1
0
mirror of https://github.com/doitsujin/dxvk.git synced 2024-12-14 18:23:52 +01:00
dxvk/src/d3d11/d3d11_texture.cpp

836 lines
29 KiB
C++
Raw Normal View History

2017-11-27 15:52:24 +01:00
#include "d3d11_device.h"
#include "d3d11_texture.h"
namespace dxvk {
D3D11CommonTexture::D3D11CommonTexture(
D3D11Device* pDevice,
const D3D11_COMMON_TEXTURE_DESC* pDesc,
D3D11_RESOURCE_DIMENSION Dimension)
: m_device(pDevice), m_desc(*pDesc) {
DXGI_VK_FORMAT_MODE formatMode = GetFormatMode();
DXGI_VK_FORMAT_INFO formatInfo = m_device->LookupFormat(m_desc.Format, formatMode);
DXGI_VK_FORMAT_FAMILY formatFamily = m_device->LookupFamily(m_desc.Format, formatMode);
DxvkImageCreateInfo imageInfo;
imageInfo.type = GetImageTypeFromResourceDim(Dimension);
imageInfo.format = formatInfo.Format;
imageInfo.flags = 0;
imageInfo.sampleCount = VK_SAMPLE_COUNT_1_BIT;
imageInfo.extent.width = m_desc.Width;
imageInfo.extent.height = m_desc.Height;
imageInfo.extent.depth = m_desc.Depth;
imageInfo.numLayers = m_desc.ArraySize;
imageInfo.mipLevels = m_desc.MipLevels;
imageInfo.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT
| VK_IMAGE_USAGE_TRANSFER_DST_BIT;
imageInfo.stages = VK_PIPELINE_STAGE_TRANSFER_BIT;
imageInfo.access = VK_ACCESS_TRANSFER_READ_BIT
| VK_ACCESS_TRANSFER_WRITE_BIT;
imageInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageInfo.layout = VK_IMAGE_LAYOUT_GENERAL;
DecodeSampleCount(m_desc.SampleDesc.Count, &imageInfo.sampleCount);
// Integer clear operations on UAVs are implemented using
// a view with a bit-compatible integer format, so we'll
// have to include that format in the format family
if (m_desc.BindFlags & D3D11_BIND_UNORDERED_ACCESS) {
DXGI_VK_FORMAT_INFO formatBase = m_device->LookupFormat(
m_desc.Format, DXGI_VK_FORMAT_MODE_RAW);
if (formatBase.Format != formatInfo.Format
&& formatBase.Format != VK_FORMAT_UNDEFINED) {
formatFamily.Add(formatBase.Format);
formatFamily.Add(formatInfo.Format);
}
}
// The image must be marked as mutable if it can be reinterpreted
// by a view with a different format. Depth-stencil formats cannot
// be reinterpreted in Vulkan, so we'll ignore those.
auto formatProperties = imageFormatInfo(formatInfo.Format);
bool isTypeless = formatInfo.Aspect == 0;
bool isMutable = formatFamily.FormatCount > 1;
bool isColorFormat = (formatProperties->aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) != 0;
if (isMutable && isColorFormat) {
imageInfo.flags |= VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT;
// Typeless UAV images have relaxed reinterpretation rules
if (!isTypeless || !(m_desc.BindFlags & D3D11_BIND_UNORDERED_ACCESS)) {
imageInfo.viewFormatCount = formatFamily.FormatCount;
imageInfo.viewFormats = formatFamily.Formats;
}
}
// Some games will try to create an SRGB image with the UAV
// bind flag set. This works on Windows, but no UAVs can be
// created for the image in practice.
