1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-12-11 19:24:10 +01:00
LibrePilot/flight/PiOS/Common/pios_rfm22b.c

1894 lines
63 KiB
C
Raw Normal View History

2012-02-29 05:30:06 +01:00
/**
******************************************************************************
* @addtogroup PIOS PIOS Core hardware abstraction layer
* @{
* @addtogroup PIOS_RFM22B Radio Functions
* @brief PIOS interface for for the RFM22B radio
* @{
*
* @file pios_rfm22b.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012.
* @brief Implements a driver the the RFM22B driver
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
2012-02-29 05:30:06 +01:00
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
// *****************************************************************
// RFM22B hardware layer
//
// This module uses the RFM22B's internal packet handling hardware to
// encapsulate our own packet data.
//
// The RFM22B internal hardware packet handler configuration is as follows ..
//
// 4-byte (32-bit) preamble .. alternating 0's & 1's
// 4-byte (32-bit) sync
// 1-byte packet length (number of data bytes to follow)
// 0 to 255 user data bytes
//
// Our own packet data will also contain it's own header and 32-bit CRC
// as a single 16-bit CRC is not sufficient for wireless comms.
//
// *****************************************************************
2012-02-29 05:30:06 +01:00
/* Project Includes */
#include "pios.h"
#if defined(PIOS_INCLUDE_RFM22B)
#include <pios_spi_priv.h>
#include <packet_handler.h>
#include <pios_rfm22b_priv.h>
2012-03-08 02:05:42 +01:00
/* Local Defines */
#define STACK_SIZE_BYTES 200
#define TASK_PRIORITY (tskIDLE_PRIORITY + 2)
#define ISR_TIMEOUT 5 // ms
#define EVENT_QUEUE_SIZE 5
#define PACKET_QUEUE_SIZE 3
2012-02-29 05:30:06 +01:00
// RTC timer is running at 625Hz (1.6ms or 5 ticks == 8ms).
// A 256 byte message at 56kbps should take less than 40ms
// Note: This timeout should be rate dependent.
#define PIOS_RFM22B_SUPERVISOR_TIMEOUT 100 // ms
// this is too adjust the RF module so that it is on frequency
#define OSC_LOAD_CAP 0x7F // cap = 12.5pf .. default
#define OSC_LOAD_CAP_1 0x7D // board 1
#define OSC_LOAD_CAP_2 0x7B // board 2
#define OSC_LOAD_CAP_3 0x7E // board 3
#define OSC_LOAD_CAP_4 0x7F // board 4
// ************************************
2012-02-29 05:30:06 +01:00
#define TX_PREAMBLE_NIBBLES 12 // 7 to 511 (number of nibbles)
#define RX_PREAMBLE_NIBBLES 6 // 5 to 31 (number of nibbles)
// the size of the rf modules internal FIFO buffers
#define FIFO_SIZE 64
#define TX_FIFO_HI_WATERMARK 62 // 0-63
#define TX_FIFO_LO_WATERMARK 32 // 0-63
#define RX_FIFO_HI_WATERMARK 32 // 0-63
#define PREAMBLE_BYTE 0x55 // preamble byte (preceeds SYNC_BYTE's)
#define SYNC_BYTE_1 0x2D // RF sync bytes (32-bit in all)
#define SYNC_BYTE_2 0xD4 //
#define SYNC_BYTE_3 0x4B //
#define SYNC_BYTE_4 0x59 //
// ************************************
// the default RF datarate
//#define RFM22_DEFAULT_RF_DATARATE 500 // 500 bits per sec
//#define RFM22_DEFAULT_RF_DATARATE 1000 // 1k bits per sec
//#define RFM22_DEFAULT_RF_DATARATE 2000 // 2k bits per sec
//#define RFM22_DEFAULT_RF_DATARATE 4000 // 4k bits per sec
//#define RFM22_DEFAULT_RF_DATARATE 8000 // 8k bits per sec
//#define RFM22_DEFAULT_RF_DATARATE 9600 // 9.6k bits per sec
//#define RFM22_DEFAULT_RF_DATARATE 16000 // 16k bits per sec
//#define RFM22_DEFAULT_RF_DATARATE 19200 // 19k2 bits per sec
//#define RFM22_DEFAULT_RF_DATARATE 24000 // 24k bits per sec
//#define RFM22_DEFAULT_RF_DATARATE 32000 // 32k bits per sec
//#define RFM22_DEFAULT_RF_DATARATE 64000 // 64k bits per sec
#define RFM22_DEFAULT_RF_DATARATE 128000 // 128k bits per sec
//#define RFM22_DEFAULT_RF_DATARATE 192000 // 192k bits per sec
//#define RFM22_DEFAULT_RF_DATARATE 256000 // 256k bits per sec .. NOT YET WORKING
// ************************************
#define RFM22_DEFAULT_SS_RF_DATARATE 125 // 128bps
#ifndef RX_LED_ON
#define RX_LED_ON
#define RX_LED_OFF
#define TX_LED_ON
#define TX_LED_OFF
#define LINK_LED_ON
#define LINK_LED_OFF
#define USB_LED_ON
#define USB_LED_OFF
#endif
// ************************************
// Normal data streaming
// GFSK modulation
// no manchester encoding
// data whitening
// FIFO mode
// 5-nibble rx preamble length detection
// 10-nibble tx preamble length
// AFC enabled
/* Local type definitions */
2012-02-29 05:30:06 +01:00
enum pios_rfm22b_dev_magic {
PIOS_RFM22B_DEV_MAGIC = 0x68e971b6,
};
enum pios_rfm22b_state {
RFM22B_STATE_UNINITIALIZED,
RFM22B_STATE_INITIALIZING,
RFM22B_STATE_RX_MODE,
RFM22B_STATE_WAIT_PREAMBLE,
RFM22B_STATE_WAIT_SYNC,
RFM22B_STATE_RX_DATA,
RFM22B_STATE_TX_START,
RFM22B_STATE_TX_DATA,
RFM22B_STATE_TIMEOUT,
RFM22B_STATE_ERROR,
RFM22B_STATE_FATAL_ERROR,
RFM22B_STATE_NUM_STATES // Must be last
};
enum pios_rfm22b_event {
RFM22B_EVENT_INITIALIZE,
RFM22B_EVENT_INITIALIZED,
RFM22B_EVENT_INT_RECEIVED,
RFM22B_EVENT_RX_MODE,
RFM22B_EVENT_PREAMBLE_DETECTED,
RFM22B_EVENT_SYNC_DETECTED,
RFM22B_EVENT_RX_COMPLETE,
RFM22B_EVENT_SEND_PACKET,
RFM22B_EVENT_TX_START,
RFM22B_EVENT_TX_STARTED,
RFM22B_EVENT_TX_COMPLETE,
RFM22B_EVENT_TIMEOUT,
RFM22B_EVENT_ERROR,
RFM22B_EVENT_FATAL_ERROR,
RFM22B_EVENT_NUM_EVENTS // Must be last
};
2012-02-29 05:30:06 +01:00
struct pios_rfm22b_dev {
enum pios_rfm22b_dev_magic magic;
2012-05-07 05:47:21 +02:00
struct pios_rfm22b_cfg cfg;
2012-02-29 05:30:06 +01:00
uint32_t spi_id;
uint32_t slave_num;
uint32_t deviceID;
2012-02-29 05:30:06 +01:00
// The task handle
xTaskHandle taskHandle;
// ISR pending
xSemaphoreHandle isrPending;
// Receive packet complete
xSemaphoreHandle rxsem;
// The COM callback functions.
2012-02-29 05:30:06 +01:00
pios_com_callback rx_in_cb;
uint32_t rx_in_context;
pios_com_callback tx_out_cb;
uint32_t tx_out_context;
// the transmit power to use for data transmissions
uint8_t tx_power;
// The state machine state and the current event
enum pios_rfm22b_state state;
// The event queue handle
xQueueHandle eventQueue;
// device status register
uint8_t device_status;
// interrupt status register 1
uint8_t int_status1;
// interrupt status register 2
uint8_t int_status2;
// ezmac status register
uint8_t ezmac_status;
// Stats
uint16_t resets;
uint32_t errors;
uint32_t irqs_processed;
// the current RSSI (register value)
uint8_t rssi;
// RSSI in dBm
int8_t rssi_dBm;
// The packet queue handle
xQueueHandle packetQueue;
// The current tx packet
PHPacketHandle tx_packet;
// the tx data read index
uint16_t tx_data_rd;
// the tx data write index
uint16_t tx_data_wr;
// The current rx packet
PHPacketHandle rx_packet;
// The previous rx packet
PHPacketHandle rx_packet_prev;
// The next rx packet
PHPacketHandle rx_packet_next;
// the receive buffer write index
uint16_t rx_buffer_wr;
// the receive buffer write index
uint16_t rx_packet_len;
// The frequency hopping step size
float frequency_step_size;
// current frequency hop channel
uint8_t frequency_hop_channel;
// the frequency hop step size
uint8_t frequency_hop_step_size_reg;
// afc correction reading (in Hz)
int32_t afc_correction_Hz;
int8_t rx_packet_start_afc_Hz;
// The maximum time (ms) that it should take to transmit / receive a packet.
