1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-01-06 17:46:07 +01:00
LibrePilot/flight/modules/VtolPathFollower/vtolpathfollower.c

737 lines
29 KiB
C
Raw Normal View History

/**
******************************************************************************
*
* @file vtolpathfollower.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012.
* @brief This module compared @ref PositionState to @ref PathDesired
* and sets @ref Stabilization. It only does this when the FlightMode field
* of @ref FlightStatus is PathPlanner or RTH.
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/**
* Input object: FlightStatus
* Input object: PathDesired
* Input object: PositionState
* Output object: StabilizationDesired
*
* This module will periodically update the value of the @ref StabilizationDesired object based on
* @ref PathDesired and @PositionState when the Flight Mode selected in @FlightStatus is supported
* by this module. Otherwise another module (e.g. @ref ManualControlCommand) is expected to be
* writing to @ref StabilizationDesired.
*
* The module executes in its own thread in this example.
*
* Modules have no API, all communication to other modules is done through UAVObjects.
* However modules may use the API exposed by shared libraries.
* See the OpenPilot wiki for more details.
* http://www.openpilot.org/OpenPilot_Application_Architecture
*
*/
#include <openpilot.h>
#include <pios_struct_helper.h>
#include "vtolpathfollower.h"
#include "accelstate.h"
#include "attitudestate.h"
#include "hwsettings.h"
#include "pathdesired.h" // object that will be updated by the module
#include "positionstate.h"
2014-03-02 14:45:17 +01:00
#include "manualcontrolcommand.h"
#include "flightstatus.h"
#include "pathstatus.h"
2013-05-22 21:45:06 +02:00
#include "gpsvelocitysensor.h"
#include "gpspositionsensor.h"
2012-11-06 10:13:09 +01:00
#include "homelocation.h"
#include "vtolpathfollowersettings.h"
#include "nedaccel.h"
#include "stabilizationdesired.h"
#include "stabilizationsettings.h"
#include "stabilizationbank.h"
#include "systemsettings.h"
#include "velocitydesired.h"
#include "velocitystate.h"
#include "taskinfo.h"
#include "paths.h"
#include "CoordinateConversions.h"
#include <sanitycheck.h>
#include "cameradesired.h"
#include "poilearnsettings.h"
#include "poilocation.h"
#include "accessorydesired.h"
// Private constants
#define MAX_QUEUE_SIZE 4
2012-03-10 07:51:57 +01:00
#define STACK_SIZE_BYTES 1548
#define TASK_PRIORITY (tskIDLE_PRIORITY + 2)
// Private types
// Private variables
static xTaskHandle pathfollowerTaskHandle;
static PathStatusData pathStatus;
static VtolPathFollowerSettingsData vtolpathfollowerSettings;
static float poiRadius;
// Private functions
static void vtolPathFollowerTask(void *parameters);
static void SettingsUpdatedCb(UAVObjEvent *ev);
static void updateNedAccel();
static void updatePOIBearing();
static void updatePathVelocity();
static void updateEndpointVelocity();
static void updateFixedAttitude(float *attitude);
static void updateVtolDesiredAttitude(bool yaw_attitude);
static bool vtolpathfollower_enabled;
static void accessoryUpdated(UAVObjEvent *ev);
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
int32_t VtolPathFollowerStart()
{
if (vtolpathfollower_enabled) {
// Start main task
xTaskCreate(vtolPathFollowerTask, "VtolPathFollower", STACK_SIZE_BYTES / 4, NULL, TASK_PRIORITY, &pathfollowerTaskHandle);
PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_PATHFOLLOWER, pathfollowerTaskHandle);
}
return 0;
}
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
int32_t VtolPathFollowerInitialize()
{
HwSettingsOptionalModulesData optionalModules;
HwSettingsOptionalModulesGet(&optionalModules);
FrameType_t frameType = GetCurrentFrameType();
if ((optionalModules.VtolPathFollower == HWSETTINGS_OPTIONALMODULES_ENABLED) ||
(frameType == FRAME_TYPE_MULTIROTOR)) {
VtolPathFollowerSettingsInitialize();
NedAccelInitialize();
PathDesiredInitialize();
PathStatusInitialize();
VelocityDesiredInitialize();
CameraDesiredInitialize();
AccessoryDesiredInitialize();
PoiLearnSettingsInitialize();
PoiLocationInitialize();
vtolpathfollower_enabled = true;
} else {
vtolpathfollower_enabled = false;
}
return 0;
}
MODULE_INITCALL(VtolPathFollowerInitialize, VtolPathFollowerStart);
static float northVelIntegral = 0;
static float eastVelIntegral = 0;
static float downVelIntegral = 0;
static float northPosIntegral = 0;
static float eastPosIntegral = 0;
static float downPosIntegral = 0;
static float thrustOffset = 0;
/**
* Module thread, should not return.
