1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-01-21 06:52:11 +01:00

748 lines
21 KiB
C
Raw Normal View History

/**
******************************************************************************
* @addtogroup OpenPilotSystem OpenPilot System
* @{
* @addtogroup OpenPilotCore OpenPilot Core
* @{
*
* @file pios_board.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief Defines board specific static initializers for hardware for the OpenPilot board.
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* Pull in the board-specific static HW definitions.
* Including .c files is a bit ugly but this allows all of
* the HW definitions to be const and static to limit their
* scope.
*
* NOTE: THIS IS THE ONLY PLACE THAT SHOULD EVER INCLUDE THIS FILE
*/
#include "board_hw_defs.c"
#include <pios.h>
#include <openpilot.h>
#include <uavobjectsinit.h>
bootcfg: use UAVobj to control boot-time HW config This should mark an end to the compile-time selection of HW configurations. Minor changes in board initialization for all platforms: - Most config structs are marked static to prevent badly written drivers from directly referring to config data. - Adapt to changes in .irq fields in config data. - Adapt to changes in USART IRQ handling. Major changes in board initialization for CC: - Use HwSettings UAVObj to decide which drivers to attach to the "main" port and the flexi port, and select the appropriate device configuration data. - HwSettings allows choosing between Disabled, Telemetry, SBUS, Spektrum,GPS, and I2C for each of the two ports. - Use ManualControlSettings.InputMode to init/configure the appropriate receiver module, and register its available rx channels with the PIOS_RCVR layer. Can choose between PWM, Spektrum and PPM at board init time. PPM driver is broken, and SBUS will work once it is added to this UAVObj as an option. - CC build now includes code for SBUS, Spektrum and PWM receivers in every firmware image. PIOS_USART driver: - Now handles its own low-level IRQs internally - If NULL upper-level IRQ handler is bound in at board init time then rx/tx is satisfied by internal PIOS_USART buffered IO routines which are (typically) attached to the COM layer. - If an alternate upper-level IRQ handler is bound in at board init then that handler is called and expected to clear down the USART IRQ sources. This is used by Spektrum and SBUS drivers. PIOS_SBUS and PIOS_SPEKTRUM drivers: - Improved data/API hiding - No longer assume they know where their config data is stored which allows for boot-time alternate configurations for the driver. - Now registers an upper-level IRQ handlerwith the USART layer to decouple the driver from which USART it is actually attached to.
2011-07-05 20:21:00 -04:00
#include <hwsettings.h>
#include <manualcontrolsettings.h>
#include <gcsreceiver.h>
/* One slot per selectable receiver group.
* eg. PWM, PPM, GCS, DSMMAINPORT, DSMFLEXIPORT, SBUS
* NOTE: No slot in this map for NONE.
*/
uint32_t pios_rcvr_group_map[MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE];
#define PIOS_COM_TELEM_RF_RX_BUF_LEN 32
#define PIOS_COM_TELEM_RF_TX_BUF_LEN 12
2011-08-25 15:37:38 +02:00
#define PIOS_COM_GPS_RX_BUF_LEN 32
#define PIOS_COM_TELEM_USB_RX_BUF_LEN 65
#define PIOS_COM_TELEM_USB_TX_BUF_LEN 65
#define PIOS_COM_BRIDGE_RX_BUF_LEN 65
#define PIOS_COM_BRIDGE_TX_BUF_LEN 12
uint32_t pios_com_telem_rf_id;
uint32_t pios_com_telem_usb_id;
uint32_t pios_com_vcp_id;
uint32_t pios_com_gps_id;
uint32_t pios_com_bridge_id;
/**
* Configuration for the BMA180 chip
*/
#if defined(PIOS_INCLUDE_BMA180)
#include "pios_bma180.h"
static const struct pios_exti_cfg pios_exti_bma180_cfg __exti_config = {
.vector = PIOS_BMA180_IRQHandler,
.line = EXTI_Line13,
.pin = {
.gpio = GPIOC,
.init = {
.GPIO_Pin = GPIO_Pin_13,
.GPIO_Speed = GPIO_Speed_10MHz,
.GPIO_Mode = GPIO_Mode_IN_FLOATING,
},
},
.irq = {
.init = {
.NVIC_IRQChannel = EXTI15_10_IRQn,
.NVIC_IRQChannelPreemptionPriority = PIOS_IRQ_PRIO_LOW,
.NVIC_IRQChannelSubPriority = 0,
.NVIC_IRQChannelCmd = ENABLE,
},
},
.exti = {
.init = {
.EXTI_Line = EXTI_Line13, // matches above GPIO pin
.EXTI_Mode = EXTI_Mode_Interrupt,
.EXTI_Trigger = EXTI_Trigger_Rising,
.EXTI_LineCmd = ENABLE,
},
},
};
static const struct pios_bma180_cfg pios_bma180_cfg = {
.exti_cfg = &pios_exti_bma180_cfg,
.bandwidth = BMA_BW_300HZ,