uint32_t max_packet_time;
portTickType packet_start_time;
};
struct pios_rfm22b_transition {
enum pios_rfm22b_event (*entry_fn) (struct pios_rfm22b_dev *rfm22b_dev);
enum pios_rfm22b_state next_state[RFM22B_EVENT_NUM_EVENTS];
2012-02-29 05:30:06 +01:00
};
// Must ensure these prefilled arrays match the define sizes
static const uint8_t FULL_PREAMBLE[FIFO_SIZE] =
{PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,
PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,
PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,
PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,
PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,
PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,
PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,
PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,
PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,
PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,
PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,
PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,
PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE}; // 64 bytes
static const uint8_t HEADER[(TX_PREAMBLE_NIBBLES + 1)/2 + 2] = {PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE,PREAMBLE_BYTE, PREAMBLE_BYTE, SYNC_BYTE_1, SYNC_BYTE_2};
static const uint8_t OUT_FF[64] = {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF};
/* Local function forwared declarations */
static void PIOS_RFM22B_Task(void *parameters);
static void PIOS_RFM22B_InjectEvent(struct pios_rfm22b_dev *rfm22b_dev, enum pios_rfm22b_event event, bool inISR);
static bool rfm22_readStatus(struct pios_rfm22b_dev *rfm22b_dev);
static enum pios_rfm22b_event rfm22_setRxMode(struct pios_rfm22b_dev *rfm22b_dev);
static enum pios_rfm22b_event rfm22_detectPreamble(struct pios_rfm22b_dev *rfm22b_dev);
static enum pios_rfm22b_event rfm22_detectSync(struct pios_rfm22b_dev *rfm22b_dev);
static enum pios_rfm22b_event rfm22_rxData(struct pios_rfm22b_dev *rfm22b_dev);
static enum pios_rfm22b_event rfm22_init(struct pios_rfm22b_dev *rfm22b_dev);
static enum pios_rfm22b_event rfm22_txStart(struct pios_rfm22b_dev *rfm22b_dev);
static enum pios_rfm22b_event rfm22_txData(struct pios_rfm22b_dev *rfm22b_dev);
static enum pios_rfm22b_event rfm22_process_state_transition(struct pios_rfm22b_dev *rfm22b_dev, enum pios_rfm22b_event event);
static enum pios_rfm22b_event rfm22_timeout(struct pios_rfm22b_dev *rfm22b_dev);
static enum pios_rfm22b_event rfm22_error(struct pios_rfm22b_dev *rfm22b_dev);
static enum pios_rfm22b_event rfm22_fatal_error(struct pios_rfm22b_dev *rfm22b_dev);
// SPI read/write functions
static void rfm22_assertCs();
static void rfm22_deassertCs();
static void rfm22_claimBus();
static void rfm22_releaseBus();
static void rfm22_write(uint8_t addr, uint8_t data);
static uint8_t rfm22_read(uint8_t addr);
static uint8_t rfm22_read_noclaim(uint8_t addr);
/* Provide a COM driver */
static void PIOS_RFM22B_ChangeBaud(uint32_t rfm22b_id, uint32_t baud);
static void PIOS_RFM22B_RegisterRxCallback(uint32_t rfm22b_id, pios_com_callback rx_in_cb, uint32_t context);
static void PIOS_RFM22B_RegisterTxCallback(uint32_t rfm22b_id, pios_com_callback tx_out_cb, uint32_t context);
static void PIOS_RFM22B_TxStart(uint32_t rfm22b_id, uint16_t tx_bytes_avail);
static void PIOS_RFM22B_RxStart(uint32_t rfm22b_id, uint16_t rx_bytes_avail);
/* Local variables */
const struct pios_com_driver pios_rfm22b_com_driver = {
.set_baud = PIOS_RFM22B_ChangeBaud,
.tx_start = PIOS_RFM22B_TxStart,
.rx_start = PIOS_RFM22B_RxStart,
.bind_tx_cb = PIOS_RFM22B_RegisterTxCallback,
.bind_rx_cb = PIOS_RFM22B_RegisterRxCallback,
};
/* Te state transition table */
const static struct pios_rfm22b_transition rfm22b_transitions[RFM22B_STATE_NUM_STATES] = {
[RFM22B_STATE_UNINITIALIZED] = {
.entry_fn = 0,
.next_state = {
[RFM22B_EVENT_INITIALIZE] = RFM22B_STATE_INITIALIZING,
[RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR,
},
},
[RFM22B_STATE_INITIALIZING] = {
.entry_fn = rfm22_init,
.next_state = {
[RFM22B_EVENT_INITIALIZED] = RFM22B_STATE_TX_START,
[RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR,
[RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR,
},
},
[RFM22B_STATE_RX_MODE] = {
.entry_fn = rfm22_setRxMode,
.next_state = {
[RFM22B_EVENT_INT_RECEIVED] = RFM22B_STATE_WAIT_PREAMBLE,
[RFM22B_EVENT_SEND_PACKET] = RFM22B_STATE_TX_START,
[RFM22B_EVENT_TX_START] = RFM22B_STATE_TX_START,
[RFM22B_EVENT_TIMEOUT] = RFM22B_STATE_TIMEOUT,
[RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR,
[RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR,
},
},
[RFM22B_STATE_WAIT_PREAMBLE] = {
.entry_fn = rfm22_detectPreamble,
.next_state = {
[RFM22B_EVENT_INT_RECEIVED] = RFM22B_STATE_WAIT_PREAMBLE,
[RFM22B_EVENT_PREAMBLE_DETECTED] = RFM22B_STATE_WAIT_SYNC,
[RFM22B_EVENT_SEND_PACKET] = RFM22B_STATE_TX_START,
[RFM22B_EVENT_TX_START] = RFM22B_STATE_TX_START,
[RFM22B_EVENT_TIMEOUT] = RFM22B_STATE_TIMEOUT,
[RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR,
[RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR,
},
},
[RFM22B_STATE_WAIT_SYNC] = {
.entry_fn = rfm22_detectSync,
.next_state = {
[RFM22B_EVENT_INT_RECEIVED] = RFM22B_STATE_WAIT_SYNC,
[RFM22B_EVENT_SYNC_DETECTED] = RFM22B_STATE_RX_DATA,
[RFM22B_EVENT_TX_START] = RFM22B_STATE_TX_START,
[RFM22B_EVENT_TIMEOUT] = RFM22B_STATE_TIMEOUT,
[RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR,
[RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR,
},
},
[RFM22B_STATE_RX_DATA] = {
.entry_fn = rfm22_rxData,
.next_state = {
[RFM22B_EVENT_INT_RECEIVED] = RFM22B_STATE_RX_DATA,
[RFM22B_EVENT_RX_COMPLETE] = RFM22B_STATE_TX_START,
[RFM22B_EVENT_TIMEOUT] = RFM22B_STATE_TIMEOUT,
[RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR,
[RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR,
},
},
[RFM22B_STATE_TX_START] = {
.entry_fn = rfm22_txStart,
.next_state = {
[RFM22B_EVENT_INT_RECEIVED] = RFM22B_STATE_TX_DATA,
[RFM22B_EVENT_RX_MODE] = RFM22B_STATE_RX_MODE,
[RFM22B_EVENT_TIMEOUT] = RFM22B_STATE_TIMEOUT,
[RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR,
[RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR,
},
},
[RFM22B_STATE_TX_DATA] = {
.entry_fn = rfm22_txData,
.next_state = {
[RFM22B_EVENT_INT_RECEIVED] = RFM22B_STATE_TX_DATA,
[RFM22B_EVENT_TX_COMPLETE] = RFM22B_STATE_TX_START,
[RFM22B_EVENT_TIMEOUT] = RFM22B_STATE_TIMEOUT,
[RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR,
[RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR,
},
},
[RFM22B_STATE_TIMEOUT] = {
.entry_fn = rfm22_timeout,
.next_state = {
[RFM22B_EVENT_TX_START] = RFM22B_STATE_TX_START,
[RFM22B_EVENT_INITIALIZE] = RFM22B_STATE_INITIALIZING,
[RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR,
[RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR,
},
},
[RFM22B_STATE_ERROR] = {
.entry_fn = rfm22_error,
.next_state = {
[RFM22B_EVENT_INITIALIZE] = RFM22B_STATE_INITIALIZING,
[RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR,
[RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR,
},
},
[RFM22B_STATE_FATAL_ERROR] = {
.entry_fn = rfm22_fatal_error,
.next_state = {
[RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR,
[RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR,
},
},
};
// xtal 10 ppm, 434MHz
#define LOOKUP_SIZE 14
static const uint32_t data_rate[] = { 500, 1000, 2000, 4000, 8000, 9600, 16000, 19200, 24000, 32000, 64000, 128000, 192000, 256000};
static const uint8_t modulation_index[] = { 16, 8, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
static const uint32_t freq_deviation[] = { 4000, 4000, 4000, 4000, 4000, 4800, 8000, 9600, 12000, 16000, 32000, 64000, 96000, 128000};
static const uint32_t rx_bandwidth[] = { 17500, 17500, 17500, 17500, 17500, 19400, 32200, 38600, 51200, 64100, 137900, 269300, 420200, 518800};
static const int8_t est_rx_sens_dBm[] = { -118, -118, -117, -116, -115, -115, -112, -112, -110, -109, -106, -103, -101, -100}; // estimated receiver sensitivity for BER = 1E-3
static const uint8_t reg_1C[] = { 0x37, 0x37, 0x37, 0x37, 0x3A, 0x3B, 0x26, 0x28, 0x2E, 0x16, 0x07, 0x83, 0x8A, 0x8C}; // rfm22_if_filter_bandwidth