*/
static void vtolPathFollowerTask(__attribute__((unused)) void *parameters)
{
SystemSettingsData systemSettings;
FlightStatusData flightStatus;
portTickType lastUpdateTime;
VtolPathFollowerSettingsConnectCallback(SettingsUpdatedCb);
AccessoryDesiredConnectCallback(accessoryUpdated);
VtolPathFollowerSettingsGet(&vtolpathfollowerSettings);
// Main task loop
lastUpdateTime = xTaskGetTickCount();
while (1) {
// Conditions when this runs:
// 1. Must have VTOL type airframe
// 2. Flight mode is PositionHold and PathDesired.Mode is Endpoint OR
// FlightMode is PathPlanner and PathDesired.Mode is Endpoint or Path
SystemSettingsGet(&systemSettings);
if ((systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_VTOL) && (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_QUADP)
&& (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_OCTOCOAXX) && (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_QUADX)
&& (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_HEXA) && (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_HEXAX)
&& (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_HEXACOAX) && (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_OCTO)
&& (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_OCTOV) && (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_OCTOCOAXP)
2014-07-16 20:39:12 +02:00
&& (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_TRI) && (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_HEXAH)
&& (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_OCTOX)) {
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_WARNING);
vTaskDelay(1000);
continue;
}
// Continue collecting data if not enough time
vTaskDelayUntil(&lastUpdateTime, vtolpathfollowerSettings.UpdatePeriod / portTICK_RATE_MS);
// Convert the accels into the NED frame
updateNedAccel();
FlightStatusGet(&flightStatus);
PathStatusGet(&pathStatus);
PathDesiredData pathDesired;
PathDesiredGet(&pathDesired);
// Check the combinations of flightmode and pathdesired mode
if (flightStatus.ControlChain.PathFollower == FLIGHTSTATUS_CONTROLCHAIN_TRUE) {
if (flightStatus.ControlChain.PathPlanner == FLIGHTSTATUS_CONTROLCHAIN_FALSE) {
if (flightStatus.FlightMode == FLIGHTSTATUS_FLIGHTMODE_POI) {
if (pathDesired.Mode == PATHDESIRED_MODE_FLYENDPOINT) {
updateEndpointVelocity();
updateVtolDesiredAttitude(true);
updatePOIBearing();
} else {
2014-04-29 22:25:49 +02:00
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_CRITICAL);
}
} else {
if (pathDesired.Mode == PATHDESIRED_MODE_FLYENDPOINT) {
updateEndpointVelocity();
updateVtolDesiredAttitude(false);
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
} else {
2014-04-29 22:25:49 +02:00
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_CRITICAL);
}
}
} else {
pathStatus.UID = pathDesired.UID;
pathStatus.Status = PATHSTATUS_STATUS_INPROGRESS;
switch (pathDesired.Mode) {
// TODO: Make updateVtolDesiredAttitude and velocity report success and update PATHSTATUS_STATUS accordingly
case PATHDESIRED_MODE_FLYENDPOINT:
case PATHDESIRED_MODE_FLYVECTOR:
case PATHDESIRED_MODE_FLYCIRCLERIGHT:
case PATHDESIRED_MODE_FLYCIRCLELEFT:
updatePathVelocity();
updateVtolDesiredAttitude(false);
