.depthBoundsMin = 0.0f;
dsState.depthBoundsMax = 1.0f;
m_context->setDepthStencilState(dsState);
2017-12-08 01:06:48 +01:00
DxvkLogicOpState loState;
loState.enableLogicOp = VK_FALSE;
loState.logicOp = VK_LOGIC_OP_NO_OP;
m_context->setLogicOpState(loState);
m_blendMode.enableBlending = VK_FALSE;
m_blendMode.colorSrcFactor = VK_BLEND_FACTOR_ONE;
m_blendMode.colorDstFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
m_blendMode.colorBlendOp = VK_BLEND_OP_ADD;
m_blendMode.alphaSrcFactor = VK_BLEND_FACTOR_ONE;
m_blendMode.alphaDstFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
m_blendMode.alphaBlendOp = VK_BLEND_OP_ADD;
m_blendMode.writeMask = VK_COLOR_COMPONENT_R_BIT
| VK_COLOR_COMPONENT_G_BIT
| VK_COLOR_COMPONENT_B_BIT
| VK_COLOR_COMPONENT_A_BIT;
m_context->bindShader(
VK_SHADER_STAGE_VERTEX_BIT,
this->createVertexShader());
m_context->bindShader(
VK_SHADER_STAGE_FRAGMENT_BIT,
this->createFragmentShader());
m_hud = hud::Hud::createHud(m_device);
}
DxgiPresenter::~DxgiPresenter() {
m_device->waitForIdle();
}
void DxgiPresenter::initBackBuffer(const Rc<DxvkImage>& image) {
VkImageSubresourceRange sr;
sr.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
sr.baseMipLevel = 0;
sr.levelCount = image->info().mipLevels;
sr.baseArrayLayer = 0;
sr.layerCount = image->info().numLayers;
m_context->beginRecording(
m_device->createCommandList());
m_context->initImage(image, sr);
m_device->submitCommandList(
m_context->endRecording(),
nullptr, nullptr);
}
void DxgiPresenter::presentImage() {
if (m_hud != nullptr) {
m_hud->render({
m_options.preferredBufferSize.width,
m_options.preferredBufferSize.height,
});
}
const bool fitSize =
m_backBuffer->info().extent.width == m_options.preferredBufferSize.width
&& m_backBuffer->info().extent.height == m_options.preferredBufferSize.height;
m_context->beginRecording(
m_device->createCommandList());
VkImageSubresourceLayers resolveSubresources;
resolveSubresources.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
resolveSubresources.mipLevel = 0;
resolveSubresources.baseArrayLayer = 0;
resolveSubresources.layerCount = 1;
if (m_backBufferResolve != nullptr) {
m_context->resolveImage(
m_backBufferResolve, resolveSubresources,
m_backBuffer, resolveSubresources,
VK_FORMAT_UNDEFINED);
}
const DxvkSwapSemaphores sem = m_swapchain->getSemaphorePair();
auto framebuffer = m_swapchain->getFramebuffer(sem.acquireSync);
auto framebufferSize = framebuffer->size();
m_context->bindFramebuffer(framebuffer);
VkViewport viewport;
viewport.x = 0.0f;
viewport.y = 0.0f;
viewport.width = static_cast<float>(framebufferSize.width);
viewport.height = static_cast<float>(framebufferSize.height);
viewport.minDepth = 0.0f;
viewport.maxDepth = 1.0f;
VkRect2D scissor;
scissor.offset.x = 0;
scissor.offset.y = 0;
scissor.extent.width = framebufferSize.width;
scissor.extent.height = framebufferSize.height;
m_context->setViewports(1, &viewport, &scissor);
m_context->bindResourceSampler(BindingIds::Sampler,
fitSize ? m_samplerFitting : m_samplerScaling);
m_blendMode.enableBlending = VK_FALSE;
m_context->setBlendMode(0, m_blendMode);
m_context->bindResourceView(BindingIds::Texture, m_backBufferView, nullptr);
m_context->draw(4, 1, 0, 0);
if (m_hud != nullptr) {
m_blendMode.enableBlending = VK_TRUE;
m_context->setBlendMode(0, m_blendMode);
m_context->bindResourceView(BindingIds::Texture, m_hud->texture(), nullptr);
m_context->draw(4, 1, 0, 0);
}
m_device->submitCommandList(
m_context->endRecording(),
sem.acquireSync, sem.presentSync);
m_swapchain->present(sem.presentSync);
}
2017-12-19 16:01:50 +01:00
void DxgiPresenter::updateBackBuffer(const Rc<DxvkImage>& image) {
// Explicitly destroy the old stuff
2017-12-19 16:01:50 +01:00
m_backBuffer = image;
m_backBufferResolve = nullptr;
m_backBufferView = nullptr;
// If a multisampled back buffer was requested, we also need to
// create a resolve image with otherwise identical properties.