static const uint8_t reg_1D[] = { 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44}; // rfm22_afc_loop_gearshift_override
static const uint8_t reg_1E[] = { 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x02}; // rfm22_afc_timing_control
static const uint8_t reg_1F[] = { 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03}; // rfm22_clk_recovery_gearshift_override
static const uint8_t reg_20[] = { 0xE8, 0xF4, 0xFA, 0x70, 0x3F, 0x34, 0x3F, 0x34, 0x2A, 0x3F, 0x3F, 0x5E, 0x3F, 0x2F}; // rfm22_clk_recovery_oversampling_ratio
static const uint8_t reg_21[] = { 0x60, 0x20, 0x00, 0x01, 0x02, 0x02, 0x02, 0x02, 0x03, 0x02, 0x02, 0x01, 0x02, 0x02}; // rfm22_clk_recovery_offset2
static const uint8_t reg_22[] = { 0x20, 0x41, 0x83, 0x06, 0x0C, 0x75, 0x0C, 0x75, 0x12, 0x0C, 0x0C, 0x5D, 0x0C, 0xBB}; // rfm22_clk_recovery_offset1
static const uint8_t reg_23[] = { 0xC5, 0x89, 0x12, 0x25, 0x4A, 0x25, 0x4A, 0x25, 0x6F, 0x4A, 0x4A, 0x86, 0x4A, 0x0D}; // rfm22_clk_recovery_offset0
static const uint8_t reg_24[] = { 0x00, 0x00, 0x00, 0x02, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x05, 0x07, 0x07}; // rfm22_clk_recovery_timing_loop_gain1
static const uint8_t reg_25[] = { 0x0A, 0x23, 0x85, 0x0E, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x74, 0xFF, 0xFF}; // rfm22_clk_recovery_timing_loop_gain0
static const uint8_t reg_2A[] = { 0x0E, 0x0E, 0x0E, 0x0E, 0x0E, 0x0D, 0x0D, 0x0E, 0x12, 0x17, 0x31, 0x50, 0x50, 0x50}; // rfm22_afc_limiter .. AFC_pull_in_range = <20>AFCLimiter[7:0] x (hbsel+1) x 625 Hz
static const uint8_t reg_6E[] = { 0x04, 0x08, 0x10, 0x20, 0x41, 0x4E, 0x83, 0x9D, 0xC4, 0x08, 0x10, 0x20, 0x31, 0x41}; // rfm22_tx_data_rate1
static const uint8_t reg_6F[] = { 0x19, 0x31, 0x62, 0xC5, 0x89, 0xA5, 0x12, 0x49, 0x9C, 0x31, 0x62, 0xC5, 0x27, 0x89}; // rfm22_tx_data_rate0
static const uint8_t reg_70[] = { 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D}; // rfm22_modulation_mode_control1
static const uint8_t reg_71[] = { 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23}; // rfm22_modulation_mode_control2
static const uint8_t reg_72[] = { 0x06, 0x06, 0x06, 0x06, 0x06, 0x08, 0x0D, 0x0F, 0x13, 0x1A, 0x33, 0x66, 0x9A, 0xCD}; // rfm22_frequency_deviation
// ************************************
// Scan Spectrum settings
// GFSK modulation
// no manchester encoding
// data whitening
// FIFO mode
// 5-nibble rx preamble length detection
// 10-nibble tx preamble length
#define SS_LOOKUP_SIZE 2
// xtal 1 ppm, 434MHz
static const uint32_t ss_rx_bandwidth[] = { 2600, 10600};
static const uint8_t ss_reg_1C[] = { 0x51, 0x32}; // rfm22_if_filter_bandwidth
static const uint8_t ss_reg_1D[] = { 0x00, 0x00}; // rfm22_afc_loop_gearshift_override
static const uint8_t ss_reg_20[] = { 0xE8, 0x38}; // rfm22_clk_recovery_oversampling_ratio
static const uint8_t ss_reg_21[] = { 0x60, 0x02}; // rfm22_clk_recovery_offset2
static const uint8_t ss_reg_22[] = { 0x20, 0x4D}; // rfm22_clk_recovery_offset1
static const uint8_t ss_reg_23[] = { 0xC5, 0xD3}; // rfm22_clk_recovery_offset0
static const uint8_t ss_reg_24[] = { 0x00, 0x07}; // rfm22_clk_recovery_timing_loop_gain1
static const uint8_t ss_reg_25[] = { 0x0F, 0xFF}; // rfm22_clk_recovery_timing_loop_gain0
static const uint8_t ss_reg_2A[] = { 0xFF, 0xFF}; // rfm22_afc_limiter .. AFC_pull_in_range = <20>AFCLimiter[7:0] x (hbsel+1) x 625 Hz
static const uint8_t ss_reg_70[] = { 0x24, 0x2D}; // rfm22_modulation_mode_control1
static const uint8_t ss_reg_71[] = { 0x2B, 0x23}; // rfm22_modulation_mode_control2
2012-02-29 05:30:06 +01:00
static bool PIOS_RFM22B_validate(struct pios_rfm22b_dev * rfm22b_dev)
{
return (rfm22b_dev != NULL && rfm22b_dev->magic == PIOS_RFM22B_DEV_MAGIC);
2012-02-29 05:30:06 +01:00
}
#if defined(PIOS_INCLUDE_FREERTOS)
static struct pios_rfm22b_dev * PIOS_RFM22B_alloc(void)
{
struct pios_rfm22b_dev * rfm22b_dev;
rfm22b_dev = (struct pios_rfm22b_dev *)pvPortMalloc(sizeof(*rfm22b_dev));
rfm22b_dev->spi_id = 0;
2012-02-29 05:30:06 +01:00
if (!rfm22b_dev) return(NULL);
rfm22b_dev->magic = PIOS_RFM22B_DEV_MAGIC;
return(rfm22b_dev);
}
#else
static struct pios_rfm22b_dev pios_rfm22b_devs[PIOS_RFM22B_MAX_DEVS];
static uint8_t pios_rfm22b_num_devs;
static struct pios_rfm22b_dev * PIOS_RFM22B_alloc(void)
{
struct pios_rfm22b_dev * rfm22b_dev;
if (pios_rfm22b_num_devs >= PIOS_RFM22B_MAX_DEVS)
return NULL;
2012-02-29 05:30:06 +01:00
rfm22b_dev = &pios_rfm22b_devs[pios_rfm22b_num_devs++];
rfm22b_dev->magic = PIOS_RFM22B_DEV_MAGIC;
return (rfm22b_dev);
}
#endif
static struct pios_rfm22b_dev * g_rfm22b_dev = NULL;
2012-02-29 05:30:06 +01:00
/**
* Initialise an RFM22B device
*/
int32_t PIOS_RFM22B_Init(uint32_t *rfm22b_id, uint32_t spi_id, uint32_t slave_num, const struct pios_rfm22b_cfg *cfg)
2012-02-29 05:30:06 +01:00
{
PIOS_DEBUG_Assert(rfm22b_id);
PIOS_DEBUG_Assert(cfg);
// Allocate the device structure.
2012-06-06 06:10:32 +02:00
struct pios_rfm22b_dev * rfm22b_dev = (struct pios_rfm22b_dev *) PIOS_RFM22B_alloc();
2012-02-29 05:30:06 +01:00
if (!rfm22b_dev)
return(-1);
// Store the SPI handle
rfm22b_dev->slave_num = slave_num;
rfm22b_dev->spi_id = spi_id;
// Set the state to initializing.
rfm22b_dev->state = RFM22B_STATE_UNINITIALIZED;
// Create the event queue
rfm22b_dev->eventQueue = xQueueCreate(EVENT_QUEUE_SIZE, sizeof(enum pios_rfm22b_event));
// Initialize the register values.
rfm22b_dev->device_status = 0;
rfm22b_dev->int_status1 = 0;
rfm22b_dev->int_status2 = 0;
rfm22b_dev->ezmac_status = 0;
// Initialize the stats.
rfm22b_dev->resets = 0;
rfm22b_dev->errors = 0;
rfm22b_dev->irqs_processed = 0;
rfm22b_dev->rssi = 0;
rfm22b_dev->rssi_dBm = -127;
// Bind the configuration to the device instance
2012-05-07 05:47:21 +02:00
rfm22b_dev->cfg = *cfg;
// Initialize the packets.
rfm22b_dev->rx_packet = NULL;
rfm22b_dev->rx_packet_next = NULL;
rfm22b_dev->rx_packet_prev = NULL;
rfm22b_dev->rx_packet_len = 0;
rfm22b_dev->tx_packet = NULL;
2012-02-29 05:30:06 +01:00
*rfm22b_id = (uint32_t)rfm22b_dev;
g_rfm22b_dev = rfm22b_dev;
// Calculate the (approximate) maximum amount of time that it should take to transmit / receive a packet.
rfm22b_dev->max_packet_time = (uint16_t)((float)(PIOS_PH_MAX_PACKET * 8 * 1000) / (float)(rfm22b_dev->cfg.maxRFBandwidth) + 0.5);
rfm22b_dev->packet_start_time = 0;
// Create a semaphore to know if an ISR needs responding to
vSemaphoreCreateBinary( rfm22b_dev->isrPending );
2012-02-29 05:30:06 +01:00
// Create a semaphore to know when an rx packet is available
vSemaphoreCreateBinary( rfm22b_dev->rxsem );
// Create the packet queue.
rfm22b_dev->packetQueue = xQueueCreate(PACKET_QUEUE_SIZE, sizeof(PHPacketHandle));
// Initialize the max tx power level.
PIOS_RFM22B_SetTxPower(*rfm22b_id, cfg->maxTxPower);
// Create our (hopefully) unique 32 bit id from the processor serial number.
uint8_t crcs[] = { 0, 0, 0, 0 };
{
char serial_no_str[33];
PIOS_SYS_SerialNumberGet(serial_no_str);
// Create a 32 bit value using 4 8 bit CRC values.
for (uint8_t i = 0; serial_no_str[i] != 0; ++i)
crcs[i % 4] = PIOS_CRC_updateByte(crcs[i % 4], serial_no_str[i]);
}
rfm22b_dev->deviceID = crcs[0] | crcs[1] << 8 | crcs[2] << 16 | crcs[3] << 24;
DEBUG_PRINTF(2, "RF device ID: %x\n\r", rfm22b_dev->deviceID);
// Initialize the external interrupt.
PIOS_EXTI_Init(cfg->exti_cfg);
// Register the watchdog timer for the radio driver task
#ifdef PIOS_WDG_RFM22B
PIOS_WDG_RegisterFlag(PIOS_WDG_RFM22B);
#endif /* PIOS_WDG_RFM22B */
// Start the driver task. This task controls the radio state machine and removed all of the IO from the IRQ handler.
xTaskCreate(PIOS_RFM22B_Task, (signed char *)"PIOS_RFM22B_Task", STACK_SIZE_BYTES, (void*)rfm22b_dev, TASK_PRIORITY, &(rfm22b_dev->taskHandle));
// Initialize the radio device.
PIOS_RFM22B_InjectEvent(rfm22b_dev, RFM22B_EVENT_INITIALIZE, false);
2012-02-29 05:30:06 +01:00
return(0);
}
/**
* The RFM22B external interrupt routine.
*/
bool PIOS_RFM22_EXT_Int(void)
{
if (!PIOS_RFM22B_validate(g_rfm22b_dev))
return false;
// Inject an interrupt event into the state machine.