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
break;
case PATHDESIRED_MODE_FIXEDATTITUDE:
updateFixedAttitude(pathDesired.ModeParameters);
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
break;
case PATHDESIRED_MODE_DISARMALARM:
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_CRITICAL);
break;
default:
pathStatus.Status = PATHSTATUS_STATUS_CRITICAL;
2014-04-29 22:25:49 +02:00
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_CRITICAL);
break;
}
PathStatusSet(&pathStatus);
}
} else {
// Be cleaner and get rid of global variables
northVelIntegral = 0;
eastVelIntegral = 0;
downVelIntegral = 0;
northPosIntegral = 0;
eastPosIntegral = 0;
downPosIntegral = 0;
// Track thrust before engaging this mode. Cheap system ident
StabilizationDesiredData stabDesired;
StabilizationDesiredGet(&stabDesired);
thrustOffset = stabDesired.Thrust;
}
AlarmsClear(SYSTEMALARMS_ALARM_GUIDANCE);
}
}
/**
* Compute bearing and elevation between current position and POI
*/
static void updatePOIBearing()
{
const float DEADBAND_HIGH = 0.10f;
const float DEADBAND_LOW = -0.10f;
float dT = vtolpathfollowerSettings.UpdatePeriod / 1000.0f;
PathDesiredData pathDesired;
PathDesiredGet(&pathDesired);
PositionStateData positionState;
PositionStateGet(&positionState);
CameraDesiredData cameraDesired;
CameraDesiredGet(&cameraDesired);
StabilizationDesiredData stabDesired;
StabilizationDesiredGet(&stabDesired);
PoiLocationData poi;
PoiLocationGet(&poi);
float dLoc[3];
float yaw = 0;
/*float elevation = 0;*/
dLoc[0] = positionState.North - poi.North;
dLoc[1] = positionState.East - poi.East;
dLoc[2] = positionState.Down - poi.Down;
if (dLoc[1] < 0) {
yaw = RAD2DEG(atan2f(dLoc[1], dLoc[0])) + 180.0f;
} else {
yaw = RAD2DEG(atan2f(dLoc[1], dLoc[0])) - 180.0f;
}
// distance
float distance = sqrtf(powf(dLoc[0], 2.0f) + powf(dLoc[1], 2.0f));
ManualControlCommandData manualControlData;
ManualControlCommandGet(&manualControlData);
float changeRadius = 0;
// Move closer or further, radially
if (manualControlData.Pitch > DEADBAND_HIGH) {
changeRadius = (manualControlData.Pitch - DEADBAND_HIGH) * dT * 100.0f;
} else if (manualControlData.Pitch < DEADBAND_LOW) {
changeRadius = (manualControlData.Pitch - DEADBAND_LOW) * dT * 100.0f;
}
// move along circular path
float pathAngle = 0;
if (manualControlData.Roll > DEADBAND_HIGH) {
pathAngle = -(manualControlData.Roll - DEADBAND_HIGH) * dT * 300.0f;
} else if (manualControlData.Roll < DEADBAND_LOW) {
pathAngle = -(manualControlData.Roll - DEADBAND_LOW) * dT * 300.0f;
} else if (manualControlData.Roll >= DEADBAND_LOW && manualControlData.Roll <= DEADBAND_HIGH) {
// change radius only when not circling
poiRadius = distance + changeRadius;
}
// don't try to move any closer
if (poiRadius >= 3.0f || changeRadius > 0) {
if (fabsf(pathAngle) > 0.0f || fabsf(changeRadius) > 0.0f) {
pathDesired.End.North = poi.North + (poiRadius * cosf(DEG2RAD(pathAngle + yaw - 180.0f)));
pathDesired.End.East = poi.East + (poiRadius * sinf(DEG2RAD(pathAngle + yaw - 180.0f)));
pathDesired.StartingVelocity = 1.0f;
pathDesired.EndingVelocity = 0.0f;
pathDesired.Mode = PATHDESIRED_MODE_FLYENDPOINT;
PathDesiredSet(&pathDesired);
}
}
// not above
if (distance >= 3.0f) {