.range = BMA_RANGE_8G,
};
#endif /* PIOS_INCLUDE_BMA180 */
/**
* Configuration for L3GD20 chip
*/
#if defined(PIOS_INCLUDE_L3GD20)
2012-01-20 14:14:57 -06:00
#include "pios_l3gd20.h"
static const struct pios_exti_cfg pios_exti_l3gd20_cfg __exti_config = {
.vector = PIOS_L3GD20_IRQHandler,
.line = EXTI_Line3,
.pin = {
2012-01-20 14:14:57 -06:00
.gpio = GPIOA,
.init = {
.GPIO_Pin = GPIO_Pin_3,
.GPIO_Speed = GPIO_Speed_10MHz,
.GPIO_Mode = GPIO_Mode_IN_FLOATING,
2012-01-20 14:14:57 -06:00
},
},
.irq = {
2012-01-20 14:14:57 -06:00
.init = {
.NVIC_IRQChannel = EXTI3_IRQn,
.NVIC_IRQChannelPreemptionPriority = PIOS_IRQ_PRIO_HIGH,
.NVIC_IRQChannelSubPriority = 0,
.NVIC_IRQChannelCmd = ENABLE,
},
},
.exti = {
.init = {
.EXTI_Line = EXTI_Line3, // matches above GPIO pin
.EXTI_Mode = EXTI_Mode_Interrupt,
.EXTI_Trigger = EXTI_Trigger_Rising,
.EXTI_LineCmd = ENABLE,
},
},
};
static const struct pios_l3gd20_cfg pios_l3gd20_cfg = {
.exti_cfg = &pios_exti_l3gd20_cfg,
.range = PIOS_L3GD20_SCALE_500_DEG,
2012-01-20 14:14:57 -06:00
};
#endif /* PIOS_INCLUDE_L3GD20 */
2012-01-20 14:14:57 -06:00
static const struct flashfs_cfg flashfs_w25x_cfg = {
.table_magic = 0x85FB3C35,
.obj_magic = 0x3015AE71,
.obj_table_start = 0x00000010,
.obj_table_end = 0x00001000,
.sector_size = 0x00001000,
};
static const struct pios_flash_jedec_cfg flash_w25x_cfg = {
.sector_erase = 0x20,
.chip_erase = 0x60
};
#include <pios_board_info.h>
/**
* PIOS_Board_Init()
* initializes all the core subsystems on this specific hardware
* called from System/openpilot.c
*/
void PIOS_Board_Init(void) {
/* Delay system */
bootcfg: use UAVobj to control boot-time HW config This should mark an end to the compile-time selection of HW configurations. Minor changes in board initialization for all platforms: - Most config structs are marked static to prevent badly written drivers from directly referring to config data. - Adapt to changes in .irq fields in config data. - Adapt to changes in USART IRQ handling. Major changes in board initialization for CC: - Use HwSettings UAVObj to decide which drivers to attach to the "main" port and the flexi port, and select the appropriate device configuration data. - HwSettings allows choosing between Disabled, Telemetry, SBUS, Spektrum,GPS, and I2C for each of the two ports. - Use ManualControlSettings.InputMode to init/configure the appropriate receiver module, and register its available rx channels with the PIOS_RCVR layer. Can choose between PWM, Spektrum and PPM at board init time. PPM driver is broken, and SBUS will work once it is added to this UAVObj as an option. - CC build now includes code for SBUS, Spektrum and PWM receivers in every firmware image. PIOS_USART driver: - Now handles its own low-level IRQs internally - If NULL upper-level IRQ handler is bound in at board init time then rx/tx is satisfied by internal PIOS_USART buffered IO routines which are (typically) attached to the COM layer. - If an alternate upper-level IRQ handler is bound in at board init then that handler is called and expected to clear down the USART IRQ sources. This is used by Spektrum and SBUS drivers. PIOS_SBUS and PIOS_SPEKTRUM drivers: - Improved data/API hiding - No longer assume they know where their config data is stored which allows for boot-time alternate configurations for the driver. - Now registers an upper-level IRQ handlerwith the USART layer to decouple the driver from which USART it is actually attached to.
2011-07-05 20:21:00 -04:00
PIOS_DELAY_Init();
const struct pios_board_info * bdinfo = &pios_board_info_blob;
#if defined(PIOS_INCLUDE_LED)
switch(bdinfo->board_rev) {
case 0x01: // Revision 1
PIOS_LED_Init(&pios_led_cfg_cc);
break;
case 0x02: // Revision 2
GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable, ENABLE);
PIOS_LED_Init(&pios_led_cfg_cc3d);
break;
default:
PIOS_Assert(0);
}
#endif /* PIOS_INCLUDE_LED */
#if defined(PIOS_INCLUDE_SPI)
/* Set up the SPI interface to the serial flash */
switch(bdinfo->board_rev) {
case 0x01: // Revision 1
if (PIOS_SPI_Init(&pios_spi_flash_accel_id, &pios_spi_flash_accel_cfg_cc)) {
PIOS_Assert(0);
}
break;
case 0x02: // Revision 2
if (PIOS_SPI_Init(&pios_spi_flash_accel_id, &pios_spi_flash_accel_cfg_cc3d)) {
PIOS_Assert(0);
}
break;
default:
PIOS_Assert(0);
}
#endif
PIOS_Flash_Jedec_Init(pios_spi_flash_accel_id, 1, &flash_w25x_cfg);