// Multisample images cannot be sampled from.
2017-12-19 16:01:50 +01:00
if (image->info().sampleCount != VK_SAMPLE_COUNT_1_BIT) {
DxvkImageCreateInfo resolveInfo;
resolveInfo.type = VK_IMAGE_TYPE_2D;
2017-12-19 16:01:50 +01:00
resolveInfo.format = image->info().format;
resolveInfo.flags = 0;
resolveInfo.sampleCount = VK_SAMPLE_COUNT_1_BIT;
2017-12-19 16:01:50 +01:00
resolveInfo.extent = image->info().extent;
resolveInfo.numLayers = 1;
resolveInfo.mipLevels = 1;
resolveInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT
| VK_IMAGE_USAGE_TRANSFER_DST_BIT;
resolveInfo.stages = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT
| VK_PIPELINE_STAGE_TRANSFER_BIT;
resolveInfo.access = VK_ACCESS_SHADER_READ_BIT
| VK_ACCESS_TRANSFER_WRITE_BIT;
resolveInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
resolveInfo.layout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
m_backBufferResolve = m_device->createImage(
resolveInfo, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
}
// Create an image view that allows the
// image to be bound as a shader resource.
DxvkImageViewCreateInfo viewInfo;
viewInfo.type = VK_IMAGE_VIEW_TYPE_2D;
2017-12-19 16:01:50 +01:00
viewInfo.format = image->info().format;
viewInfo.aspect = VK_IMAGE_ASPECT_COLOR_BIT;
viewInfo.minLevel = 0;
viewInfo.numLevels = 1;
viewInfo.minLayer = 0;
viewInfo.numLayers = 1;
m_backBufferView = m_device->createImageView(
m_backBufferResolve != nullptr
? m_backBufferResolve
: m_backBuffer,
viewInfo);
// TODO move this elsewhere
this->initBackBuffer(m_backBuffer);
}
void DxgiPresenter::recreateSwapchain(const DxvkSwapchainProperties& options) {
const bool doRecreate =
options.preferredSurfaceFormat.format != m_options.preferredSurfaceFormat.format
|| options.preferredSurfaceFormat.colorSpace != m_options.preferredSurfaceFormat.colorSpace
|| options.preferredPresentMode != m_options.preferredPresentMode
|| options.preferredBufferSize.width != m_options.preferredBufferSize.width
|| options.preferredBufferSize.height != m_options.preferredBufferSize.height;
if (doRecreate) {
Logger::info(str::format(
"DxgiPresenter: Recreating swap chain: ",
"\n Format: ", options.preferredSurfaceFormat.format,
"\n Present mode: ", options.preferredPresentMode,
"\n Buffer size: ", options.preferredBufferSize.width, "x", options.preferredBufferSize.height));
m_options = options;
if (m_swapchain == nullptr) {
m_swapchain = m_device->createSwapchain(
m_surface, options);
} else {
m_swapchain->changeProperties(options);
}
}
}
VkSurfaceFormatKHR DxgiPresenter::pickSurfaceFormat(DXGI_FORMAT fmt) const {
std::vector<VkSurfaceFormatKHR> formats;
switch (fmt) {
case DXGI_FORMAT_R8G8B8A8_UNORM:
case DXGI_FORMAT_B8G8R8A8_UNORM: {
formats.push_back({ VK_FORMAT_R8G8B8A8_UNORM, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR });
formats.push_back({ VK_FORMAT_B8G8R8A8_UNORM, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR });
} break;
case DXGI_FORMAT_R8G8B8A8_UNORM_SRGB:
case DXGI_FORMAT_B8G8R8A8_UNORM_SRGB: {
formats.push_back({ VK_FORMAT_R8G8B8A8_SRGB, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR });
formats.push_back({ VK_FORMAT_B8G8R8A8_SRGB, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR });
} break;
case DXGI_FORMAT_R10G10B10A2_UNORM: {
formats.push_back({ VK_FORMAT_A2B10G10R10_UNORM_PACK32, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR });
formats.push_back({ VK_FORMAT_A2R10G10B10_UNORM_PACK32, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR });
} break;
case DXGI_FORMAT_R16G16B16A16_FLOAT: {
formats.push_back({ VK_FORMAT_R16G16B16A16_SFLOAT, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR });
} break;
default:
Logger::warn(str::format("DxgiPresenter: Unknown format: ", fmt));
}
return m_surface->pickSurfaceFormat(
formats.size(), formats.data());
}
VkPresentModeKHR DxgiPresenter::pickPresentMode(VkPresentModeKHR preferred) const {
return m_surface->pickPresentMode(1, &preferred);
}
Rc<DxvkShader> DxgiPresenter::createVertexShader() {
SpirvModule module;
// Set up basic vertex shader capabilities
module.enableCapability(spv::CapabilityShader);
module.setMemoryModel(
spv::AddressingModelLogical,
spv::MemoryModelGLSL450);
// ID of the entry point (function)
uint32_t entryPointId = module.allocateId();
// Data type definitions
uint32_t typeVoid = module.defVoidType();
uint32_t typeU32 = module.defIntType(32, 0);
uint32_t typeF32 = module.defFloatType(32);
uint32_t typeVec2 = module.defVectorType(typeF32, 2);
uint32_t typeVec4 = module.defVectorType(typeF32, 4);
uint32_t typeVec4Arr4 = module.defArrayType(typeVec4, module.constu32(4));
uint32_t typeFn = module.defFunctionType(typeVoid, 0, nullptr);
// Pointer type definitions
uint32_t ptrInputU32 = module.defPointerType(typeU32, spv::StorageClassInput);
uint32_t ptrOutputVec2 = module.defPointerType(typeVec2, spv::StorageClassOutput);
uint32_t ptrOutputVec4 = module.defPointerType(typeVec4, spv::StorageClassOutput);
uint32_t ptrPrivateVec4 = module.defPointerType(typeVec4, spv::StorageClassPrivate);
uint32_t ptrPrivateArr4 = module.defPointerType(typeVec4Arr4, spv::StorageClassPrivate);
// Input variable: VertexIndex
uint32_t inVertexId = module.newVar(
ptrInputU32, spv::StorageClassInput);
module.decorateBuiltIn(inVertexId, spv::BuiltInVertexIndex);
// Output variable: Position
uint32_t outPosition = module.newVar(
ptrOutputVec4, spv::StorageClassOutput);
module.decorateBuiltIn(outPosition, spv::BuiltInPosition);
// Output variable: Texture coordinates
uint32_t outTexCoord = module.newVar(
ptrOutputVec2, spv::StorageClassOutput);
module.decorateLocation(outTexCoord, 0);
// Temporary variable: Vertex array
uint32_t varVertexArray = module.newVar(
ptrPrivateArr4, spv::StorageClassPrivate);
// Scalar constants
uint32_t constF32Zero = module.constf32( 0.0f);
uint32_t constF32Half = module.constf32( 0.5f);
uint32_t constF32Pos1 = module.constf32( 1.0f);
uint32_t constF32Neg1 = module.constf32(-1.0f);
// Vector constants
uint32_t constVec2HalfIds[2] = { constF32Half, constF32Half };
uint32_t constVec2Half = module.constComposite(typeVec2, 2, constVec2HalfIds);
// Construct vertex array
uint32_t vertexData[16] = {
constF32Neg1, constF32Neg1, constF32Zero, constF32Pos1,
constF32Neg1, constF32Pos1, constF32Zero, constF32Pos1,
constF32Pos1, constF32Neg1, constF32Zero, constF32Pos1,
constF32Pos1, constF32Pos1, constF32Zero, constF32Pos1,
};
uint32_t vertexConstants[4] = {
module.constComposite(typeVec4, 4, vertexData + 0),
module.constComposite(typeVec4, 4, vertexData + 4),
module.constComposite(typeVec4, 4, vertexData + 8),
module.constComposite(typeVec4, 4, vertexData + 12),
};
uint32_t vertexArray = module.constComposite(
typeVec4Arr4, 4, vertexConstants);
// Function header
module.functionBegin(typeVoid, entryPointId, typeFn, spv::FunctionControlMaskNone);
module.opLabel(module.allocateId());
module.opStore(varVertexArray, vertexArray);
// Load position of the current vertex
uint32_t tmpVertexId = module.opLoad(typeU32, inVertexId);
uint32_t tmpVertexPtr = module.opAccessChain(
ptrPrivateVec4, varVertexArray, 1, &tmpVertexId);
uint32_t tmpVertexPos = module.opLoad(typeVec4, tmpVertexPtr);
module.opStore(outPosition, tmpVertexPos);
// Compute texture coordinates