// You can feed this into camerastabilization
/*elevation = RAD2DEG(atan2f(dLoc[2],distance));*/
stabDesired.Yaw = yaw + (pathAngle / 2.0f);
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
// cameraDesired.Yaw=yaw;
// cameraDesired.PitchOrServo2=elevation;
CameraDesiredSet(&cameraDesired);
StabilizationDesiredSet(&stabDesired);
}
}
/**
* Compute desired velocity from the current position and path
*
* Takes in @ref PositionState and compares it to @ref PathDesired
* and computes @ref VelocityDesired
*/
static void updatePathVelocity()
{
float dT = vtolpathfollowerSettings.UpdatePeriod / 1000.0f;
PathDesiredData pathDesired;
PathDesiredGet(&pathDesired);
PositionStateData positionState;
PositionStateGet(&positionState);
float current_position[3] = { positionState.North, positionState.East, positionState.Down };
struct path_status progress;
path_progress(
cast_struct_to_array(pathDesired.Start, pathDesired.Start.North),
cast_struct_to_array(pathDesired.End, pathDesired.End.North),
current_position, &progress, pathDesired.Mode);
float speed;
switch (pathDesired.Mode) {
case PATHDESIRED_MODE_FLYCIRCLERIGHT:
case PATHDESIRED_MODE_DRIVECIRCLERIGHT:
case PATHDESIRED_MODE_FLYCIRCLELEFT:
case PATHDESIRED_MODE_DRIVECIRCLELEFT:
speed = pathDesired.EndingVelocity;
break;
case PATHDESIRED_MODE_FLYENDPOINT:
case PATHDESIRED_MODE_DRIVEENDPOINT:
speed = pathDesired.EndingVelocity - pathDesired.EndingVelocity * boundf(progress.fractional_progress, 0, 1);
if (progress.fractional_progress > 1) {
speed = 0;
}
break;
case PATHDESIRED_MODE_FLYVECTOR:
case PATHDESIRED_MODE_DRIVEVECTOR:
default:
speed = pathDesired.StartingVelocity
+ (pathDesired.EndingVelocity - pathDesired.StartingVelocity) * boundf(progress.fractional_progress, 0, 1);
if (progress.fractional_progress > 1) {
speed = 0;
}
break;
}
VelocityDesiredData velocityDesired;
northPosIntegral += progress.correction_direction[0] * progress.error * vtolpathfollowerSettings.HorizontalPosPI.Ki * dT;
eastPosIntegral += progress.correction_direction[1] * progress.error * vtolpathfollowerSettings.HorizontalPosPI.Ki * dT;
downPosIntegral += progress.correction_direction[2] * progress.error * vtolpathfollowerSettings.VerticalPosPI.Ki * dT;
northPosIntegral = boundf(northPosIntegral, -vtolpathfollowerSettings.HorizontalPosPI.ILimit,
vtolpathfollowerSettings.HorizontalPosPI.ILimit);
eastPosIntegral = boundf(eastPosIntegral, -vtolpathfollowerSettings.HorizontalPosPI.ILimit,
vtolpathfollowerSettings.HorizontalPosPI.ILimit);
downPosIntegral = boundf(downPosIntegral, -vtolpathfollowerSettings.VerticalPosPI.ILimit,
vtolpathfollowerSettings.VerticalPosPI.ILimit);
velocityDesired.North = progress.path_direction[0] * speed + northPosIntegral +
progress.correction_direction[0] * progress.error * vtolpathfollowerSettings.HorizontalPosPI.Kp;
velocityDesired.East = progress.path_direction[1] * speed + eastPosIntegral +
progress.correction_direction[1] * progress.error * vtolpathfollowerSettings.HorizontalPosPI.Kp;
velocityDesired.Down = progress.path_direction[2] * speed + downPosIntegral +
progress.correction_direction[2] * progress.error * vtolpathfollowerSettings.VerticalPosPI.Kp;
// Make sure the desired velocities don't exceed PathFollower limits.
