priority preempts) and adjusting the priorities around to be more sensible.
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@2355 ebee16cc-31ac-478f-84a7-5cbb03baadba
but not having telemetry causes a reset. If the buffer got full enough it
would never start to transmit again.
Note: also making Telemetry non-blocking
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@2346 ebee16cc-31ac-478f-84a7-5cbb03baadba
before because if transmission got NAK then sending would stop. Now the next
time data is added to the buffer a new send will be attempted.
fifoBuf: in clearData just set the read pointer to the write pointer. This is
safer for multiple people accessing it assuming the reader will be clearing it.
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@2279 ebee16cc-31ac-478f-84a7-5cbb03baadba
required for longer sequences, Need to deal with when it happens
inappropriately better.
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@2245 ebee16cc-31ac-478f-84a7-5cbb03baadba
sometimes thrown, and made errors not lock it up by default. It works for me,
but since this has historically been associated with lots of lock ups please
check your systems carefully.
PiOS/I2C: Make the bus by default try to recover from errors instead of locking
up
PiOS/I2C: After a bus error and clocking all previous data create a STOP
condition to make sure bus is released (note, this also requires creating a
START condition first)
PiOS/I2C: If the same event hits the I2C bus twice in a row then disregard
second one, there is no situation where we should get the same event multiple
times that matters and this gets us out really quickly to catch the real
events. I was seeing this with repeated 0x70084 which means byte transmitted.
This is related to STM32 bugs in the IRQ timings I believe.
PiOS/I2C: 1) Mask out some bits we don't care about in the event flags
2) Don't lock up if the give semaphore fails, although why it does is strange
3) Recover from bus failure through the "auto" state path instead of just
coding state
PiOS/I2C: Change the reset bus code to follow
http://www.analog.com/static/imported-files/application_notes/54305147357414AN686_0.pdf
(thanks for the reference Neontangerine). Although this may actually NOT clear
the bus the first time through, subsequent bus errors should eventually clock
it out. The up side is it is less likely to clock a bunch of 1s into an ESC
and make it run up.
PiOS/I2C: Some cleaned up code for getting a snippet of the history when
something strange happens
PiOS/I2C: Export logging information from I2C through a UAV object
PiOS/I2C: Improve the diagnostic information
PiOS/I2C: Need to handle the event 0x30084. This seems to happen between a
byte transmitted and new byte started
PiOS/I2C: Handle the NACK condition by simply going to the stopping state.
PiOS/I2C: Add a new NACK state to handle sending the STOP signal after a NACK
following the STM documentation. Other error conditions still are not dealt
with.
PiOS/I2C: Should handle the NACK condition from all the write cases. Need to
think about read cases
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@2239 ebee16cc-31ac-478f-84a7-5cbb03baadba
and starting transmission again. This should address the bootloader locking up
on verify.
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@2235 ebee16cc-31ac-478f-84a7-5cbb03baadba
configuration structures are const which keeps them in flash instead of ram.
However the library needs to declare them const for the compiler to work.
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@2231 ebee16cc-31ac-478f-84a7-5cbb03baadba
from the AHRS code (which will facilitate code integration with new INS) and
also will help set up a fifo queue for the downsampled data to allow gyro data
output from AHRS faster than EKF output. Also decreased ADC interrupt priority
so the SPI comms don't drop out.
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@2190 ebee16cc-31ac-478f-84a7-5cbb03baadba
only one receive task. This is less generally safe but decreases the
frequency of resets in our current configuration
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@2144 ebee16cc-31ac-478f-84a7-5cbb03baadba
similar driver format to the PIOS_USART system. (p.s. are you happy now, PT?)
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@2029 ebee16cc-31ac-478f-84a7-5cbb03baadba
running and block the interrupts while modifying the buffers
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@2003 ebee16cc-31ac-478f-84a7-5cbb03baadba
Flight: Create PositionDesired (the active waypoint) UAVObject and make the FlightSituationActual no update since it not used.
Flight: New velocity desired object that passes information between the look computing the desired velocity and the PID loop to get it (updated at different rates)
UAVObjects/PositionActual: Remove unused GPS fields
UAVObjects/PositionActual VelocityActual: Split the velocity into a separate object. ALso make sure all the information telemetered around is in cm to avoid using floats.
UAVObject/GuidanceSettings: New guidance settings object for the guidance module
Flight/Posix: Add the new objects to the Posix sim
Flight/Guidance: Computes a desired velocity based on position error than runs a PID loop to control roll and pitch to achieve that velocity. All distances are in cm, and updated the PositionActual fields to reflect this and use int32.
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@1760 ebee16cc-31ac-478f-84a7-5cbb03baadba
determine retransmitting calibration, home location and such.
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@1755 ebee16cc-31ac-478f-84a7-5cbb03baadba