PIOS_RFM22B_InjectEvent(g_rfm22b_dev, RFM22B_EVENT_INT_RECEIVED, true);
return false;
}
/**
* Inject an event into the RFM22B state machine.
* \param[in] rfm22b_dev The device structure
* \param[in] event The event to inject
* \param[in] inISR Is this being called from an interrrup service routine?
*/
static void PIOS_RFM22B_InjectEvent(struct pios_rfm22b_dev *rfm22b_dev, enum pios_rfm22b_event event, bool inISR)
{
// Store the event.
if (xQueueSend(rfm22b_dev->eventQueue, &event, portMAX_DELAY) != pdTRUE)
return;
// Signal the semaphore to wake up the handler thread.
if (inISR) {
portBASE_TYPE pxHigherPriorityTaskWoken;
if (xSemaphoreGiveFromISR(rfm22b_dev->isrPending, &pxHigherPriorityTaskWoken) != pdTRUE) {
// Something went fairly seriously wrong
rfm22b_dev->errors++;
}
portEND_SWITCHING_ISR(pxHigherPriorityTaskWoken);
}
else
{
if (xSemaphoreGive(rfm22b_dev->isrPending) != pdTRUE) {
// Something went fairly seriously wrong
rfm22b_dev->errors++;
}
}
}
/**
* Returns the unique device ID for th RFM22B device.
* \param[in] rfm22b_id The RFM22B device index.
* \return The unique device ID
*/
uint32_t PIOS_RFM22B_DeviceID(uint32_t rfm22b_id)
{
struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
if(PIOS_RFM22B_validate(rfm22b_dev))
return rfm22b_dev->deviceID;
else
return 0;
}
void PIOS_RFM22B_SetTxPower(uint32_t rfm22b_id, uint8_t tx_pwr)
{
struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
if(!PIOS_RFM22B_validate(rfm22b_dev))
return;
switch (tx_pwr)
{
case 0: rfm22b_dev->tx_power = RFM22_tx_pwr_txpow_0; break; // +1dBm ... 1.25mW
case 1: rfm22b_dev->tx_power = RFM22_tx_pwr_txpow_1; break; // +2dBm ... 1.6mW
case 2: rfm22b_dev->tx_power = RFM22_tx_pwr_txpow_2; break; // +5dBm ... 3.16mW
case 3: rfm22b_dev->tx_power = RFM22_tx_pwr_txpow_3; break; // +8dBm ... 6.3mW
case 4: rfm22b_dev->tx_power = RFM22_tx_pwr_txpow_4; break; // +11dBm .. 12.6mW
case 5: rfm22b_dev->tx_power = RFM22_tx_pwr_txpow_5; break; // +14dBm .. 25mW
case 6: rfm22b_dev->tx_power = RFM22_tx_pwr_txpow_6; break; // +17dBm .. 50mW
case 7: rfm22b_dev->tx_power = RFM22_tx_pwr_txpow_7; break; // +20dBm .. 100mW
default: break;
}
}
int16_t PIOS_RFM22B_Resets(uint32_t rfm22b_id)
{
struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
return rfm22b_dev->resets;
}
2012-02-29 05:30:06 +01:00
static void PIOS_RFM22B_RxStart(uint32_t rfm22b_id, uint16_t rx_bytes_avail)
{
struct pios_rfm22b_dev * rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
bool valid = PIOS_RFM22B_validate(rfm22b_dev);
PIOS_Assert(valid);
}
2012-03-08 02:05:42 +01:00
/**
* Insert a packet on the packet queue for sending.
* Note: If this finction succedds, the packet will be released by the driver, so no release is necessary.
* If this function doesn't success, the caller is still responsible for the packet.
* \param[in] rfm22b_id The rfm22b device.
* \param[in] p The packet handle.
* \param[in] max_delay The maximum time to delay waiting to queue the packet.
* \return true on success, false on failue to queue the packet.
*/
bool PIOS_RFM22B_Send_Packet(uint32_t rfm22b_id, PHPacketHandle p, uint32_t max_delay)
{
struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
if(!PIOS_RFM22B_validate(rfm22b_dev))
return false;
// Store the packet handle in the packet queue
if (xQueueSend(rfm22b_dev->packetQueue, &p, max_delay) != pdTRUE)
return false;
// Inject a send packet event
PIOS_RFM22B_InjectEvent(g_rfm22b_dev, RFM22B_EVENT_SEND_PACKET, false);
// Success
return true;
}
/**
* Receive a packet from the radio.
* \param[in] rfm22b_id The rfm22b device.
* \param[in] p A pointer to the packet handle.
* \param[in] max_delay The maximum time to delay waiting for a packet.
* \return The number of bytes received.
*/
uint32_t PIOS_RFM22B_Receive_Packet(uint32_t rfm22b_id, PHPacketHandle *p, uint32_t max_delay)
{
struct pios_rfm22b_dev * rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
if (!PIOS_RFM22B_validate(rfm22b_dev))
return 0;
// Allocate the next Rx packet
if (rfm22b_dev->rx_packet_next == NULL)
rfm22b_dev->rx_packet_next = PHGetRXPacket(pios_packet_handler);
// Block on the semephore until the a packet has been received.
if (xSemaphoreTake(rfm22b_dev->rxsem, max_delay / portTICK_RATE_MS) != pdTRUE)
return 0;
// Return the Rx packet if it's available.
uint32_t rx_len = 0;
if (rfm22b_dev->rx_packet_prev)
{
*p = rfm22b_dev->rx_packet_prev;
rfm22b_dev->rx_packet_prev = NULL;
rx_len = rfm22b_dev->rx_packet_len;
}
return rx_len;
}
/**
* The task that controls the radio state machine.
*/
static void PIOS_RFM22B_Task(void *parameters)
{
struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)parameters;
if (!PIOS_RFM22B_validate(rfm22b_dev))
return;
static portTickType lastEventTime;
while(1)
{
#ifdef PIOS_WDG_RFM22B
// Update the watchdog timer
PIOS_WDG_UpdateFlag(PIOS_WDG_RFM22B);
#endif /* PIOS_WDG_RFM22B */
// Wait for a signal indicating an external interrupt or a pending send/receive request.
if ( xSemaphoreTake(g_rfm22b_dev->isrPending, ISR_TIMEOUT / portTICK_RATE_MS) == pdTRUE ) {
rfm22b_dev->irqs_processed++;
lastEventTime = xTaskGetTickCount();
// Process events through the state machine.
enum pios_rfm22b_event event;
while (xQueueReceive(rfm22b_dev->eventQueue, &event, 0) == pdTRUE)
{
if ((event == RFM22B_EVENT_INT_RECEIVED) &&
((rfm22b_dev->state == RFM22B_STATE_UNINITIALIZED) || (rfm22b_dev->state == RFM22B_STATE_INITIALIZING)))
continue;
// Process all state transitions.
while(event != RFM22B_EVENT_NUM_EVENTS)
event = rfm22_process_state_transition(rfm22b_dev, event);
}
}
else
{
// Has it been too long since the last event?
portTickType timeSinceEvent = xTaskGetTickCount() - lastEventTime;
if ((timeSinceEvent / portTICK_RATE_MS) > PIOS_RFM22B_SUPERVISOR_TIMEOUT)
{
// Transsition through an error event.
enum pios_rfm22b_event event = RFM22B_EVENT_ERROR;
while(event != RFM22B_EVENT_NUM_EVENTS)
event = rfm22_process_state_transition(rfm22b_dev, event);
// Clear the event queue.
while (xQueueReceive(rfm22b_dev->eventQueue, &event, 0) == pdTRUE)
;
lastEventTime = xTaskGetTickCount();
}
else
{
rfm22b_dev->resets = rfm22b_dev->state;
enum pios_rfm22b_event event = RFM22B_EVENT_TIMEOUT;
while(event != RFM22B_EVENT_NUM_EVENTS)
event = rfm22_process_state_transition(rfm22b_dev, event);
}
}
// Have we locked up sending / receiving a packet?
if (rfm22b_dev->packet_start_time > 0)
{
portTickType cur_time = xTaskGetTickCount();
// Did the clock wrap around?
if (cur_time < rfm22b_dev->packet_start_time)
rfm22b_dev->packet_start_time = (cur_time > 0) ? cur_time : 1;
// Have we been sending this packet too long?
if ((cur_time - rfm22b_dev->packet_start_time) > (rfm22b_dev->max_packet_time * 5))
{
enum pios_rfm22b_event event = RFM22B_EVENT_TIMEOUT;
while(event != RFM22B_EVENT_NUM_EVENTS)
event = rfm22_process_state_transition(rfm22b_dev, event);
}
}
}
}
2012-02-29 05:30:06 +01:00
static void PIOS_RFM22B_TxStart(uint32_t rfm22b_id, uint16_t tx_bytes_avail)
{
struct pios_rfm22b_dev * rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
bool valid = PIOS_RFM22B_validate(rfm22b_dev);
PIOS_Assert(valid);
#ifdef NEVER
// Get some data to send
bool need_yield = false;
2012-06-06 06:10:32 +02:00
if(tx_pre_buffer_size == 0)
tx_pre_buffer_size = (rfm22b_dev->tx_out_cb)(rfm22b_dev->tx_out_context, tx_pre_buffer,
2012-06-06 06:10:32 +02:00
TX_BUFFER_SIZE, NULL, &need_yield);
// Inject a send packet event
PIOS_RFM22B_InjectEvent(g_rfm22b_dev, RFM22B_EVENT_TX_START, false);
#endif
2012-02-29 05:30:06 +01:00
}
/**
* Changes the baud rate of the RFM22B peripheral without re-initialising.