float groundspeedDesired = sqrtf(powf(velocityDesired.North, 2) + powf(velocityDesired.East, 2));
if (groundspeedDesired > vtolpathfollowerSettings.HorizontalVelMax) {
velocityDesired.North *= vtolpathfollowerSettings.HorizontalVelMax / groundspeedDesired;
velocityDesired.East *= vtolpathfollowerSettings.HorizontalVelMax / groundspeedDesired;
}
velocityDesired.Down = boundf(velocityDesired.Down, -vtolpathfollowerSettings.VerticalVelMax, vtolpathfollowerSettings.VerticalVelMax);
// update pathstatus
pathStatus.error = progress.error;
pathStatus.fractional_progress = progress.fractional_progress;
pathStatus.path_direction_north = progress.path_direction[0];
pathStatus.path_direction_east = progress.path_direction[1];
pathStatus.path_direction_down = progress.path_direction[2];
pathStatus.correction_direction_north = progress.correction_direction[0];
pathStatus.correction_direction_east = progress.correction_direction[1];
pathStatus.correction_direction_down = progress.correction_direction[2];
VelocityDesiredSet(&velocityDesired);
}
/**
* Compute desired velocity from the current position
*
* Takes in @ref PositionState and compares it to @ref PositionDesired
* and computes @ref VelocityDesired
*/
void updateEndpointVelocity()
{
float dT = vtolpathfollowerSettings.UpdatePeriod / 1000.0f;
PathDesiredData pathDesired;
PathDesiredGet(&pathDesired);
PositionStateData positionState;
VelocityDesiredData velocityDesired;
PositionStateGet(&positionState);
VelocityDesiredGet(&velocityDesired);
float northError;
float eastError;
float downError;
float northCommand;
float eastCommand;
float downCommand;
// Compute desired north command
northError = pathDesired.End.North - positionState.North;
northPosIntegral = boundf(northPosIntegral + northError * dT * vtolpathfollowerSettings.HorizontalPosPI.Ki,
-vtolpathfollowerSettings.HorizontalPosPI.ILimit,
vtolpathfollowerSettings.HorizontalPosPI.ILimit);
northCommand = (northError * vtolpathfollowerSettings.HorizontalPosPI.Kp + northPosIntegral);
eastError = pathDesired.End.East - positionState.East;
eastPosIntegral = boundf(eastPosIntegral + eastError * dT * vtolpathfollowerSettings.HorizontalPosPI.Ki,
-vtolpathfollowerSettings.HorizontalPosPI.ILimit,
vtolpathfollowerSettings.HorizontalPosPI.ILimit);
eastCommand = (eastError * vtolpathfollowerSettings.HorizontalPosPI.Kp + eastPosIntegral);
// Limit the maximum velocity
float total_vel = sqrtf(powf(northCommand, 2) + powf(eastCommand, 2));
float scale = 1;
if (total_vel > vtolpathfollowerSettings.HorizontalVelMax) {
scale = vtolpathfollowerSettings.HorizontalVelMax / total_vel;
}
velocityDesired.North = northCommand * scale;
velocityDesired.East = eastCommand * scale;
downError = pathDesired.End.Down - positionState.Down;
downPosIntegral = boundf(downPosIntegral + downError * dT * vtolpathfollowerSettings.VerticalPosPI.Ki,
-vtolpathfollowerSettings.VerticalPosPI.ILimit,
vtolpathfollowerSettings.VerticalPosPI.ILimit);
downCommand = (downError * vtolpathfollowerSettings.VerticalPosPI.Kp + downPosIntegral);
velocityDesired.Down = boundf(downCommand, -vtolpathfollowerSettings.VerticalVelMax, vtolpathfollowerSettings.VerticalVelMax);
VelocityDesiredSet(&velocityDesired);
}
/**
* Compute desired attitude from a fixed preset
*
*/
static void updateFixedAttitude(float *attitude)
{
StabilizationDesiredData stabDesired;
StabilizationDesiredGet(&stabDesired);