bool noUav = formatProperties->flags.test(DxvkFormatFlag::ColorSpaceSrgb)
&& !CheckFormatFeatureSupport(formatInfo.Format, VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT);
// Adjust image flags based on the corresponding D3D flags
if (m_desc.BindFlags & D3D11_BIND_SHADER_RESOURCE) {
imageInfo.usage |= VK_IMAGE_USAGE_SAMPLED_BIT;
imageInfo.stages |= pDevice->GetEnabledShaderStages();
imageInfo.access |= VK_ACCESS_SHADER_READ_BIT;
}
if (m_desc.BindFlags & D3D11_BIND_RENDER_TARGET) {
imageInfo.usage |= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
imageInfo.stages |= VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
imageInfo.access |= VK_ACCESS_COLOR_ATTACHMENT_READ_BIT
| VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
}
if (m_desc.BindFlags & D3D11_BIND_DEPTH_STENCIL) {
imageInfo.usage |= VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
imageInfo.stages |= VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT
| VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
imageInfo.access |= VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT
| VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
}
if (m_desc.BindFlags & D3D11_BIND_UNORDERED_ACCESS && !noUav) {
imageInfo.usage |= VK_IMAGE_USAGE_STORAGE_BIT;
imageInfo.stages |= pDevice->GetEnabledShaderStages();
imageInfo.access |= VK_ACCESS_SHADER_READ_BIT
| VK_ACCESS_SHADER_WRITE_BIT;
}
// Access pattern for meta-resolve operations
if (imageInfo.sampleCount != VK_SAMPLE_COUNT_1_BIT && isColorFormat) {
imageInfo.usage |= VK_IMAGE_USAGE_SAMPLED_BIT;
imageInfo.stages |= VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
imageInfo.access |= VK_ACCESS_SHADER_READ_BIT;
}
2018-03-14 14:40:09 +01:00
if (m_desc.MiscFlags & D3D11_RESOURCE_MISC_TEXTURECUBE)
imageInfo.flags |= VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
if (Dimension == D3D11_RESOURCE_DIMENSION_TEXTURE3D &&
(m_desc.BindFlags & D3D11_BIND_RENDER_TARGET))
imageInfo.flags |= VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT_KHR;
// Some image formats (i.e. the R32G32B32 ones) are
// only supported with linear tiling on most GPUs
if (!CheckImageSupport(&imageInfo, VK_IMAGE_TILING_OPTIMAL))
imageInfo.tiling = VK_IMAGE_TILING_LINEAR;
// Determine map mode based on our findings
m_mapMode = DetermineMapMode(&imageInfo);
// If the image is mapped directly to host memory, we need
// to enable linear tiling, and DXVK needs to be aware that
// the image can be accessed by the host.
2018-03-14 14:40:09 +01:00
if (m_mapMode == D3D11_COMMON_TEXTURE_MAP_MODE_DIRECT) {
imageInfo.stages |= VK_PIPELINE_STAGE_HOST_BIT;
2018-03-14 14:40:09 +01:00
imageInfo.tiling = VK_IMAGE_TILING_LINEAR;
if (m_desc.CPUAccessFlags & D3D11_CPU_ACCESS_WRITE)
imageInfo.access |= VK_ACCESS_HOST_WRITE_BIT;
if (m_desc.CPUAccessFlags & D3D11_CPU_ACCESS_READ)
imageInfo.access |= VK_ACCESS_HOST_READ_BIT;
}
// We must keep LINEAR images in GENERAL layout, but we
// can choose a better layout for the image based on how
// it is going to be used by the game.
if (imageInfo.tiling == VK_IMAGE_TILING_OPTIMAL)
imageInfo.layout = OptimizeLayout(imageInfo.usage);
// For some formats, we need to enable sampled and/or
// render target capabilities if available, but these
// should in no way affect the default image layout
imageInfo.usage |= EnableMetaCopyUsage(imageInfo.format, imageInfo.tiling);
imageInfo.usage |= EnableMetaPackUsage(imageInfo.format, m_desc.CPUAccessFlags);
2017-12-19 16:01:50 +01:00
// Check if we can actually create the image
if (!CheckImageSupport(&imageInfo, imageInfo.tiling)) {
throw DxvkError(str::format(
"D3D11: Cannot create texture:",
"\n Format: ", m_desc.Format,
"\n Extent: ", m_desc.Width,
"x", m_desc.Height,
"x", m_desc.Depth,
"\n Samples: ", m_desc.SampleDesc.Count,
"\n Layers: ", m_desc.ArraySize,
"\n Levels: ", m_desc.MipLevels,
"\n Usage: ", std::hex, m_desc.BindFlags,
"\n Flags: ", std::hex, m_desc.MiscFlags));
}
// If necessary, create the mapped linear buffer
if (m_mapMode == D3D11_COMMON_TEXTURE_MAP_MODE_BUFFER)
m_buffer = CreateMappedBuffer(m_desc.CPUAccessFlags);
// Create the image on a host-visible memory type
// in case it is going to be mapped directly.