* \param[in] rfm22b_id RFM22B name (GPS, TELEM, AUX)
* \param[in] baud Requested baud rate
*/
2012-02-29 05:30:06 +01:00
static void PIOS_RFM22B_ChangeBaud(uint32_t rfm22b_id, uint32_t baud)
{
struct pios_rfm22b_dev * rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
bool valid = PIOS_RFM22B_validate(rfm22b_dev);
PIOS_Assert(valid);
}
static void PIOS_RFM22B_RegisterRxCallback(uint32_t rfm22b_id, pios_com_callback rx_in_cb, uint32_t context)
{
struct pios_rfm22b_dev * rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
bool valid = PIOS_RFM22B_validate(rfm22b_dev);
PIOS_Assert(valid);
/*
* Order is important in these assignments since ISR uses _cb
* field to determine if it's ok to dereference _cb and _context
*/
rfm22b_dev->rx_in_context = context;
rfm22b_dev->rx_in_cb = rx_in_cb;
}
static void PIOS_RFM22B_RegisterTxCallback(uint32_t rfm22b_id, pios_com_callback tx_out_cb, uint32_t context)
{
struct pios_rfm22b_dev * rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
bool valid = PIOS_RFM22B_validate(rfm22b_dev);
PIOS_Assert(valid);
/*
* Order is important in these assignments since ISR uses _cb
* field to determine if it's ok to dereference _cb and _context
*/
rfm22b_dev->tx_out_context = context;
rfm22b_dev->tx_out_cb = tx_out_cb;
}
// ************************************
// SPI read/write
//! Assert the CS line
static void rfm22_assertCs()
{
PIOS_DELAY_WaituS(1);
if(PIOS_RFM22B_validate(g_rfm22b_dev) && g_rfm22b_dev->spi_id != 0)
PIOS_SPI_RC_PinSet(g_rfm22b_dev->spi_id, g_rfm22b_dev->slave_num, 0);
}
//! Deassert the CS line
static void rfm22_deassertCs()
{
if(PIOS_RFM22B_validate(g_rfm22b_dev) && g_rfm22b_dev->spi_id != 0)
PIOS_SPI_RC_PinSet(g_rfm22b_dev->spi_id, g_rfm22b_dev->slave_num, 1);
}
//! Claim the SPI bus semaphore
static void rfm22_claimBus()
{
if(PIOS_RFM22B_validate(g_rfm22b_dev) && g_rfm22b_dev->spi_id != 0)
PIOS_SPI_ClaimBus(g_rfm22b_dev->spi_id);
}
//! Release the SPI bus semaphore
static void rfm22_releaseBus()
{
if(PIOS_RFM22B_validate(g_rfm22b_dev) && g_rfm22b_dev->spi_id != 0)
PIOS_SPI_ReleaseBus(g_rfm22b_dev->spi_id);
}
/**
* Claim the semaphore and write a byte to a register
* @param[in] addr The address to write to
* @param[in] data The datat to write to that address
*/
static void rfm22_write(uint8_t addr, uint8_t data)
{
if(PIOS_RFM22B_validate(g_rfm22b_dev)) {
rfm22_claimBus();
rfm22_assertCs();
uint8_t buf[2] = {addr | 0x80, data};
PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, buf, NULL, sizeof(buf), NULL);
rfm22_deassertCs();
rfm22_releaseBus();
}
}
/**
* Write a byte to a register without claiming the bus. Also
* toggle the NSS line
* @param[in] addr The address of the RFM22b register to write
* @param[in] data The data to write to that register
static void rfm22_write_noclaim(uint8_t addr, uint8_t data)
{
uint8_t buf[2] = {addr | 0x80, data};
if(PIOS_RFM22B_validate(g_rfm22b_dev)) {
rfm22_assertCs();
PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, buf, NULL, sizeof(buf), NULL);
rfm22_deassertCs();
}
}
*/
/**
* Read a byte from an RFM22b register
* @param[in] addr The address to read from
* @return Returns the result of the register read
*/
static uint8_t rfm22_read(uint8_t addr)
{
uint8_t in[2];
uint8_t out[2] = {addr & 0x7f, 0xFF};
if(PIOS_RFM22B_validate(g_rfm22b_dev)) {
rfm22_claimBus();
rfm22_assertCs();
PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, out, in, sizeof(out), NULL);
rfm22_deassertCs();
rfm22_releaseBus();
}
return in[1];
}
/**
* Read a byte from an RFM22b register without claiming the bus
* @param[in] addr The address to read from
* @return Returns the result of the register read
*/
static uint8_t rfm22_read_noclaim(uint8_t addr)
{
uint8_t out[2] = {addr & 0x7F, 0xFF};
uint8_t in[2];
if (PIOS_RFM22B_validate(g_rfm22b_dev)) {
rfm22_assertCs();
PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, out, in, sizeof(out), NULL);
rfm22_deassertCs();
}
return in[1];
}
// ************************************
static enum pios_rfm22b_event rfm22_process_state_transition(struct pios_rfm22b_dev *rfm22b_dev, enum pios_rfm22b_event event)
{
// No event
if (event == RFM22B_EVENT_NUM_EVENTS)
return RFM22B_EVENT_NUM_EVENTS;
// Don't transition if there is no transition defined
enum pios_rfm22b_state next_state = rfm22b_transitions[rfm22b_dev->state].next_state[event];
if (!next_state)
return RFM22B_EVENT_NUM_EVENTS;
/*
* Move to the next state
*
* This is done prior to calling the new state's entry function to
* guarantee that the entry function never depends on the previous
* state. This way, it cannot ever know what the previous state was.
*/
enum pios_rfm22b_state prev_state = rfm22b_dev->state;
if (prev_state) ;
rfm22b_dev->state = next_state;
/* Call the entry function (if any) for the next state. */
if (rfm22b_transitions[rfm22b_dev->state].entry_fn)
return rfm22b_transitions[rfm22b_dev->state].entry_fn(rfm22b_dev);
return RFM22B_EVENT_NUM_EVENTS;
}
// ************************************
static void rfm22_setNominalCarrierFrequency(struct pios_rfm22b_dev *rfm22b_dev, uint32_t frequency_hz)
{
uint32_t min_frequency_hz = rfm22b_dev->cfg.minFrequencyHz;
uint32_t max_frequency_hz = rfm22b_dev->cfg.maxFrequencyHz;
if (frequency_hz < min_frequency_hz)
frequency_hz = min_frequency_hz;
else if (frequency_hz > max_frequency_hz)
frequency_hz = max_frequency_hz;
// holds the hbsel (1 or 2)
uint8_t hbsel;
if (frequency_hz < 480000000)
hbsel = 1;
else
hbsel = 2;
uint8_t fb = (uint8_t)(frequency_hz / (10000000 * hbsel));
uint32_t fc = (uint32_t)(frequency_hz - (10000000 * hbsel * fb));
fc = (fc * 64u) / (10000ul * hbsel);
fb -= 24;
if (hbsel > 1)
fb |= RFM22_fbs_hbsel;
fb |= RFM22_fbs_sbse; // is this the RX LO polarity?
// frequency hopping channel (0-255)
rfm22b_dev->frequency_step_size = 156.25f * hbsel;
// frequency hopping channel (0-255)
rfm22_write(RFM22_frequency_hopping_channel_select, rfm22b_dev->frequency_hop_channel);
// no frequency offset
rfm22_write(RFM22_frequency_offset1, 0);
// no frequency offset
rfm22_write(RFM22_frequency_offset2, 0);
// set the carrier frequency
rfm22_write(RFM22_frequency_band_select, fb);
rfm22_write(RFM22_nominal_carrier_frequency1, fc >> 8);
rfm22_write(RFM22_nominal_carrier_frequency0, fc & 0xff);
}
void rfm22_setFreqHopChannel(uint8_t channel)
{ // set the frequency hopping channel
g_rfm22b_dev->frequency_hop_channel = channel;
rfm22_write(RFM22_frequency_hopping_channel_select, channel);
}
uint32_t rfm22_freqHopSize(void)
{ // return the frequency hopping step size
return ((uint32_t)g_rfm22b_dev->frequency_hop_step_size_reg * 10000);
}
// ************************************
// radio datarate about 19200 Baud
// radio frequency deviation 45kHz
// radio receiver bandwidth 67kHz.
//
// Carson's rule:
// The signal bandwidth is about 2(Delta-f + fm) ..
//
// Delta-f = frequency deviation
// fm = maximum frequency of the signal
//
// This gives 2(45 + 9.6) = 109.2kHz.
void rfm22_setDatarate(uint32_t datarate_bps, bool data_whitening)
{
// Find the closest data rate that is >= the value passed in
int lookup_index = 0;
while (lookup_index < (LOOKUP_SIZE - 1) && data_rate[lookup_index] < datarate_bps)
lookup_index++;
datarate_bps = data_rate[lookup_index];
2012-04-07 02:36:35 +02:00
// rfm22_if_filter_bandwidth
rfm22_write(0x1C, reg_1C[lookup_index]);
// rfm22_afc_loop_gearshift_override
rfm22_write(0x1D, reg_1D[lookup_index]);
// RFM22_afc_timing_control
rfm22_write(0x1E, reg_1E[lookup_index]);
// RFM22_clk_recovery_gearshift_override
rfm22_write(0x1F, reg_1F[lookup_index]);
// rfm22_clk_recovery_oversampling_ratio
rfm22_write(0x20, reg_20[lookup_index]);
// rfm22_clk_recovery_offset2
rfm22_write(0x21, reg_21[lookup_index]);
// rfm22_clk_recovery_offset1
rfm22_write(0x22, reg_22[lookup_index]);
// rfm22_clk_recovery_offset0
rfm22_write(0x23, reg_23[lookup_index]);
// rfm22_clk_recovery_timing_loop_gain1
rfm22_write(0x24, reg_24[lookup_index]);
// rfm22_clk_recovery_timing_loop_gain0
rfm22_write(0x25, reg_25[lookup_index]);
// rfm22_afc_limiter
rfm22_write(0x2A, reg_2A[lookup_index]);
if (datarate_bps < 100000)
2012-04-07 02:36:35 +02:00
// rfm22_chargepump_current_trimming_override
rfm22_write(0x58, 0x80);
else
2012-04-07 02:36:35 +02:00
// rfm22_chargepump_current_trimming_override
rfm22_write(0x58, 0xC0);
2012-04-07 02:36:35 +02:00
// rfm22_tx_data_rate1
rfm22_write(0x6E, reg_6E[lookup_index]);
// rfm22_tx_data_rate0
rfm22_write(0x6F, reg_6F[lookup_index]);
// Enable data whitening
// uint8_t txdtrtscale_bit = rfm22_read(RFM22_modulation_mode_control1) & RFM22_mmc1_txdtrtscale;
// rfm22_write(RFM22_modulation_mode_control1, txdtrtscale_bit | RFM22_mmc1_enwhite);
if (!data_whitening)
2012-04-07 02:36:35 +02:00
// rfm22_modulation_mode_control1
rfm22_write(0x70, reg_70[lookup_index] & ~RFM22_mmc1_enwhite);
else
2012-04-07 02:36:35 +02:00
// rfm22_modulation_mode_control1
rfm22_write(0x70, reg_70[lookup_index] | RFM22_mmc1_enwhite);
2012-04-07 02:36:35 +02:00
// rfm22_modulation_mode_control2
rfm22_write(0x71, reg_71[lookup_index]);
2012-04-07 02:36:35 +02:00
// rfm22_frequency_deviation
rfm22_write(0x72, reg_72[lookup_index]);
rfm22_write(RFM22_ook_counter_value1, 0x00);
rfm22_write(RFM22_ook_counter_value2, 0x00);
}
// ************************************
static enum pios_rfm22b_event rfm22_setRxMode(struct pios_rfm22b_dev *rfm22b_dev)
{
rfm22b_dev->packet_start_time = 0;
// disable interrupts
rfm22_write(RFM22_interrupt_enable1, 0x00);
rfm22_write(RFM22_interrupt_enable2, 0x00);
// Switch to TUNE mode
rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon);
RX_LED_OFF;
TX_LED_OFF;
// empty the rx buffer
rfm22b_dev->rx_buffer_wr = 0;
// Clear the TX buffer.