PIOS_FLASHFS_Init(&flashfs_w25x_cfg);
/* Initialize UAVObject libraries */
EventDispatcherInitialize();
UAVObjInitialize();
#if defined(PIOS_INCLUDE_RTC)
/* Initialize the real-time clock and its associated tick */
PIOS_RTC_Init(&pios_rtc_main_cfg);
#endif
HwSettingsInitialize();
#ifndef ERASE_FLASH
/* Initialize watchdog as early as possible to catch faults during init */
PIOS_WDG_Init();
#endif
/* Initialize the alarms library */
AlarmsInitialize();
/* Check for repeated boot failures */
PIOS_IAP_Init();
uint16_t boot_count = PIOS_IAP_ReadBootCount();
if (boot_count < 3) {
PIOS_IAP_WriteBootCount(++boot_count);
AlarmsClear(SYSTEMALARMS_ALARM_BOOTFAULT);
} else {
/* Too many failed boot attempts, force hwsettings to defaults */
HwSettingsSetDefaults(HwSettingsHandle(), 0);
AlarmsSet(SYSTEMALARMS_ALARM_BOOTFAULT, SYSTEMALARMS_ALARM_CRITICAL);
}
/* Initialize the task monitor library */
TaskMonitorInitialize();
/* Set up pulse timers */
PIOS_TIM_InitClock(&tim_1_cfg);
PIOS_TIM_InitClock(&tim_2_cfg);
PIOS_TIM_InitClock(&tim_3_cfg);
PIOS_TIM_InitClock(&tim_4_cfg);
#if defined(PIOS_INCLUDE_USB)
/* Initialize board specific USB data */
PIOS_USB_BOARD_DATA_Init();
/* Flags to determine if various USB interfaces are advertised */
bool usb_hid_present = false;
bool usb_cdc_present = false;
uint8_t hwsettings_usb_devicetype;
HwSettingsUSB_DeviceTypeGet(&hwsettings_usb_devicetype);
switch (hwsettings_usb_devicetype) {
case HWSETTINGS_USB_DEVICETYPE_HIDONLY:
if (PIOS_USB_DESC_HID_ONLY_Init()) {
PIOS_Assert(0);
}
usb_hid_present = true;
break;
case HWSETTINGS_USB_DEVICETYPE_HIDVCP:
if (PIOS_USB_DESC_HID_CDC_Init()) {
PIOS_Assert(0);
}
usb_hid_present = true;
usb_cdc_present = true;
break;
case HWSETTINGS_USB_DEVICETYPE_VCPONLY:
break;
default:
PIOS_Assert(0);
}
uint32_t pios_usb_id;
switch(bdinfo->board_rev) {
case 0x01: // Revision 1
PIOS_USB_Init(&pios_usb_id, &pios_usb_main_cfg_cc);
break;
case 0x02: // Revision 2
PIOS_USB_Init(&pios_usb_id, &pios_usb_main_cfg_cc3d);
break;
default:
PIOS_Assert(0);
}
#if defined(PIOS_INCLUDE_USB_CDC)
uint8_t hwsettings_usb_vcpport;
/* Configure the USB VCP port */
HwSettingsUSB_VCPPortGet(&hwsettings_usb_vcpport);
if (!usb_cdc_present) {
/* Force VCP port function to disabled if we haven't advertised VCP in our USB descriptor */
hwsettings_usb_vcpport = HWSETTINGS_USB_VCPPORT_DISABLED;
}
switch (hwsettings_usb_vcpport) {
case HWSETTINGS_USB_VCPPORT_DISABLED:
break;
case HWSETTINGS_USB_VCPPORT_USBTELEMETRY:
#if defined(PIOS_INCLUDE_COM)
{
uint32_t pios_usb_cdc_id;
if (PIOS_USB_CDC_Init(&pios_usb_cdc_id, &pios_usb_cdc_cfg, pios_usb_id)) {
PIOS_Assert(0);
}
uint8_t * rx_buffer = (uint8_t *) pvPortMalloc(PIOS_COM_TELEM_USB_RX_BUF_LEN);
uint8_t * tx_buffer = (uint8_t *) pvPortMalloc(PIOS_COM_TELEM_USB_TX_BUF_LEN);
PIOS_Assert(rx_buffer);
PIOS_Assert(tx_buffer);
if (PIOS_COM_Init(&pios_com_telem_usb_id, &pios_usb_cdc_com_driver, pios_usb_cdc_id,
rx_buffer, PIOS_COM_TELEM_USB_RX_BUF_LEN,
tx_buffer, PIOS_COM_TELEM_USB_TX_BUF_LEN)) {
PIOS_Assert(0);
}
}
#endif /* PIOS_INCLUDE_COM */
break;
case HWSETTINGS_USB_VCPPORT_COMBRIDGE:
#if defined(PIOS_INCLUDE_COM)
{
uint32_t pios_usb_cdc_id;
if (PIOS_USB_CDC_Init(&pios_usb_cdc_id, &pios_usb_cdc_cfg, pios_usb_id)) {
PIOS_Assert(0);
}
uint8_t * rx_buffer = (uint8_t *) pvPortMalloc(PIOS_COM_BRIDGE_RX_BUF_LEN);
uint8_t * tx_buffer = (uint8_t *) pvPortMalloc(PIOS_COM_BRIDGE_TX_BUF_LEN);
PIOS_Assert(rx_buffer);
PIOS_Assert(tx_buffer);
if (PIOS_COM_Init(&pios_com_vcp_id, &pios_usb_cdc_com_driver, pios_usb_cdc_id,
rx_buffer, PIOS_COM_BRIDGE_RX_BUF_LEN,
tx_buffer, PIOS_COM_BRIDGE_TX_BUF_LEN)) {
PIOS_Assert(0);
}
}
#endif /* PIOS_INCLUDE_COM */
break;
}
#endif /* PIOS_INCLUDE_USB_CDC */
#if defined(PIOS_INCLUDE_USB_HID)
/* Configure the usb HID port */
uint8_t hwsettings_usb_hidport;
HwSettingsUSB_HIDPortGet(&hwsettings_usb_hidport);
if (!usb_hid_present) {
/* Force HID port function to disabled if we haven't advertised HID in our USB descriptor */
hwsettings_usb_hidport = HWSETTINGS_USB_HIDPORT_DISABLED;
}
switch (hwsettings_usb_hidport) {
case HWSETTINGS_USB_HIDPORT_DISABLED:
break;
case HWSETTINGS_USB_HIDPORT_USBTELEMETRY:
#if defined(PIOS_INCLUDE_COM)
{
uint32_t pios_usb_hid_id;
if (PIOS_USB_HID_Init(&pios_usb_hid_id, &pios_usb_hid_cfg, pios_usb_id)) {
PIOS_Assert(0);
}