VkMemoryPropertyFlags memoryProperties = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
if (m_mapMode == D3D11_COMMON_TEXTURE_MAP_MODE_DIRECT) {
memoryProperties = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT
| VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
if (m_desc.CPUAccessFlags & D3D11_CPU_ACCESS_READ)
memoryProperties |= VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
}
m_image = m_device->GetDXVKDevice()->createImage(imageInfo, memoryProperties);
}
D3D11CommonTexture::~D3D11CommonTexture() {
}
VkImageSubresource D3D11CommonTexture::GetSubresourceFromIndex(
VkImageAspectFlags Aspect,
UINT Subresource) const {
VkImageSubresource result;
result.aspectMask = Aspect;
result.mipLevel = Subresource % m_desc.MipLevels;
result.arrayLayer = Subresource / m_desc.MipLevels;
return result;
}
DXGI_VK_FORMAT_MODE D3D11CommonTexture::GetFormatMode() const {
if (m_desc.BindFlags & D3D11_BIND_RENDER_TARGET)
return DXGI_VK_FORMAT_MODE_COLOR;
if (m_desc.BindFlags & D3D11_BIND_DEPTH_STENCIL)
return DXGI_VK_FORMAT_MODE_DEPTH;
return DXGI_VK_FORMAT_MODE_ANY;
}
void D3D11CommonTexture::GetDevice(ID3D11Device** ppDevice) const {
*ppDevice = m_device.ref();
}
bool D3D11CommonTexture::CheckViewCompatibility(UINT BindFlags, DXGI_FORMAT Format) const {
const DxvkImageCreateInfo& imageInfo = m_image->info();
// Check whether the given bind flags are supported
VkImageUsageFlags usage = GetImageUsageFlags(BindFlags);
if ((imageInfo.usage & usage) != usage)
return false;
// Check whether the view format is compatible
DXGI_VK_FORMAT_MODE formatMode = GetFormatMode();
DXGI_VK_FORMAT_INFO viewFormat = m_device->LookupFormat(Format, formatMode);
DXGI_VK_FORMAT_INFO baseFormat = m_device->LookupFormat(m_desc.Format, formatMode);
if (imageInfo.flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT) {
// Check whether the given combination of image
// view type and view format is actually supported
VkFormatFeatureFlags features = GetImageFormatFeatures(BindFlags);
if (!CheckFormatFeatureSupport(viewFormat.Format, features))
return false;
// Using the image format itself is always legal
if (viewFormat.Format == baseFormat.Format)
return true;
// If there is a list of compatible formats, the
// view format must be included in that list.
for (size_t i = 0; i < imageInfo.viewFormatCount; i++) {
if (imageInfo.viewFormats[i] == viewFormat.Format)
return true;
}
// Otherwise, all bit-compatible formats can be used.
if (imageInfo.viewFormatCount == 0) {
auto baseFormatInfo = imageFormatInfo(baseFormat.Format);
auto viewFormatInfo = imageFormatInfo(viewFormat.Format);
return baseFormatInfo->aspectMask == viewFormatInfo->aspectMask
&& baseFormatInfo->elementSize == viewFormatInfo->elementSize;
}
return false;
} else {
// For non-mutable images, the view format
// must be identical to the image format.