rfm22b_dev->tx_data_rd = rfm22b_dev->tx_data_wr = 0;
// clear FIFOs
rfm22_write(RFM22_op_and_func_ctrl2, RFM22_opfc2_ffclrrx | RFM22_opfc2_ffclrtx);
rfm22_write(RFM22_op_and_func_ctrl2, 0x00);
// enable RX interrupts
rfm22_write(RFM22_interrupt_enable1, RFM22_ie1_encrcerror | RFM22_ie1_enpkvalid |
RFM22_ie1_enrxffafull | RFM22_ie1_enfferr);
rfm22_write(RFM22_interrupt_enable2, RFM22_ie2_enpreainval | RFM22_ie2_enpreaval |
RFM22_ie2_enswdet);
// enable the receiver
rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon | RFM22_opfc1_rxon);
// No event generated
return RFM22B_EVENT_NUM_EVENTS;
}
// ************************************
static enum pios_rfm22b_event rfm22_txStart(struct pios_rfm22b_dev *rfm22b_dev)
{
// See if there's a packet on the packet queue.
PHPacketHandle p;
if (xQueueReceive(rfm22b_dev->packetQueue, &p, 0) != pdTRUE)
{
// Clear the TX buffer.
rfm22b_dev->tx_data_rd = rfm22b_dev->tx_data_wr = 0;
return RFM22B_EVENT_RX_MODE;
}
rfm22b_dev->tx_packet = p;
rfm22b_dev->packet_start_time = xTaskGetTickCount();
if (rfm22b_dev->packet_start_time == 0)
rfm22b_dev->packet_start_time = 1;
// disable interrupts
rfm22_write(RFM22_interrupt_enable1, 0x00);
rfm22_write(RFM22_interrupt_enable2, 0x00);
// TUNE mode
rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon);
// Queue the data up for sending
rfm22b_dev->tx_data_wr = PH_PACKET_SIZE(rfm22b_dev->tx_packet);
RX_LED_OFF;
// Set the destination address in the transmit header.
// The destination address is the first 4 bytes of the message.
uint8_t *tx_buffer = (uint8_t*)(rfm22b_dev->tx_packet);
rfm22_write(RFM22_transmit_header0, tx_buffer[0]);
rfm22_write(RFM22_transmit_header1, tx_buffer[1]);
rfm22_write(RFM22_transmit_header2, tx_buffer[2]);
rfm22_write(RFM22_transmit_header3, tx_buffer[3]);
// FIFO mode, GFSK modulation
uint8_t fd_bit = rfm22_read(RFM22_modulation_mode_control2) & RFM22_mmc2_fd;
rfm22_write(RFM22_modulation_mode_control2, fd_bit | RFM22_mmc2_dtmod_fifo |
RFM22_mmc2_modtyp_gfsk);
// set the tx power
rfm22_write(RFM22_tx_power, RFM22_tx_pwr_papeaken | RFM22_tx_pwr_papeaklvl_1 |
RFM22_tx_pwr_papeaklvl_0 | RFM22_tx_pwr_lna_sw | g_rfm22b_dev->tx_power);
// clear FIFOs
rfm22_write(RFM22_op_and_func_ctrl2, RFM22_opfc2_ffclrrx | RFM22_opfc2_ffclrtx);
rfm22_write(RFM22_op_and_func_ctrl2, 0x00);
// *******************
// add some data to the chips TX FIFO before enabling the transmitter
// set the total number of data bytes we are going to transmit
rfm22_write(RFM22_transmit_packet_length, rfm22b_dev->tx_data_wr);
// add some data
rfm22_claimBus();
rfm22_assertCs();
PIOS_SPI_TransferByte(g_rfm22b_dev->spi_id, RFM22_fifo_access | 0x80);
int bytes_to_write = (rfm22b_dev->tx_data_wr - rfm22b_dev->tx_data_rd);
bytes_to_write = (bytes_to_write > FIFO_SIZE) ? FIFO_SIZE: bytes_to_write;
PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, &tx_buffer[rfm22b_dev->tx_data_rd], NULL, bytes_to_write, NULL);
rfm22b_dev->tx_data_rd += bytes_to_write;
rfm22_deassertCs();
rfm22_releaseBus();
// enable TX interrupts
rfm22_write(RFM22_interrupt_enable1, RFM22_ie1_enpksent | RFM22_ie1_entxffaem);
// enable the transmitter
rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon | RFM22_opfc1_txon);
TX_LED_ON;
return RFM22B_EVENT_TX_STARTED;
}
// ************************************
/**
* Read the RFM22B interrupt and device status registers
* \param[in] rfm22b_dev The device structure
*/
static bool rfm22_readStatus(struct pios_rfm22b_dev *rfm22b_dev)
{
// 1. Read the interrupt statuses with burst read
rfm22_claimBus(); // Set RC and the semaphore
uint8_t write_buf[3] = {RFM22_interrupt_status1 & 0x7f, 0xFF, 0xFF};
uint8_t read_buf[3];
rfm22_assertCs();
PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, write_buf, read_buf, sizeof(write_buf), NULL);
rfm22_deassertCs();
rfm22b_dev->int_status1 = read_buf[1];
rfm22b_dev->int_status2 = read_buf[2];
// Device status
rfm22b_dev->device_status = rfm22_read_noclaim(RFM22_device_status);
// EzMAC status
rfm22b_dev->ezmac_status = rfm22_read_noclaim(RFM22_ezmac_status);
// Release the bus
rfm22_releaseBus();
// the RF module has gone and done a reset - we need to re-initialize the rf module
if (rfm22b_dev->int_status2 & RFM22_is2_ipor)
return false;
return true;
}
static enum pios_rfm22b_event rfm22_detectPreamble(struct pios_rfm22b_dev *rfm22b_dev)
{
// Read the device status registers
if (!rfm22_readStatus(rfm22b_dev))
return RFM22B_EVENT_ERROR;
// Valid preamble detected
if (rfm22b_dev->int_status2 & RFM22_is2_ipreaval)
{
rfm22b_dev->packet_start_time = xTaskGetTickCount();
if (rfm22b_dev->packet_start_time == 0)
rfm22b_dev->packet_start_time = 1;
RX_LED_ON;
return RFM22B_EVENT_PREAMBLE_DETECTED;
}
return RFM22B_EVENT_NUM_EVENTS;
}
static enum pios_rfm22b_event rfm22_detectSync(struct pios_rfm22b_dev *rfm22b_dev)
{
// Read the device status registers
if (!rfm22_readStatus(rfm22b_dev))
return RFM22B_EVENT_ERROR;
// Sync word detected
if (rfm22b_dev->int_status2 & RFM22_is2_iswdet)
{
RX_LED_ON;
// read the 10-bit signed afc correction value
// bits 9 to 2
uint16_t afc_correction = (uint16_t)rfm22_read(RFM22_afc_correction_read) << 8;
// bits 1 & 0
afc_correction |= (uint16_t)rfm22_read(RFM22_ook_counter_value1) & 0x00c0;
afc_correction >>= 6;
// convert the afc value to Hz
rfm22b_dev->afc_correction_Hz = (int32_t)(rfm22b_dev->frequency_step_size * afc_correction + 0.5f);
// read rx signal strength .. 45 = -100dBm, 205 = -20dBm
rfm22b_dev->rssi = rfm22_read(RFM22_rssi);
// convert to dBm
rfm22b_dev->rssi_dBm = (int8_t)(rfm22b_dev->rssi >> 1) - 122;
// remember the afc value for this packet
rfm22b_dev->rx_packet_start_afc_Hz = rfm22b_dev->afc_correction_Hz;
return RFM22B_EVENT_SYNC_DETECTED;
}
else if (rfm22b_dev->int_status2 & !RFM22_is2_ipreaval)
{
// Waiting for sync timed out.
return RFM22B_EVENT_TX_START;
}
return RFM22B_EVENT_NUM_EVENTS;
}
static enum pios_rfm22b_event rfm22_rxData(struct pios_rfm22b_dev *rfm22b_dev)
{
// Swap in the next packet buffer if required.
if (rfm22b_dev->rx_packet == NULL)
{
if (rfm22b_dev->rx_packet_next != NULL)
rfm22b_dev->rx_packet = rfm22b_dev->rx_packet_next;
else
return RFM22B_EVENT_ERROR;
}
uint8_t *rx_buffer = (uint8_t*)(rfm22b_dev->rx_packet);
// Read the device status registers
if (!rfm22_readStatus(rfm22b_dev))
return RFM22B_EVENT_ERROR;
// FIFO under/over flow error. Restart RX mode.