uint8_t * rx_buffer = (uint8_t *) pvPortMalloc(PIOS_COM_TELEM_USB_RX_BUF_LEN);
uint8_t * tx_buffer = (uint8_t *) pvPortMalloc(PIOS_COM_TELEM_USB_TX_BUF_LEN);
PIOS_Assert(rx_buffer);
PIOS_Assert(tx_buffer);
if (PIOS_COM_Init(&pios_com_telem_usb_id, &pios_usb_hid_com_driver, pios_usb_hid_id,
rx_buffer, PIOS_COM_TELEM_USB_RX_BUF_LEN,
tx_buffer, PIOS_COM_TELEM_USB_TX_BUF_LEN)) {
PIOS_Assert(0);
}
}
#endif /* PIOS_INCLUDE_COM */
break;
}
#endif /* PIOS_INCLUDE_USB_HID */
#endif /* PIOS_INCLUDE_USB */
bootcfg: use UAVobj to control boot-time HW config This should mark an end to the compile-time selection of HW configurations. Minor changes in board initialization for all platforms: - Most config structs are marked static to prevent badly written drivers from directly referring to config data. - Adapt to changes in .irq fields in config data. - Adapt to changes in USART IRQ handling. Major changes in board initialization for CC: - Use HwSettings UAVObj to decide which drivers to attach to the "main" port and the flexi port, and select the appropriate device configuration data. - HwSettings allows choosing between Disabled, Telemetry, SBUS, Spektrum,GPS, and I2C for each of the two ports. - Use ManualControlSettings.InputMode to init/configure the appropriate receiver module, and register its available rx channels with the PIOS_RCVR layer. Can choose between PWM, Spektrum and PPM at board init time. PPM driver is broken, and SBUS will work once it is added to this UAVObj as an option. - CC build now includes code for SBUS, Spektrum and PWM receivers in every firmware image. PIOS_USART driver: - Now handles its own low-level IRQs internally - If NULL upper-level IRQ handler is bound in at board init time then rx/tx is satisfied by internal PIOS_USART buffered IO routines which are (typically) attached to the COM layer. - If an alternate upper-level IRQ handler is bound in at board init then that handler is called and expected to clear down the USART IRQ sources. This is used by Spektrum and SBUS drivers. PIOS_SBUS and PIOS_SPEKTRUM drivers: - Improved data/API hiding - No longer assume they know where their config data is stored which allows for boot-time alternate configurations for the driver. - Now registers an upper-level IRQ handlerwith the USART layer to decouple the driver from which USART it is actually attached to.
2011-07-05 20:21:00 -04:00
/* Configure the main IO port */
uint8_t hwsettings_DSMxBind;
HwSettingsDSMxBindGet(&hwsettings_DSMxBind);
bootcfg: use UAVobj to control boot-time HW config This should mark an end to the compile-time selection of HW configurations. Minor changes in board initialization for all platforms: - Most config structs are marked static to prevent badly written drivers from directly referring to config data. - Adapt to changes in .irq fields in config data. - Adapt to changes in USART IRQ handling. Major changes in board initialization for CC: - Use HwSettings UAVObj to decide which drivers to attach to the "main" port and the flexi port, and select the appropriate device configuration data. - HwSettings allows choosing between Disabled, Telemetry, SBUS, Spektrum,GPS, and I2C for each of the two ports. - Use ManualControlSettings.InputMode to init/configure the appropriate receiver module, and register its available rx channels with the PIOS_RCVR layer. Can choose between PWM, Spektrum and PPM at board init time. PPM driver is broken, and SBUS will work once it is added to this UAVObj as an option. - CC build now includes code for SBUS, Spektrum and PWM receivers in every firmware image. PIOS_USART driver: - Now handles its own low-level IRQs internally - If NULL upper-level IRQ handler is bound in at board init time then rx/tx is satisfied by internal PIOS_USART buffered IO routines which are (typically) attached to the COM layer. - If an alternate upper-level IRQ handler is bound in at board init then that handler is called and expected to clear down the USART IRQ sources. This is used by Spektrum and SBUS drivers. PIOS_SBUS and PIOS_SPEKTRUM drivers: - Improved data/API hiding - No longer assume they know where their config data is stored which allows for boot-time alternate configurations for the driver. - Now registers an upper-level IRQ handlerwith the USART layer to decouple the driver from which USART it is actually attached to.