return viewFormat.Format == baseFormat.Format;
}
}
HRESULT D3D11CommonTexture::NormalizeTextureProperties(D3D11_COMMON_TEXTURE_DESC* pDesc) {
if (pDesc->Width == 0 || pDesc->Height == 0 || pDesc->Depth == 0)
return E_INVALIDARG;
if (FAILED(DecodeSampleCount(pDesc->SampleDesc.Count, nullptr)))
return E_INVALIDARG;
// Use the maximum possible mip level count if the supplied
// mip level count is either unspecified (0) or invalid
const uint32_t maxMipLevelCount = pDesc->SampleDesc.Count <= 1
? util::computeMipLevelCount({ pDesc->Width, pDesc->Height, pDesc->Depth })
: 1u;
if (pDesc->MipLevels == 0 || pDesc->MipLevels > maxMipLevelCount)
pDesc->MipLevels = maxMipLevelCount;
return S_OK;
}
BOOL D3D11CommonTexture::CheckImageSupport(
const DxvkImageCreateInfo* pImageInfo,
VkImageTiling Tiling) const {
const Rc<DxvkAdapter> adapter = m_device->GetDXVKDevice()->adapter();
VkImageFormatProperties formatProps = { };
VkResult status = adapter->imageFormatProperties(
pImageInfo->format, pImageInfo->type, Tiling,
pImageInfo->usage, pImageInfo->flags, formatProps);
if (status != VK_SUCCESS)
return FALSE;
return (pImageInfo->extent.width <= formatProps.maxExtent.width)
&& (pImageInfo->extent.height <= formatProps.maxExtent.height)
&& (pImageInfo->extent.depth <= formatProps.maxExtent.depth)
&& (pImageInfo->numLayers <= formatProps.maxArrayLayers)
&& (pImageInfo->mipLevels <= formatProps.maxMipLevels)
&& (pImageInfo->sampleCount & formatProps.sampleCounts);
}
BOOL D3D11CommonTexture::CheckFormatFeatureSupport(
VkFormat Format,
VkFormatFeatureFlags Features) const {
VkFormatProperties properties = m_device->GetDXVKDevice()->adapter()->formatProperties(Format);
return (properties.linearTilingFeatures & Features) == Features
|| (properties.optimalTilingFeatures & Features) == Features;
}
VkImageUsageFlags D3D11CommonTexture::EnableMetaCopyUsage(
VkFormat Format,
VkImageTiling Tiling) const {
VkFormatFeatureFlags requestedFeatures = 0;
if (Format == VK_FORMAT_D16_UNORM || Format == VK_FORMAT_D32_SFLOAT) {
requestedFeatures |= VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT
| VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT;
}
if (Format == VK_FORMAT_R16_UNORM || Format == VK_FORMAT_R32_SFLOAT) {
requestedFeatures |= VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT
| VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT;
}
if (requestedFeatures == 0)
return 0;
// Enable usage flags for all supported and requested features
VkFormatProperties properties = m_device->GetDXVKDevice()->adapter()->formatProperties(Format);
requestedFeatures &= Tiling == VK_IMAGE_TILING_OPTIMAL
? properties.optimalTilingFeatures
: properties.linearTilingFeatures;
VkImageUsageFlags requestedUsage = 0;
if (requestedFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT)
requestedUsage |= VK_IMAGE_USAGE_SAMPLED_BIT;
if (requestedFeatures & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT)
requestedUsage |= VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
if (requestedFeatures & VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT)
requestedUsage |= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
return requestedUsage;
}
VkImageUsageFlags D3D11CommonTexture::EnableMetaPackUsage(
VkFormat Format,
UINT CpuAccess) const {
if ((CpuAccess & D3D11_CPU_ACCESS_READ) == 0)
return 0;
const auto dsMask = VK_IMAGE_ASPECT_DEPTH_BIT
| VK_IMAGE_ASPECT_STENCIL_BIT;
auto formatInfo = imageFormatInfo(Format);
return formatInfo->aspectMask == dsMask
? VK_IMAGE_USAGE_SAMPLED_BIT
: 0;
}
D3D11_COMMON_TEXTURE_MAP_MODE D3D11CommonTexture::DetermineMapMode(
const DxvkImageCreateInfo* pImageInfo) const {
// Don't map an image unless the application requests it
if (m_desc.CPUAccessFlags == 0)
return D3D11_COMMON_TEXTURE_MAP_MODE_NONE;
// Write-only images should go through a buffer for multiple reasons:
// 1. Some games do not respect the row and depth pitch that is returned
// by the Map() method, which leads to incorrect rendering (e.g. Nier)
// 2. Since the image will most likely be read for rendering by the GPU,
// writing the image to device-local image may be more efficient than
// reading its contents from host-visible memory.
if (m_desc.Usage == D3D11_USAGE_DYNAMIC)
return D3D11_COMMON_TEXTURE_MAP_MODE_BUFFER;
// Depth-stencil formats in D3D11 can be mapped and follow special
// packing rules, so we need to copy that data into a buffer first
if (GetPackedDepthStencilFormat(m_desc.Format))
return D3D11_COMMON_TEXTURE_MAP_MODE_BUFFER;
// Images that can be read by the host should be mapped directly in
// order to avoid expensive synchronization with the GPU. This does
// however require linear tiling, which may not be supported for all
// combinations of image parameters.