if (rfm22b_dev->device_status & (RFM22_ds_ffunfl | RFM22_ds_ffovfl))
return RFM22B_EVENT_ERROR;
// RX FIFO almost full, it needs emptying
if (rfm22b_dev->int_status1 & RFM22_is1_irxffafull)
{
// read data from the rf chips FIFO buffer
// read the total length of the packet data
uint16_t len = rfm22_read(RFM22_received_packet_length);
// The received packet is going to be larger than the specified length
if ((rfm22b_dev->rx_buffer_wr + RX_FIFO_HI_WATERMARK) > len)
return RFM22B_EVENT_ERROR;
// Another packet length error.
if (((rfm22b_dev->rx_buffer_wr + RX_FIFO_HI_WATERMARK) >= len) && !(rfm22b_dev->int_status1 & RFM22_is1_ipkvalid))
return RFM22B_EVENT_ERROR;
// Fetch the data from the RX FIFO
rfm22_claimBus();
rfm22_assertCs();
PIOS_SPI_TransferByte(rfm22b_dev->spi_id,RFM22_fifo_access & 0x7F);
rfm22b_dev->rx_buffer_wr += (PIOS_SPI_TransferBlock(rfm22b_dev->spi_id ,OUT_FF, (uint8_t *)&rx_buffer[rfm22b_dev->rx_buffer_wr], RX_FIFO_HI_WATERMARK, NULL) == 0) ? RX_FIFO_HI_WATERMARK : 0;
rfm22_deassertCs();
rfm22_releaseBus();
}
// CRC error .. discard the received data
if (rfm22b_dev->int_status1 & RFM22_is1_icrerror)
return RFM22B_EVENT_ERROR;
// Valid packet received
if (rfm22b_dev->int_status1 & RFM22_is1_ipkvalid)
{
// read the total length of the packet data
uint32_t len = rfm22_read(RFM22_received_packet_length);
// their must still be data in the RX FIFO we need to get
if (rfm22b_dev->rx_buffer_wr < len)
{
int32_t bytes_to_read = len - rfm22b_dev->rx_buffer_wr;
// Fetch the data from the RX FIFO
rfm22_claimBus();
rfm22_assertCs();
PIOS_SPI_TransferByte(rfm22b_dev->spi_id,RFM22_fifo_access & 0x7F);
rfm22b_dev->rx_buffer_wr += (PIOS_SPI_TransferBlock(rfm22b_dev->spi_id,OUT_FF, (uint8_t *)&rx_buffer[rfm22b_dev->rx_buffer_wr], bytes_to_read, NULL) == 0) ? bytes_to_read : 0;
rfm22_deassertCs();
rfm22_releaseBus();
}
if (rfm22b_dev->rx_buffer_wr != len)
return RFM22B_EVENT_ERROR;
// we have a valid received packet
if (rfm22b_dev->rx_buffer_wr > 0)
{
// Add the rssi and afc to the end of the packet.
rx_buffer[rfm22b_dev->rx_buffer_wr++] = rfm22b_dev->rssi_dBm;
rx_buffer[rfm22b_dev->rx_buffer_wr++] = rfm22b_dev->rx_packet_start_afc_Hz;
// Swap the Rx packets.
if (rfm22b_dev->rx_packet_prev == NULL)
{
rfm22b_dev->rx_packet_prev = rfm22b_dev->rx_packet;
rfm22b_dev->rx_packet = rfm22b_dev->rx_packet_next;
rfm22b_dev->rx_packet_len = rfm22b_dev->rx_buffer_wr;
// Signal the receive thread.
xSemaphoreGive(rfm22b_dev->rxsem);
}
rfm22b_dev->rx_buffer_wr = 0;
}
// Start a new transaction
rfm22b_dev->packet_start_time = 0;
return RFM22B_EVENT_RX_COMPLETE;
}
return RFM22B_EVENT_NUM_EVENTS;
}
static enum pios_rfm22b_event rfm22_txData(struct pios_rfm22b_dev *rfm22b_dev)
{
// Read the device status registers
if (!rfm22_readStatus(rfm22b_dev))
{
// Free the tx packet
PHReleaseTXPacket(pios_packet_handler, rfm22b_dev->tx_packet);
rfm22b_dev->tx_packet = 0;
rfm22b_dev->tx_data_wr = rfm22b_dev->tx_data_rd = 0;
return RFM22B_EVENT_ERROR;
}
// FIFO under/over flow error. Back to RX mode.
if (rfm22b_dev->device_status & (RFM22_ds_ffunfl | RFM22_ds_ffovfl))
{
// Free the tx packet
PHReleaseTXPacket(pios_packet_handler, rfm22b_dev->tx_packet);
rfm22b_dev->tx_packet = 0;
rfm22b_dev->tx_data_wr = rfm22b_dev->tx_data_rd = 0;
return RFM22B_EVENT_ERROR;
}
// TX FIFO almost empty, it needs filling up
if (rfm22b_dev->int_status1 & RFM22_is1_ixtffaem)
{
// top-up the rf chips TX FIFO buffer
uint8_t *tx_buffer = (uint8_t*)(rfm22b_dev->tx_packet);
uint16_t max_bytes = FIFO_SIZE - TX_FIFO_LO_WATERMARK - 1;
rfm22_claimBus();
rfm22_assertCs();
PIOS_SPI_TransferByte(g_rfm22b_dev->spi_id, RFM22_fifo_access | 0x80);
int bytes_to_write = (rfm22b_dev->tx_data_wr - rfm22b_dev->tx_data_rd);
bytes_to_write = (bytes_to_write > max_bytes) ? max_bytes: bytes_to_write;
PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, &tx_buffer[rfm22b_dev->tx_data_rd], NULL, bytes_to_write, NULL);
rfm22b_dev->tx_data_rd += bytes_to_write;
rfm22_deassertCs();
rfm22_releaseBus();
}
// Packet has been sent
if (rfm22b_dev->int_status1 & RFM22_is1_ipksent)
{
// Free the tx packet
PHReleaseTXPacket(pios_packet_handler, rfm22b_dev->tx_packet);
rfm22b_dev->tx_packet = 0;
rfm22b_dev->tx_data_wr = rfm22b_dev->tx_data_rd = 0;
// Start a new transaction
rfm22b_dev->packet_start_time = 0;
return RFM22B_EVENT_TX_COMPLETE;
}
return RFM22B_EVENT_NUM_EVENTS;
}
// ************************************
// return the current mode
int8_t rfm22_currentMode(void)
{
return g_rfm22b_dev->state;
}
// return true if we are transmitting
bool rfm22_transmitting(void)
{
return (g_rfm22b_dev->state == RFM22B_STATE_TX_DATA);
}
// return true if the channel is clear to transmit on
bool rfm22_channelIsClear(void)
{
if (g_rfm22b_dev->state != RFM22B_STATE_RX_MODE && g_rfm22b_dev->state != RFM22B_STATE_WAIT_PREAMBLE && g_rfm22b_dev->state != RFM22B_STATE_WAIT_SYNC)
// we are receiving something or we are transmitting or we are scanning the spectrum
return false;
return true;
}
// ************************************
// set/get the frequency calibration value
void rfm22_setFreqCalibration(uint8_t value)
{
rfm22_write(RFM22_xtal_osc_load_cap, value);
}
// ************************************
// Initialise this hardware layer module and the rf module
static enum pios_rfm22b_event rfm22_init(struct pios_rfm22b_dev *rfm22b_dev)
{
uint32_t id = rfm22b_dev->deviceID;
uint32_t min_frequency_hz = rfm22b_dev->cfg.minFrequencyHz;
uint32_t max_frequency_hz = rfm22b_dev->cfg.maxFrequencyHz;
uint32_t freq_hop_step_size = 50000;
// software reset the RF chip .. following procedure according to Si4x3x Errata (rev. B)
rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_swres);
// wait 26ms
PIOS_DELAY_WaitmS(26);
for (int i = 50; i > 0; i--)
{
// wait 1ms
PIOS_DELAY_WaitmS(1);
// read the status registers
rfm22b_dev->int_status1 = rfm22_read(RFM22_interrupt_status1);
rfm22b_dev->int_status2 = rfm22_read(RFM22_interrupt_status2);
if (rfm22b_dev->int_status2 & RFM22_is2_ichiprdy) break;
}
// ****************
// read status - clears interrupt
rfm22b_dev->device_status = rfm22_read(RFM22_device_status);
rfm22b_dev->int_status1 = rfm22_read(RFM22_interrupt_status1);
rfm22b_dev->int_status2 = rfm22_read(RFM22_interrupt_status2);
rfm22b_dev->ezmac_status = rfm22_read(RFM22_ezmac_status);
// disable all interrupts
rfm22_write(RFM22_interrupt_enable1, 0x00);
rfm22_write(RFM22_interrupt_enable2, 0x00);
// ****************
rfm22b_dev->device_status = rfm22b_dev->int_status1 = rfm22b_dev->int_status2 = rfm22b_dev->ezmac_status = 0;
rfm22b_dev->rx_buffer_wr = 0;
rfm22b_dev->tx_data_rd = rfm22b_dev->tx_data_wr = 0;
rfm22b_dev->frequency_hop_channel = 0;
rfm22b_dev->afc_correction_Hz = 0;
rfm22b_dev->packet_start_time = 0;
// ****************
// read the RF chip ID bytes
// read the device type
uint8_t device_type = rfm22_read(RFM22_DEVICE_TYPE) & RFM22_DT_MASK;
// read the device version
uint8_t device_version = rfm22_read(RFM22_DEVICE_VERSION) & RFM22_DV_MASK;
#if defined(RFM22_DEBUG)
DEBUG_PRINTF(2, "rf device type: %d\n\r", device_type);
DEBUG_PRINTF(2, "rf device version: %d\n\r", device_version);
#endif
if (device_type != 0x08)
{
#if defined(RFM22_DEBUG)
DEBUG_PRINTF(2, "rf device type: INCORRECT - should be 0x08\n\r");
#endif
// incorrect RF module type