2011-07-05 20:21:00 -04:00
uint8_t hwsettings_cc_mainport;
HwSettingsCC_MainPortGet(&hwsettings_cc_mainport);
switch (hwsettings_cc_mainport) {
case HWSETTINGS_CC_MAINPORT_DISABLED:
break;
case HWSETTINGS_CC_MAINPORT_TELEMETRY:
#if defined(PIOS_INCLUDE_TELEMETRY_RF)
bootcfg: use UAVobj to control boot-time HW config This should mark an end to the compile-time selection of HW configurations. Minor changes in board initialization for all platforms: - Most config structs are marked static to prevent badly written drivers from directly referring to config data. - Adapt to changes in .irq fields in config data. - Adapt to changes in USART IRQ handling. Major changes in board initialization for CC: - Use HwSettings UAVObj to decide which drivers to attach to the "main" port and the flexi port, and select the appropriate device configuration data. - HwSettings allows choosing between Disabled, Telemetry, SBUS, Spektrum,GPS, and I2C for each of the two ports. - Use ManualControlSettings.InputMode to init/configure the appropriate receiver module, and register its available rx channels with the PIOS_RCVR layer. Can choose between PWM, Spektrum and PPM at board init time. PPM driver is broken, and SBUS will work once it is added to this UAVObj as an option. - CC build now includes code for SBUS, Spektrum and PWM receivers in every firmware image. PIOS_USART driver: - Now handles its own low-level IRQs internally - If NULL upper-level IRQ handler is bound in at board init time then rx/tx is satisfied by internal PIOS_USART buffered IO routines which are (typically) attached to the COM layer. - If an alternate upper-level IRQ handler is bound in at board init then that handler is called and expected to clear down the USART IRQ sources. This is used by Spektrum and SBUS drivers. PIOS_SBUS and PIOS_SPEKTRUM drivers: - Improved data/API hiding - No longer assume they know where their config data is stored which allows for boot-time alternate configurations for the driver. - Now registers an upper-level IRQ handlerwith the USART layer to decouple the driver from which USART it is actually attached to.
2011-07-05 20:21:00 -04:00
{
uint32_t pios_usart_generic_id;
if (PIOS_USART_Init(&pios_usart_generic_id, &pios_usart_generic_main_cfg)) {
bootcfg: use UAVobj to control boot-time HW config This should mark an end to the compile-time selection of HW configurations. Minor changes in board initialization for all platforms: - Most config structs are marked static to prevent badly written drivers from directly referring to config data. - Adapt to changes in .irq fields in config data. - Adapt to changes in USART IRQ handling. Major changes in board initialization for CC: - Use HwSettings UAVObj to decide which drivers to attach to the "main" port and the flexi port, and select the appropriate device configuration data. - HwSettings allows choosing between Disabled, Telemetry, SBUS, Spektrum,GPS, and I2C for each of the two ports. - Use ManualControlSettings.InputMode to init/configure the appropriate receiver module, and register its available rx channels with the PIOS_RCVR layer. Can choose between PWM, Spektrum and PPM at board init time. PPM driver is broken, and SBUS will work once it is added to this UAVObj as an option. - CC build now includes code for SBUS, Spektrum and PWM receivers in every firmware image. PIOS_USART driver: - Now handles its own low-level IRQs internally - If NULL upper-level IRQ handler is bound in at board init time then rx/tx is satisfied by internal PIOS_USART buffered IO routines which are (typically) attached to the COM layer. - If an alternate upper-level IRQ handler is bound in at board init then that handler is called and expected to clear down the USART IRQ sources. This is used by Spektrum and SBUS drivers. PIOS_SBUS and PIOS_SPEKTRUM drivers: - Improved data/API hiding - No longer assume they know where their config data is stored which allows for boot-time alternate configurations for the driver. - Now registers an upper-level IRQ handlerwith the USART layer to decouple the driver from which USART it is actually attached to.
2011-07-05 20:21:00 -04:00
PIOS_Assert(0);
}
uint8_t * rx_buffer = (uint8_t *) pvPortMalloc(PIOS_COM_TELEM_RF_RX_BUF_LEN);
uint8_t * tx_buffer = (uint8_t *) pvPortMalloc(PIOS_COM_TELEM_RF_TX_BUF_LEN);
PIOS_Assert(rx_buffer);
PIOS_Assert(tx_buffer);
if (PIOS_COM_Init(&pios_com_telem_rf_id, &pios_usart_com_driver, pios_usart_generic_id,
rx_buffer, PIOS_COM_TELEM_RF_RX_BUF_LEN,
tx_buffer, PIOS_COM_TELEM_RF_TX_BUF_LEN)) {
bootcfg: use UAVobj to control boot-time HW config This should mark an end to the compile-time selection of HW configurations. Minor changes in board initialization for all platforms: - Most config structs are marked static to prevent badly written drivers from directly referring to config data. - Adapt to changes in .irq fields in config data. - Adapt to changes in USART IRQ handling. Major changes in board initialization for CC: - Use HwSettings UAVObj to decide which drivers to attach to the "main" port and the flexi port, and select the appropriate device configuration data. - HwSettings allows choosing between Disabled, Telemetry, SBUS, Spektrum,GPS, and I2C for each of the two ports. - Use ManualControlSettings.InputMode to init/configure the appropriate receiver module, and register its available rx channels with the PIOS_RCVR layer. Can choose between PWM, Spektrum and PPM at board init time. PPM driver is broken, and SBUS will work once it is added to this UAVObj as an option. - CC build now includes code for SBUS, Spektrum and PWM receivers in every firmware image. PIOS_USART driver: - Now handles its own low-level IRQs internally - If NULL upper-level IRQ handler is bound in at board init time then rx/tx is satisfied by internal PIOS_USART buffered IO routines which are (typically) attached to the COM layer. - If an alternate upper-level IRQ handler is bound in at board init then that handler is called and expected to clear down the USART IRQ sources. This is used by Spektrum and SBUS drivers. PIOS_SBUS and PIOS_SPEKTRUM drivers: - Improved data/API hiding - No longer assume they know where their config data is stored which allows for boot-time alternate configurations for the driver. - Now registers an upper-level IRQ handlerwith the USART layer to decouple the driver from which USART it is actually attached to.