stabDesired.Roll = attitude[0];
stabDesired.Pitch = attitude[1];
stabDesired.Yaw = attitude[2];
stabDesired.Thrust = attitude[3];
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK;
stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
StabilizationDesiredSet(&stabDesired);
}
/**
* Compute desired attitude from the desired velocity
*
* Takes in @ref NedState which has the acceleration in the
* NED frame as the feedback term and then compares the
* @ref VelocityState against the @ref VelocityDesired
*/
static void updateVtolDesiredAttitude(bool yaw_attitude)
{
float dT = vtolpathfollowerSettings.UpdatePeriod / 1000.0f;
VelocityDesiredData velocityDesired;
VelocityStateData velocityState;
StabilizationDesiredData stabDesired;
AttitudeStateData attitudeState;
NedAccelData nedAccel;
StabilizationBankData stabSettings;
SystemSettingsData systemSettings;
float northError;
float northCommand;
float eastError;
float eastCommand;
float downError;
float downCommand;
SystemSettingsGet(&systemSettings);
VelocityStateGet(&velocityState);
VelocityDesiredGet(&velocityDesired);
StabilizationDesiredGet(&stabDesired);
VelocityDesiredGet(&velocityDesired);
AttitudeStateGet(&attitudeState);
StabilizationBankGet(&stabSettings);
NedAccelGet(&nedAccel);
float northVel = 0, eastVel = 0, downVel = 0;
switch (vtolpathfollowerSettings.VelocitySource) {
case VTOLPATHFOLLOWERSETTINGS_VELOCITYSOURCE_STATE_ESTIMATION:
northVel = velocityState.North;
eastVel = velocityState.East;
downVel = velocityState.Down;
break;
case VTOLPATHFOLLOWERSETTINGS_VELOCITYSOURCE_GPS_VELNED:
{
2013-05-22 21:45:06 +02:00
GPSVelocitySensorData gpsVelocity;
GPSVelocitySensorGet(&gpsVelocity);
northVel = gpsVelocity.North;
eastVel = gpsVelocity.East;
downVel = gpsVelocity.Down;
}
break;
case VTOLPATHFOLLOWERSETTINGS_VELOCITYSOURCE_GPS_GROUNDSPEED:
{
2013-05-22 21:45:06 +02:00
GPSPositionSensorData gpsPosition;
GPSPositionSensorGet(&gpsPosition);
northVel = gpsPosition.Groundspeed * cosf(DEG2RAD(gpsPosition.Heading));
eastVel = gpsPosition.Groundspeed * sinf(DEG2RAD(gpsPosition.Heading));
downVel = velocityState.Down;
}
break;
default:
PIOS_Assert(0);
break;
}
// Testing code - refactor into manual control command
ManualControlCommandData manualControlData;
ManualControlCommandGet(&manualControlData);
// Compute desired north command
northError = velocityDesired.North - northVel;
northVelIntegral = boundf(northVelIntegral + northError * dT * vtolpathfollowerSettings.HorizontalVelPID.Ki,
-vtolpathfollowerSettings.HorizontalVelPID.ILimit,
vtolpathfollowerSettings.HorizontalVelPID.ILimit);
northCommand = (northError * vtolpathfollowerSettings.HorizontalVelPID.Kp + northVelIntegral
- nedAccel.North * vtolpathfollowerSettings.HorizontalVelPID.Kd
+ velocityDesired.North * vtolpathfollowerSettings.VelocityFeedforward);
// Compute desired east command
eastError = velocityDesired.East - eastVel;
eastVelIntegral = boundf(eastVelIntegral + eastError * dT * vtolpathfollowerSettings.HorizontalVelPID.Ki,
-vtolpathfollowerSettings.HorizontalVelPID.ILimit,
vtolpathfollowerSettings.HorizontalVelPID.ILimit);
eastCommand = (eastError * vtolpathfollowerSettings.HorizontalVelPID.Kp + eastVelIntegral
- nedAccel.East * vtolpathfollowerSettings.HorizontalVelPID.Kd
+ velocityDesired.East * vtolpathfollowerSettings.VelocityFeedforward);
// Compute desired down command
downError = velocityDesired.Down - downVel;