return this->CheckImageSupport(pImageInfo, VK_IMAGE_TILING_LINEAR)
? D3D11_COMMON_TEXTURE_MAP_MODE_DIRECT
2018-03-14 14:40:09 +01:00
: D3D11_COMMON_TEXTURE_MAP_MODE_BUFFER;
}
Rc<DxvkBuffer> D3D11CommonTexture::CreateMappedBuffer(UINT CPUAccessFlags) const {
const DxvkFormatInfo* formatInfo = imageFormatInfo(
m_device->LookupPackedFormat(m_desc.Format, GetFormatMode()).Format);
const VkExtent3D blockCount = util::computeBlockCount(
VkExtent3D { m_desc.Width, m_desc.Height, m_desc.Depth },
formatInfo->blockSize);
DxvkBufferCreateInfo info;
info.size = formatInfo->elementSize
* blockCount.width
* blockCount.height
* blockCount.depth;
info.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT
| VK_BUFFER_USAGE_TRANSFER_DST_BIT
| VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
info.stages = VK_PIPELINE_STAGE_TRANSFER_BIT;
info.access = VK_ACCESS_TRANSFER_READ_BIT
| VK_ACCESS_TRANSFER_WRITE_BIT;
auto memoryType = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT
| VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
if (CPUAccessFlags & D3D11_CPU_ACCESS_READ)
memoryType |= VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
return m_device->GetDXVKDevice()->createBuffer(info, memoryType);
}
VkImageType D3D11CommonTexture::GetImageTypeFromResourceDim(D3D11_RESOURCE_DIMENSION Dimension) {
switch (Dimension) {
case D3D11_RESOURCE_DIMENSION_TEXTURE1D: return VK_IMAGE_TYPE_1D;
case D3D11_RESOURCE_DIMENSION_TEXTURE2D: return VK_IMAGE_TYPE_2D;
case D3D11_RESOURCE_DIMENSION_TEXTURE3D: return VK_IMAGE_TYPE_3D;
default: throw DxvkError("D3D11CommonTexture: Unhandled resource dimension");
}
}
VkImageLayout D3D11CommonTexture::OptimizeLayout(VkImageUsageFlags Usage) {
const VkImageUsageFlags usageFlags = Usage;
// Filter out unnecessary flags. Transfer operations
// are handled by the backend in a transparent manner.
Usage &= ~(VK_IMAGE_USAGE_TRANSFER_DST_BIT
| VK_IMAGE_USAGE_TRANSFER_SRC_BIT);
// If the image is used only as an attachment, we never
// have to transform the image back to a different layout
if (Usage == VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT)
return VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
if (Usage == VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)
return VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
Usage &= ~(VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT
| VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT);
// If the image is used for reading but not as a storage
// image, we can optimize the image for texture access
if (Usage == VK_IMAGE_USAGE_SAMPLED_BIT) {
return usageFlags & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT
? VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL
: VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
}
// Otherwise, we have to stick with the default layout
return VK_IMAGE_LAYOUT_GENERAL;
}
D3D11VkInteropSurface::D3D11VkInteropSurface(
ID3D11DeviceChild* pContainer,
D3D11CommonTexture* pTexture)
: m_container (pContainer),
m_texture (pTexture) {
}
D3D11VkInteropSurface::~D3D11VkInteropSurface() {
}