2011-07-05 20:21:00 -04:00
PIOS_Assert(0);
}
}
#endif /* PIOS_INCLUDE_TELEMETRY_RF */
break;
case HWSETTINGS_CC_MAINPORT_SBUS:
#if defined(PIOS_INCLUDE_SBUS)
{
uint32_t pios_usart_sbus_id;
if (PIOS_USART_Init(&pios_usart_sbus_id, &pios_usart_sbus_main_cfg)) {
PIOS_Assert(0);
}
uint32_t pios_sbus_id;
if (PIOS_SBus_Init(&pios_sbus_id, &pios_sbus_cfg, &pios_usart_com_driver, pios_usart_sbus_id)) {
PIOS_Assert(0);
}
uint32_t pios_sbus_rcvr_id;
if (PIOS_RCVR_Init(&pios_sbus_rcvr_id, &pios_sbus_rcvr_driver, pios_sbus_id)) {
PIOS_Assert(0);
}
pios_rcvr_group_map[MANUALCONTROLSETTINGS_CHANNELGROUPS_SBUS] = pios_sbus_rcvr_id;
bootcfg: use UAVobj to control boot-time HW config This should mark an end to the compile-time selection of HW configurations. Minor changes in board initialization for all platforms: - Most config structs are marked static to prevent badly written drivers from directly referring to config data. - Adapt to changes in .irq fields in config data. - Adapt to changes in USART IRQ handling. Major changes in board initialization for CC: - Use HwSettings UAVObj to decide which drivers to attach to the "main" port and the flexi port, and select the appropriate device configuration data. - HwSettings allows choosing between Disabled, Telemetry, SBUS, Spektrum,GPS, and I2C for each of the two ports. - Use ManualControlSettings.InputMode to init/configure the appropriate receiver module, and register its available rx channels with the PIOS_RCVR layer. Can choose between PWM, Spektrum and PPM at board init time. PPM driver is broken, and SBUS will work once it is added to this UAVObj as an option. - CC build now includes code for SBUS, Spektrum and PWM receivers in every firmware image. PIOS_USART driver: - Now handles its own low-level IRQs internally - If NULL upper-level IRQ handler is bound in at board init time then rx/tx is satisfied by internal PIOS_USART buffered IO routines which are (typically) attached to the COM layer. - If an alternate upper-level IRQ handler is bound in at board init then that handler is called and expected to clear down the USART IRQ sources. This is used by Spektrum and SBUS drivers. PIOS_SBUS and PIOS_SPEKTRUM drivers: - Improved data/API hiding - No longer assume they know where their config data is stored which allows for boot-time alternate configurations for the driver. - Now registers an upper-level IRQ handlerwith the USART layer to decouple the driver from which USART it is actually attached to.
2011-07-05 20:21:00 -04:00
}
#endif /* PIOS_INCLUDE_SBUS */
break;
case HWSETTINGS_CC_MAINPORT_GPS:
#if defined(PIOS_INCLUDE_GPS)
bootcfg: use UAVobj to control boot-time HW config This should mark an end to the compile-time selection of HW configurations. Minor changes in board initialization for all platforms: - Most config structs are marked static to prevent badly written drivers from directly referring to config data. - Adapt to changes in .irq fields in config data. - Adapt to changes in USART IRQ handling. Major changes in board initialization for CC: - Use HwSettings UAVObj to decide which drivers to attach to the "main" port and the flexi port, and select the appropriate device configuration data. - HwSettings allows choosing between Disabled, Telemetry, SBUS, Spektrum,GPS, and I2C for each of the two ports. - Use ManualControlSettings.InputMode to init/configure the appropriate receiver module, and register its available rx channels with the PIOS_RCVR layer. Can choose between PWM, Spektrum and PPM at board init time. PPM driver is broken, and SBUS will work once it is added to this UAVObj as an option. - CC build now includes code for SBUS, Spektrum and PWM receivers in every firmware image. PIOS_USART driver: - Now handles its own low-level IRQs internally - If NULL upper-level IRQ handler is bound in at board init time then rx/tx is satisfied by internal PIOS_USART buffered IO routines which are (typically) attached to the COM layer. - If an alternate upper-level IRQ handler is bound in at board init then that handler is called and expected to clear down the USART IRQ sources. This is used by Spektrum and SBUS drivers. PIOS_SBUS and PIOS_SPEKTRUM drivers: - Improved data/API hiding - No longer assume they know where their config data is stored which allows for boot-time alternate configurations for the driver. - Now registers an upper-level IRQ handlerwith the USART layer to decouple the driver from which USART it is actually attached to.
2011-07-05 20:21:00 -04:00
{
uint32_t pios_usart_generic_id;
if (PIOS_USART_Init(&pios_usart_generic_id, &pios_usart_generic_main_cfg)) {
bootcfg: use UAVobj to control boot-time HW config This should mark an end to the compile-time selection of HW configurations. Minor changes in board initialization for all platforms: - Most config structs are marked static to prevent badly written drivers from directly referring to config data. - Adapt to changes in .irq fields in config data. - Adapt to changes in USART IRQ handling. Major changes in board initialization for CC: - Use HwSettings UAVObj to decide which drivers to attach to the "main" port and the flexi port, and select the appropriate device configuration data. - HwSettings allows choosing between Disabled, Telemetry, SBUS, Spektrum,GPS, and I2C for each of the two ports. - Use ManualControlSettings.InputMode to init/configure the appropriate receiver module, and register its available rx channels with the PIOS_RCVR layer. Can choose between PWM, Spektrum and PPM at board init time. PPM driver is broken, and SBUS will work once it is added to this UAVObj as an option. - CC build now includes code for SBUS, Spektrum and PWM receivers in every firmware image. PIOS_USART driver: - Now handles its own low-level IRQs internally - If NULL upper-level IRQ handler is bound in at board init time then rx/tx is satisfied by internal PIOS_USART buffered IO routines which are (typically) attached to the COM layer. - If an alternate upper-level IRQ handler is bound in at board init then that handler is called and expected to clear down the USART IRQ sources. This is used by Spektrum and SBUS drivers. PIOS_SBUS and PIOS_SPEKTRUM drivers: - Improved data/API hiding - No longer assume they know where their config data is stored which allows for boot-time alternate configurations for the driver. - Now registers an upper-level IRQ handlerwith the USART layer to decouple the driver from which USART it is actually attached to.