// Must flip this sign
downError = -downError;
downVelIntegral = boundf(downVelIntegral + downError * dT * vtolpathfollowerSettings.VerticalVelPID.Ki,
-vtolpathfollowerSettings.VerticalVelPID.ILimit,
vtolpathfollowerSettings.VerticalVelPID.ILimit);
downCommand = (downError * vtolpathfollowerSettings.VerticalVelPID.Kp + downVelIntegral
- nedAccel.Down * vtolpathfollowerSettings.VerticalVelPID.Kd);
stabDesired.Thrust = boundf(downCommand + thrustOffset, 0, 1);
// Project the north and east command signals into the pitch and roll based on yaw. For this to behave well the
// craft should move similarly for 5 deg roll versus 5 deg pitch
stabDesired.Pitch = boundf(-northCommand * cosf(DEG2RAD(attitudeState.Yaw)) +
-eastCommand * sinf(DEG2RAD(attitudeState.Yaw)),
-vtolpathfollowerSettings.MaxRollPitch, vtolpathfollowerSettings.MaxRollPitch);
stabDesired.Roll = boundf(-northCommand * sinf(DEG2RAD(attitudeState.Yaw)) +
eastCommand * cosf(DEG2RAD(attitudeState.Yaw)),
-vtolpathfollowerSettings.MaxRollPitch, vtolpathfollowerSettings.MaxRollPitch);
if (vtolpathfollowerSettings.ThrustControl == VTOLPATHFOLLOWERSETTINGS_THRUSTCONTROL_FALSE) {
// For now override thrust with manual control. Disable at your risk, quad goes to China.
ManualControlCommandData manualControl;
ManualControlCommandGet(&manualControl);
stabDesired.Thrust = manualControl.Thrust;
}
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
if (yaw_attitude) {
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
} else {
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK;
stabDesired.Yaw = stabSettings.MaximumRate.Yaw * manualControlData.Yaw;
}
stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
StabilizationDesiredSet(&stabDesired);
}
/**
* Keep a running filtered version of the acceleration in the NED frame
*/
static void updateNedAccel()
{
float accel[3];
float q[4];
float Rbe[3][3];
float accel_ned[3];
// Collect downsampled attitude data
AccelStateData accelState;
AccelStateGet(&accelState);
accel[0] = accelState.x;
accel[1] = accelState.y;
accel[2] = accelState.z;
// rotate avg accels into earth frame and store it
AttitudeStateData attitudeState;
AttitudeStateGet(&attitudeState);
q[0] = attitudeState.q1;
q[1] = attitudeState.q2;
q[2] = attitudeState.q3;
q[3] = attitudeState.q4;
Quaternion2R(q, Rbe);
for (uint8_t i = 0; i < 3; i++) {
accel_ned[i] = 0;
for (uint8_t j = 0; j < 3; j++) {
accel_ned[i] += Rbe[j][i] * accel[j];
}
}
accel_ned[2] += 9.81f;
NedAccelData accelData;
NedAccelGet(&accelData);
accelData.North = accel_ned[0];
accelData.East = accel_ned[1];
accelData.Down = accel_ned[2];
NedAccelSet(&accelData);
}
static void SettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
VtolPathFollowerSettingsGet(&vtolpathfollowerSettings);
}
static void accessoryUpdated(UAVObjEvent *ev)
{
if (ev->obj != AccessoryDesiredHandle()) {
return;
}
AccessoryDesiredData accessory;
PoiLearnSettingsData poiLearn;
PoiLearnSettingsGet(&poiLearn);
if (poiLearn.Input != POILEARNSETTINGS_INPUT_NONE) {
if (AccessoryDesiredInstGet(poiLearn.Input - POILEARNSETTINGS_INPUT_ACCESSORY0, &accessory) == 0) {
if (accessory.AccessoryVal < -0.5f) {
PositionStateData positionState;
PositionStateGet(&positionState);
PoiLocationData poi;
PoiLocationGet(&poi);
poi.North = positionState.North;
poi.East = positionState.East;
poi.Down = positionState.Down;
PoiLocationSet(&poi);
}
}
}
}