return RFM22B_EVENT_FATAL_ERROR;
}
if (device_version != RFM22_DEVICE_VERSION_B1)
{
#if defined(RFM22_DEBUG)
DEBUG_PRINTF(2, "rf device version: INCORRECT\n\r");
#endif
// incorrect RF module version
return RFM22B_EVENT_FATAL_ERROR;
}
// ****************
// set the minimum and maximum carrier frequency allowed
if (min_frequency_hz < RFM22_MIN_CARRIER_FREQUENCY_HZ) min_frequency_hz = RFM22_MIN_CARRIER_FREQUENCY_HZ;
else
if (min_frequency_hz > RFM22_MAX_CARRIER_FREQUENCY_HZ) min_frequency_hz = RFM22_MAX_CARRIER_FREQUENCY_HZ;
if (max_frequency_hz < RFM22_MIN_CARRIER_FREQUENCY_HZ) max_frequency_hz = RFM22_MIN_CARRIER_FREQUENCY_HZ;
else
if (max_frequency_hz > RFM22_MAX_CARRIER_FREQUENCY_HZ) max_frequency_hz = RFM22_MAX_CARRIER_FREQUENCY_HZ;
if (min_frequency_hz > max_frequency_hz)
{ // swap them over
uint32_t tmp = min_frequency_hz;
min_frequency_hz = max_frequency_hz;
max_frequency_hz = tmp;
}
// ****************
// calibrate our RF module to be exactly on frequency .. different for every module
rfm22_write(RFM22_xtal_osc_load_cap, OSC_LOAD_CAP);
// ****************
// disable Low Duty Cycle Mode
rfm22_write(RFM22_op_and_func_ctrl2, 0x00);
// 1MHz clock output
rfm22_write(RFM22_cpu_output_clk, RFM22_coc_1MHz);
// READY mode
rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_xton);
// choose the 3 GPIO pin functions
// GPIO port use default value
rfm22_write(RFM22_io_port_config, RFM22_io_port_default);
if (rfm22b_dev->cfg.gpio_direction == GPIO0_TX_GPIO1_RX) {
rfm22_write(RFM22_gpio0_config, RFM22_gpio0_config_drv3 | RFM22_gpio0_config_txstate); // GPIO0 = TX State (to control RF Switch)
rfm22_write(RFM22_gpio1_config, RFM22_gpio1_config_drv3 | RFM22_gpio1_config_rxstate); // GPIO1 = RX State (to control RF Switch)
} else {
rfm22_write(RFM22_gpio0_config, RFM22_gpio0_config_drv3 | RFM22_gpio0_config_rxstate); // GPIO0 = TX State (to control RF Switch)
rfm22_write(RFM22_gpio1_config, RFM22_gpio1_config_drv3 | RFM22_gpio1_config_txstate); // GPIO1 = RX State (to control RF Switch)
}
rfm22_write(RFM22_gpio2_config, RFM22_gpio2_config_drv3 | RFM22_gpio2_config_cca); // GPIO2 = Clear Channel Assessment
// ****************
// initialize the frequency hopping step size
freq_hop_step_size /= 10000; // in 10kHz increments
if (freq_hop_step_size > 255) freq_hop_step_size = 255;
rfm22b_dev->frequency_hop_step_size_reg = freq_hop_step_size;
// set the RF datarate
rfm22_setDatarate(RFM22_DEFAULT_RF_DATARATE, true);
// FIFO mode, GFSK modulation
uint8_t fd_bit = rfm22_read(RFM22_modulation_mode_control2) & RFM22_mmc2_fd;
rfm22_write(RFM22_modulation_mode_control2, RFM22_mmc2_trclk_clk_none | RFM22_mmc2_dtmod_fifo | fd_bit | RFM22_mmc2_modtyp_gfsk);
// setup to read the internal temperature sensor
// ADC used to sample the temperature sensor
uint8_t adc_config = RFM22_ac_adcsel_temp_sensor | RFM22_ac_adcref_bg;
rfm22_write(RFM22_adc_config, adc_config);
// adc offset
rfm22_write(RFM22_adc_sensor_amp_offset, 0);
// temp sensor calibration .. <20>40C to +64C 0.5C resolution
rfm22_write(RFM22_temp_sensor_calib, RFM22_tsc_tsrange0 | RFM22_tsc_entsoffs);
// temp sensor offset
rfm22_write(RFM22_temp_value_offset, 0);
// start an ADC conversion
rfm22_write(RFM22_adc_config, adc_config | RFM22_ac_adcstartbusy);
// set the RSSI threshold interrupt to about -90dBm
rfm22_write(RFM22_rssi_threshold_clear_chan_indicator, (-90 + 122) * 2);
// enable the internal Tx & Rx packet handlers (without CRC)
rfm22_write(RFM22_data_access_control, RFM22_dac_enpacrx | RFM22_dac_enpactx);
// x-nibbles tx preamble
rfm22_write(RFM22_preamble_length, TX_PREAMBLE_NIBBLES);
// x-nibbles rx preamble detection
rfm22_write(RFM22_preamble_detection_ctrl1, RX_PREAMBLE_NIBBLES << 3);
#ifdef PIOS_RFM22_NO_HEADER
// header control - we are not using the header
rfm22_write(RFM22_header_control1, RFM22_header_cntl1_bcen_none | RFM22_header_cntl1_hdch_none);
// no header bytes, synchronization word length 3, 2, 1 & 0 used, packet length included in header.
rfm22_write(RFM22_header_control2, RFM22_header_cntl2_hdlen_none |
RFM22_header_cntl2_synclen_3210 | ((TX_PREAMBLE_NIBBLES >> 8) & 0x01));
#else
// header control - using a 4 by header with broadcast of 0xffffffff
rfm22_write(RFM22_header_control1,
RFM22_header_cntl1_bcen_0 |
RFM22_header_cntl1_bcen_1 |
RFM22_header_cntl1_bcen_2 |
RFM22_header_cntl1_bcen_3 |
RFM22_header_cntl1_hdch_0 |
RFM22_header_cntl1_hdch_1 |
RFM22_header_cntl1_hdch_2 |
RFM22_header_cntl1_hdch_3);
// Check all bit of all bytes of the header
rfm22_write(RFM22_header_enable0, 0xff);
rfm22_write(RFM22_header_enable1, 0xff);
rfm22_write(RFM22_header_enable2, 0xff);
rfm22_write(RFM22_header_enable3, 0xff);
// Set the ID to be checked
rfm22_write(RFM22_check_header0, id & 0xff);
rfm22_write(RFM22_check_header1, (id >> 8) & 0xff);
rfm22_write(RFM22_check_header2, (id >> 16) & 0xff);
rfm22_write(RFM22_check_header3, (id >> 24) & 0xff);
// 4 header bytes, synchronization word length 3, 2, 1 & 0 used, packet length included in header.
rfm22_write(RFM22_header_control2,
RFM22_header_cntl2_hdlen_3210 |
RFM22_header_cntl2_synclen_3210 |
((TX_PREAMBLE_NIBBLES >> 8) & 0x01));
#endif
// sync word
rfm22_write(RFM22_sync_word3, SYNC_BYTE_1);
rfm22_write(RFM22_sync_word2, SYNC_BYTE_2);
rfm22_write(RFM22_sync_word1, SYNC_BYTE_3);
rfm22_write(RFM22_sync_word0, SYNC_BYTE_4);
rfm22_write(RFM22_agc_override1, RFM22_agc_ovr1_agcen);
// set frequency hopping channel step size (multiples of 10kHz)
rfm22_write(RFM22_frequency_hopping_step_size, rfm22b_dev->frequency_hop_step_size_reg);
// set our nominal carrier frequency
rfm22_setNominalCarrierFrequency(rfm22b_dev, (min_frequency_hz + max_frequency_hz) / 2);
// set the tx power
rfm22_write(RFM22_tx_power, RFM22_tx_pwr_papeaken | RFM22_tx_pwr_papeaklvl_0 | RFM22_tx_pwr_lna_sw | rfm22b_dev->tx_power);
// TX FIFO Almost Full Threshold (0 - 63)
rfm22_write(RFM22_tx_fifo_control1, TX_FIFO_HI_WATERMARK);
// TX FIFO Almost Empty Threshold (0 - 63)
rfm22_write(RFM22_tx_fifo_control2, TX_FIFO_LO_WATERMARK);
// RX FIFO Almost Full Threshold (0 - 63)
rfm22_write(RFM22_rx_fifo_control, RX_FIFO_HI_WATERMARK);
rfm22_setFreqCalibration(rfm22b_dev->cfg.RFXtalCap);
rfm22_setNominalCarrierFrequency(rfm22b_dev, rfm22b_dev->cfg.frequencyHz);
rfm22_setDatarate(rfm22b_dev->cfg.maxRFBandwidth, true);
return RFM22B_EVENT_INITIALIZED;
}
static enum pios_rfm22b_event rfm22_timeout(struct pios_rfm22b_dev *rfm22b_dev)
{
rfm22b_dev->resets++;
rfm22b_dev->packet_start_time = 0;
return RFM22B_EVENT_TX_START;
}
static enum pios_rfm22b_event rfm22_error(struct pios_rfm22b_dev *rfm22b_dev)
{
rfm22b_dev->resets++;
rfm22b_dev->packet_start_time = 0;
return RFM22B_EVENT_INITIALIZE;
}
/**
* A fatal error has occured in the state machine.
* this should not happen.
* \parem [in] rfm22b_dev The device structure
* \return enum pios_rfm22b_event The next event to inject
*/
static enum pios_rfm22b_event rfm22_fatal_error(struct pios_rfm22b_dev *rfm22b_dev)
{
// RF module error .. flash the LED's
for(unsigned int j = 0; j < 16; j++)
{
USB_LED_ON;
LINK_LED_ON;
RX_LED_OFF;
TX_LED_OFF;
PIOS_DELAY_WaitmS(200);
USB_LED_OFF;
LINK_LED_OFF;
RX_LED_ON;
TX_LED_ON;
PIOS_DELAY_WaitmS(200);
}
PIOS_DELAY_WaitmS(1000);
PIOS_Assert(0);
return RFM22B_EVENT_FATAL_ERROR;
}
// ************************************
#endif
/**
* @}
* @}
*/