2011-07-05 20:21:00 -04:00
PIOS_Assert(0);
}
uint8_t * rx_buffer = (uint8_t *) pvPortMalloc(PIOS_COM_GPS_RX_BUF_LEN);
PIOS_Assert(rx_buffer);
if (PIOS_COM_Init(&pios_com_gps_id, &pios_usart_com_driver, pios_usart_generic_id,
rx_buffer, PIOS_COM_GPS_RX_BUF_LEN,
NULL, 0)) {
bootcfg: use UAVobj to control boot-time HW config This should mark an end to the compile-time selection of HW configurations. Minor changes in board initialization for all platforms: - Most config structs are marked static to prevent badly written drivers from directly referring to config data. - Adapt to changes in .irq fields in config data. - Adapt to changes in USART IRQ handling. Major changes in board initialization for CC: - Use HwSettings UAVObj to decide which drivers to attach to the "main" port and the flexi port, and select the appropriate device configuration data. - HwSettings allows choosing between Disabled, Telemetry, SBUS, Spektrum,GPS, and I2C for each of the two ports. - Use ManualControlSettings.InputMode to init/configure the appropriate receiver module, and register its available rx channels with the PIOS_RCVR layer. Can choose between PWM, Spektrum and PPM at board init time. PPM driver is broken, and SBUS will work once it is added to this UAVObj as an option. - CC build now includes code for SBUS, Spektrum and PWM receivers in every firmware image. PIOS_USART driver: - Now handles its own low-level IRQs internally - If NULL upper-level IRQ handler is bound in at board init time then rx/tx is satisfied by internal PIOS_USART buffered IO routines which are (typically) attached to the COM layer. - If an alternate upper-level IRQ handler is bound in at board init then that handler is called and expected to clear down the USART IRQ sources. This is used by Spektrum and SBUS drivers. PIOS_SBUS and PIOS_SPEKTRUM drivers: - Improved data/API hiding - No longer assume they know where their config data is stored which allows for boot-time alternate configurations for the driver. - Now registers an upper-level IRQ handlerwith the USART layer to decouple the driver from which USART it is actually attached to.
2011-07-05 20:21:00 -04:00
PIOS_Assert(0);
}
}
#endif /* PIOS_INCLUDE_GPS */
bootcfg: use UAVobj to control boot-time HW config This should mark an end to the compile-time selection of HW configurations. Minor changes in board initialization for all platforms: - Most config structs are marked static to prevent badly written drivers from directly referring to config data. - Adapt to changes in .irq fields in config data. - Adapt to changes in USART IRQ handling. Major changes in board initialization for CC: - Use HwSettings UAVObj to decide which drivers to attach to the "main" port and the flexi port, and select the appropriate device configuration data. - HwSettings allows choosing between Disabled, Telemetry, SBUS, Spektrum,GPS, and I2C for each of the two ports. - Use ManualControlSettings.InputMode to init/configure the appropriate receiver module, and register its available rx channels with the PIOS_RCVR layer. Can choose between PWM, Spektrum and PPM at board init time. PPM driver is broken, and SBUS will work once it is added to this UAVObj as an option. - CC build now includes code for SBUS, Spektrum and PWM receivers in every firmware image. PIOS_USART driver: - Now handles its own low-level IRQs internally - If NULL upper-level IRQ handler is bound in at board init time then rx/tx is satisfied by internal PIOS_USART buffered IO routines which are (typically) attached to the COM layer. - If an alternate upper-level IRQ handler is bound in at board init then that handler is called and expected to clear down the USART IRQ sources. This is used by Spektrum and SBUS drivers. PIOS_SBUS and PIOS_SPEKTRUM drivers: - Improved data/API hiding - No longer assume they know where their config data is stored which allows for boot-time alternate configurations for the driver. - Now registers an upper-level IRQ handlerwith the USART layer to decouple the driver from which USART it is actually attached to.