ULONG STDMETHODCALLTYPE D3D11VkInteropSurface::AddRef() {
return m_container->AddRef();
}
ULONG STDMETHODCALLTYPE D3D11VkInteropSurface::Release() {
return m_container->Release();
}
HRESULT STDMETHODCALLTYPE D3D11VkInteropSurface::QueryInterface(
REFIID riid,
void** ppvObject) {
return m_container->QueryInterface(riid, ppvObject);
}
HRESULT STDMETHODCALLTYPE D3D11VkInteropSurface::GetDevice(
IDXGIVkInteropDevice** ppDevice) {
Com<ID3D11Device> device;
m_container->GetDevice(&device);
return device->QueryInterface(
__uuidof(IDXGIVkInteropDevice),
reinterpret_cast<void**>(ppDevice));
}
HRESULT STDMETHODCALLTYPE D3D11VkInteropSurface::GetVulkanImageInfo(
VkImage* pHandle,
VkImageLayout* pLayout,
VkImageCreateInfo* pInfo) {
const Rc<DxvkImage> image = m_texture->GetImage();
const DxvkImageCreateInfo& info = image->info();
if (pHandle != nullptr)
*pHandle = image->handle();
if (pLayout != nullptr)
*pLayout = info.layout;
if (pInfo != nullptr) {
// We currently don't support any extended structures
if (pInfo->sType != VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO
|| pInfo->pNext != nullptr)
return E_INVALIDARG;
pInfo->flags = 0;
pInfo->imageType = info.type;
pInfo->format = info.format;
pInfo->extent = info.extent;
pInfo->mipLevels = info.mipLevels;
pInfo->arrayLayers = info.numLayers;
pInfo->samples = info.sampleCount;
pInfo->tiling = info.tiling;
pInfo->usage = info.usage;
pInfo->sharingMode = VK_SHARING_MODE_EXCLUSIVE;
pInfo->queueFamilyIndexCount = 0;
pInfo->initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
}
return S_OK;
}
///////////////////////////////////////////
// D 3 D 1 1 T E X T U R E 1 D
D3D11Texture1D::D3D11Texture1D(
D3D11Device* pDevice,
const D3D11_COMMON_TEXTURE_DESC* pDesc)
: m_texture (pDevice, pDesc, D3D11_RESOURCE_DIMENSION_TEXTURE1D),
m_interop (this, &m_texture),
m_d3d10 (this, pDevice->GetD3D10Interface()) {
}
D3D11Texture1D::~D3D11Texture1D() {
2017-12-19 16:01:50 +01:00
}
HRESULT STDMETHODCALLTYPE D3D11Texture1D::QueryInterface(REFIID riid, void** ppvObject) {
if (ppvObject == nullptr)
return E_POINTER;
*ppvObject = nullptr;
if (riid == __uuidof(IUnknown)
|| riid == __uuidof(ID3D11DeviceChild)
|| riid == __uuidof(ID3D11Resource)
|| riid == __uuidof(ID3D11Texture1D)) {
*ppvObject = ref(this);
return S_OK;
}
2017-12-19 16:01:50 +01:00
if (riid == __uuidof(ID3D10DeviceChild)
|| riid == __uuidof(ID3D10Resource)
|| riid == __uuidof(ID3D10Texture1D)) {
*ppvObject = ref(&m_d3d10);
return S_OK;
}
if (riid == __uuidof(IDXGIVkInteropSurface)) {
*ppvObject = ref(&m_interop);
return S_OK;
}
Logger::warn("D3D11Texture1D::QueryInterface: Unknown interface query");
Logger::warn(str::format(riid));
return E_NOINTERFACE;
}
2017-11-27 15:52:24 +01:00
void STDMETHODCALLTYPE D3D11Texture1D::GetDevice(ID3D11Device** ppDevice) {
m_texture.GetDevice(ppDevice);
}
void STDMETHODCALLTYPE D3D11Texture1D::GetType(D3D11_RESOURCE_DIMENSION *pResourceDimension) {
*pResourceDimension = D3D11_RESOURCE_DIMENSION_TEXTURE1D;
}
UINT STDMETHODCALLTYPE D3D11Texture1D::GetEvictionPriority() {
return DXGI_RESOURCE_PRIORITY_NORMAL;