uint32_t swizzleIndices[2] = { 0, 1 };
uint32_t tmpTexCoord = module.opVectorShuffle(typeVec2,
tmpVertexPos, tmpVertexPos, 2, swizzleIndices);
tmpTexCoord = module.opFMul(typeVec2, tmpTexCoord, constVec2Half);
tmpTexCoord = module.opFAdd(typeVec2, tmpTexCoord, constVec2Half);
module.opStore(outTexCoord, tmpTexCoord);
module.opReturn();
module.functionEnd();
// Register function entry point
std::array<uint32_t, 3> interfaces = {
inVertexId, outPosition, outTexCoord,
};
module.addEntryPoint(entryPointId, spv::ExecutionModelVertex,
"main", interfaces.size(), interfaces.data());
// Create the actual shader module
return m_device->createShader(
VK_SHADER_STAGE_VERTEX_BIT,
0, nullptr, { 0u, 1u },
module.compile());
}
Rc<DxvkShader> DxgiPresenter::createFragmentShader() {
SpirvModule module;
module.enableCapability(spv::CapabilityShader);
module.setMemoryModel(
spv::AddressingModelLogical,
spv::MemoryModelGLSL450);
uint32_t entryPointId = module.allocateId();
// Data type definitions
uint32_t typeVoid = module.defVoidType();
uint32_t typeF32 = module.defFloatType(32);
uint32_t typeVec2 = module.defVectorType(typeF32, 2);
uint32_t typeVec4 = module.defVectorType(typeF32, 4);
uint32_t typeFn = module.defFunctionType(typeVoid, 0, nullptr);
uint32_t typeSampler = module.defSamplerType();
uint32_t typeTexture = module.defImageType(
typeF32, spv::Dim2D, 0, 0, 0, 1, spv::ImageFormatUnknown);
uint32_t typeSampledTex = module.defSampledImageType(typeTexture);
// Pointer type definitions
uint32_t ptrInputVec2 = module.defPointerType(typeVec2, spv::StorageClassInput);
uint32_t ptrOutputVec4 = module.defPointerType(typeVec4, spv::StorageClassOutput);
uint32_t ptrSampler = module.defPointerType(typeSampler, spv::StorageClassUniformConstant);
uint32_t ptrTexture = module.defPointerType(typeTexture, spv::StorageClassUniformConstant);
// Sampler
uint32_t rcSampler = module.newVar(ptrSampler, spv::StorageClassUniformConstant);
module.decorateDescriptorSet(rcSampler, 0);
module.decorateBinding(rcSampler, BindingIds::Sampler);
// Texture
uint32_t rcTexture = module.newVar(ptrTexture, spv::StorageClassUniformConstant);
module.decorateDescriptorSet(rcTexture, 0);
module.decorateBinding(rcTexture, BindingIds::Texture);
// Input variable: Texture coordinates
uint32_t inTexCoord = module.newVar(
ptrInputVec2, spv::StorageClassInput);
module.decorateLocation(inTexCoord, 0);
// Output variable: Final color
uint32_t outColor = module.newVar(
ptrOutputVec4, spv::StorageClassOutput);
module.decorateLocation(outColor, 0);
// Function header
module.functionBegin(typeVoid, entryPointId, typeFn, spv::FunctionControlMaskNone);
module.opLabel(module.allocateId());
// Load texture coordinates
module.opStore(outColor,
module.opImageSampleImplicitLod(
typeVec4,
module.opSampledImage(
typeSampledTex,
module.opLoad(typeTexture, rcTexture),
module.opLoad(typeSampler, rcSampler)),
module.opLoad(typeVec2, inTexCoord),
SpirvImageOperands()));
module.opReturn();
module.functionEnd();
// Register function entry point
std::array<uint32_t, 2> interfaces = { inTexCoord, outColor };
module.addEntryPoint(entryPointId, spv::ExecutionModelFragment,
"main", interfaces.size(), interfaces.data());
// Shader resource slots
std::array<DxvkResourceSlot, 2> resourceSlots = {{
{ BindingIds::Sampler, VK_DESCRIPTOR_TYPE_SAMPLER, VK_IMAGE_VIEW_TYPE_MAX_ENUM },
{ BindingIds::Texture, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, VK_IMAGE_VIEW_TYPE_2D },
}};
// Create the actual shader module
return m_device->createShader(
VK_SHADER_STAGE_FRAGMENT_BIT,
resourceSlots.size(),
resourceSlots.data(),
{ 1u, 1u },
module.compile());
}
}