}
void STDMETHODCALLTYPE D3D11Texture1D::SetEvictionPriority(UINT EvictionPriority) {
static bool s_errorShown = false;
if (!std::exchange(s_errorShown, true))
Logger::warn("D3D11Texture1D::SetEvictionPriority: Stub");
}
void STDMETHODCALLTYPE D3D11Texture1D::GetDesc(D3D11_TEXTURE1D_DESC *pDesc) {
pDesc->Width = m_texture.Desc()->Width;
pDesc->MipLevels = m_texture.Desc()->MipLevels;
pDesc->ArraySize = m_texture.Desc()->ArraySize;
pDesc->Format = m_texture.Desc()->Format;
pDesc->Usage = m_texture.Desc()->Usage;
pDesc->BindFlags = m_texture.Desc()->BindFlags;
pDesc->CPUAccessFlags = m_texture.Desc()->CPUAccessFlags;
pDesc->MiscFlags = m_texture.Desc()->MiscFlags;
}
///////////////////////////////////////////
// D 3 D 1 1 T E X T U R E 2 D
D3D11Texture2D::D3D11Texture2D(
D3D11Device* pDevice,
const D3D11_COMMON_TEXTURE_DESC* pDesc)
: m_texture (pDevice, pDesc, D3D11_RESOURCE_DIMENSION_TEXTURE2D),
m_interop (this, &m_texture),
m_d3d10 (this, pDevice->GetD3D10Interface()) {
2017-12-19 16:01:50 +01:00
2017-11-27 15:52:24 +01:00
}
D3D11Texture2D::~D3D11Texture2D() {
}
2017-12-12 12:50:52 +01:00
HRESULT STDMETHODCALLTYPE D3D11Texture2D::QueryInterface(REFIID riid, void** ppvObject) {
if (ppvObject == nullptr)
return E_POINTER;
*ppvObject = nullptr;
if (riid == __uuidof(IUnknown)
|| riid == __uuidof(ID3D11DeviceChild)
|| riid == __uuidof(ID3D11Resource)
|| riid == __uuidof(ID3D11Texture2D)) {
*ppvObject = ref(this);
return S_OK;
}
if (riid == __uuidof(ID3D10DeviceChild)
|| riid == __uuidof(ID3D10Resource)
|| riid == __uuidof(ID3D10Texture2D)) {
*ppvObject = ref(&m_d3d10);
return S_OK;
}
2017-11-27 15:52:24 +01:00
if (riid == __uuidof(IDXGIVkInteropSurface)) {
*ppvObject = ref(&m_interop);
return S_OK;
}
2017-11-27 15:52:24 +01:00
Logger::warn("D3D11Texture2D::QueryInterface: Unknown interface query");
Logger::warn(str::format(riid));
2017-11-27 15:52:24 +01:00
return E_NOINTERFACE;
}
2017-12-12 12:50:52 +01:00
void STDMETHODCALLTYPE D3D11Texture2D::GetDevice(ID3D11Device** ppDevice) {
m_texture.GetDevice(ppDevice);
2017-11-27 15:52:24 +01:00
}
2017-12-12 12:50:52 +01:00
void STDMETHODCALLTYPE D3D11Texture2D::GetType(D3D11_RESOURCE_DIMENSION *pResourceDimension) {
2017-11-27 15:52:24 +01:00
*pResourceDimension = D3D11_RESOURCE_DIMENSION_TEXTURE2D;
}
2017-12-12 12:50:52 +01:00
UINT STDMETHODCALLTYPE D3D11Texture2D::GetEvictionPriority() {
2017-12-19 16:01:50 +01:00
return DXGI_RESOURCE_PRIORITY_NORMAL;
}
2017-12-12 12:50:52 +01:00
void STDMETHODCALLTYPE D3D11Texture2D::SetEvictionPriority(UINT EvictionPriority) {
static bool s_errorShown = false;
if (!std::exchange(s_errorShown, true))
Logger::warn("D3D11Texture2D::SetEvictionPriority: Stub");
}
2017-12-12 12:50:52 +01:00
void STDMETHODCALLTYPE D3D11Texture2D::GetDesc(D3D11_TEXTURE2D_DESC *pDesc) {
pDesc->Width = m_texture.Desc()->Width;
pDesc->Height = m_texture.Desc()->Height;
pDesc->MipLevels = m_texture.Desc()->MipLevels;
pDesc->ArraySize = m_texture.Desc()->ArraySize;
pDesc->Format = m_texture.Desc()->Format;
pDesc->SampleDesc = m_texture.Desc()->SampleDesc;
pDesc->Usage = m_texture.Desc()->Usage;
pDesc->BindFlags = m_texture.Desc()->BindFlags;
pDesc->CPUAccessFlags = m_texture.Desc()->CPUAccessFlags;
pDesc->MiscFlags = m_texture.Desc()->MiscFlags;
2017-11-27 15:52:24 +01:00
}
2017-12-19 16:01:50 +01:00
///////////////////////////////////////////
// D 3 D 1 1 T E X T U R E 3 D
D3D11Texture3D::D3D11Texture3D(
D3D11Device* pDevice,
const D3D11_COMMON_TEXTURE_DESC* pDesc)
: m_texture (pDevice, pDesc, D3D11_RESOURCE_DIMENSION_TEXTURE3D),
m_interop (this, &m_texture),
m_d3d10 (this, pDevice->GetD3D10Interface()) {
}
D3D11Texture3D::~D3D11Texture3D() {
}
HRESULT STDMETHODCALLTYPE D3D11Texture3D::QueryInterface(REFIID riid, void** ppvObject) {
if (ppvObject == nullptr)
return E_POINTER;
*ppvObject = nullptr;
if (riid == __uuidof(IUnknown)
|| riid == __uuidof(ID3D11DeviceChild)
|| riid == __uuidof(ID3D11Resource)
|| riid == __uuidof(ID3D11Texture3D)) {
*ppvObject = ref(this);
return S_OK;
}
if (riid == __uuidof(ID3D10DeviceChild)
|| riid == __uuidof(ID3D10Resource)
|| riid == __uuidof(ID3D10Texture3D)) {
*ppvObject = ref(&m_d3d10);
return S_OK;
}
if (riid == __uuidof(IDXGIVkInteropSurface)) {
*ppvObject = ref(&m_interop);
return S_OK;
}
Logger::warn("D3D11Texture3D::QueryInterface: Unknown interface query");
Logger::warn(str::format(riid));
return E_NOINTERFACE;
}
void STDMETHODCALLTYPE D3D11Texture3D::GetDevice(ID3D11Device** ppDevice) {
m_texture.GetDevice(ppDevice);
}
void STDMETHODCALLTYPE D3D11Texture3D::GetType(D3D11_RESOURCE_DIMENSION *pResourceDimension) {
*pResourceDimension = D3D11_RESOURCE_DIMENSION_TEXTURE3D;
}
UINT STDMETHODCALLTYPE D3D11Texture3D::GetEvictionPriority() {
return DXGI_RESOURCE_PRIORITY_NORMAL;
}
void STDMETHODCALLTYPE D3D11Texture3D::SetEvictionPriority(UINT EvictionPriority) {
static bool s_errorShown = false;
if (!std::exchange(s_errorShown, true))
Logger::warn("D3D11Texture3D::SetEvictionPriority: Stub");
}
void STDMETHODCALLTYPE D3D11Texture3D::GetDesc(D3D11_TEXTURE3D_DESC *pDesc) {
pDesc->Width = m_texture.Desc()->Width;
pDesc->Height = m_texture.Desc()->Height;
pDesc->Depth = m_texture.Desc()->Depth;
pDesc->MipLevels = m_texture.Desc()->MipLevels;
pDesc->Format = m_texture.Desc()->Format;
pDesc->Usage = m_texture.Desc()->Usage;
pDesc->BindFlags = m_texture.Desc()->BindFlags;
pDesc->CPUAccessFlags = m_texture.Desc()->CPUAccessFlags;
pDesc->MiscFlags = m_texture.Desc()->MiscFlags;
}
2017-12-19 16:01:50 +01:00
D3D11CommonTexture* GetCommonTexture(ID3D11Resource* pResource) {
2017-12-19 16:01:50 +01:00
D3D11_RESOURCE_DIMENSION dimension = D3D11_RESOURCE_DIMENSION_UNKNOWN;
pResource->GetType(&dimension);
switch (dimension) {
case D3D11_RESOURCE_DIMENSION_TEXTURE1D:
return static_cast<D3D11Texture1D*>(pResource)->GetCommonTexture();
case D3D11_RESOURCE_DIMENSION_TEXTURE2D:
return static_cast<D3D11Texture2D*>(pResource)->GetCommonTexture();
2017-12-19 16:01:50 +01:00
case D3D11_RESOURCE_DIMENSION_TEXTURE3D:
return static_cast<D3D11Texture3D*>(pResource)->GetCommonTexture();
2017-12-19 16:01:50 +01:00
default:
return nullptr;
2017-12-19 16:01:50 +01:00
}
}
2017-11-27 15:52:24 +01:00
}