2011-07-05 20:21:00 -04:00
break;
case HWSETTINGS_CC_MAINPORT_DSM2:
case HWSETTINGS_CC_MAINPORT_DSMX10BIT:
case HWSETTINGS_CC_MAINPORT_DSMX11BIT:
#if defined(PIOS_INCLUDE_DSM)
bootcfg: use UAVobj to control boot-time HW config This should mark an end to the compile-time selection of HW configurations. Minor changes in board initialization for all platforms: - Most config structs are marked static to prevent badly written drivers from directly referring to config data. - Adapt to changes in .irq fields in config data. - Adapt to changes in USART IRQ handling. Major changes in board initialization for CC: - Use HwSettings UAVObj to decide which drivers to attach to the "main" port and the flexi port, and select the appropriate device configuration data. - HwSettings allows choosing between Disabled, Telemetry, SBUS, Spektrum,GPS, and I2C for each of the two ports. - Use ManualControlSettings.InputMode to init/configure the appropriate receiver module, and register its available rx channels with the PIOS_RCVR layer. Can choose between PWM, Spektrum and PPM at board init time. PPM driver is broken, and SBUS will work once it is added to this UAVObj as an option. - CC build now includes code for SBUS, Spektrum and PWM receivers in every firmware image. PIOS_USART driver: - Now handles its own low-level IRQs internally - If NULL upper-level IRQ handler is bound in at board init time then rx/tx is satisfied by internal PIOS_USART buffered IO routines which are (typically) attached to the COM layer. - If an alternate upper-level IRQ handler is bound in at board init then that handler is called and expected to clear down the USART IRQ sources. This is used by Spektrum and SBUS drivers. PIOS_SBUS and PIOS_SPEKTRUM drivers: - Improved data/API hiding - No longer assume they know where their config data is stored which allows for boot-time alternate configurations for the driver. - Now registers an upper-level IRQ handlerwith the USART layer to decouple the driver from which USART it is actually attached to.
2011-07-05 20:21:00 -04:00
{
enum pios_dsm_proto proto;
switch (hwsettings_cc_mainport) {
case HWSETTINGS_CC_MAINPORT_DSM2:
proto = PIOS_DSM_PROTO_DSM2;
break;
case HWSETTINGS_CC_MAINPORT_DSMX10BIT:
proto = PIOS_DSM_PROTO_DSMX10BIT;
break;
case HWSETTINGS_CC_MAINPORT_DSMX11BIT:
proto = PIOS_DSM_PROTO_DSMX11BIT;
break;
default:
bootcfg: use UAVobj to control boot-time HW config This should mark an end to the compile-time selection of HW configurations. Minor changes in board initialization for all platforms: - Most config structs are marked static to prevent badly written drivers from directly referring to config data. - Adapt to changes in .irq fields in config data. - Adapt to changes in USART IRQ handling. Major changes in board initialization for CC: - Use HwSettings UAVObj to decide which drivers to attach to the "main" port and the flexi port, and select the appropriate device configuration data. - HwSettings allows choosing between Disabled, Telemetry, SBUS, Spektrum,GPS, and I2C for each of the two ports. - Use ManualControlSettings.InputMode to init/configure the appropriate receiver module, and register its available rx channels with the PIOS_RCVR layer. Can choose between PWM, Spektrum and PPM at board init time. PPM driver is broken, and SBUS will work once it is added to this UAVObj as an option. - CC build now includes code for SBUS, Spektrum and PWM receivers in every firmware image. PIOS_USART driver: - Now handles its own low-level IRQs internally - If NULL upper-level IRQ handler is bound in at board init time then rx/tx is satisfied by internal PIOS_USART buffered IO routines which are (typically) attached to the COM layer. - If an alternate upper-level IRQ handler is bound in at board init then that handler is called and expected to clear down the USART IRQ sources. This is used by Spektrum and SBUS drivers. PIOS_SBUS and PIOS_SPEKTRUM drivers: - Improved data/API hiding - No longer assume they know where their config data is stored which allows for boot-time alternate configurations for the driver. - Now registers an upper-level IRQ handlerwith the USART layer to decouple the driver from which USART it is actually attached to.
2011-07-05 20:21:00 -04:00
PIOS_Assert(0);
break;
bootcfg: use UAVobj to control boot-time HW config This should mark an end to the compile-time selection of HW configurations. Minor changes in board initialization for all platforms: - Most config structs are marked static to prevent badly written drivers from directly referring to config data. - Adapt to changes in .irq fields in config data. - Adapt to changes in USART IRQ handling. Major changes in board initialization for CC: - Use HwSettings UAVObj to decide which drivers to attach to the "main" port and the flexi port, and select the appropriate device configuration data. - HwSettings allows choosing between Disabled, Telemetry, SBUS, Spektrum,GPS, and I2C for each of the two ports. - Use ManualControlSettings.InputMode to init/configure the appropriate receiver module, and register its available rx channels with the PIOS_RCVR layer. Can choose between PWM, Spektrum and PPM at board init time. PPM driver is broken, and SBUS will work once it is added to this UAVObj as an option. - CC build now includes code for SBUS, Spektrum and PWM receivers in every firmware image. PIOS_USART driver: - Now handles its own low-level IRQs internally - If NULL upper-level IRQ handler is bound in at board init time then rx/tx is satisfied by internal PIOS_USART buffered IO routines which are (typically) attached to the COM layer. - If an alternate upper-level IRQ handler is bound in at board init then that handler is called and expected to clear down the USART IRQ sources. This is used by Spektrum and SBUS drivers. PIOS_SBUS and PIOS_SPEKTRUM drivers: - Improved data/API hiding - No longer assume they know where their config data is stored which allows for boot-time alternate configurations for the driver. - Now registers an upper-level IRQ handlerwith the USART layer to decouple the driver from which USART it is actually attached to.
2011-07-05 20:21:00 -04:00
}
uint32_t pios_usart_dsm_id;
if (PIOS_USART_Init(&pios_usart_dsm_id, &pios_usart_dsm_main_cfg)) {
PIOS_Assert(0);
}
uint32_t pios_dsm_id;
if (PIOS_DSM_Init(&pios_dsm_id,
&pios_dsm_main_cfg,
&pios_usart_com_driver,
pios_usart_dsm_id,
proto, 0)) {
PIOS_Assert(0);
}
uint32_t pios_dsm_rcvr_id;
if (PIOS_RCVR_Init(&pios_dsm_rcvr_id, &pios_dsm_rcvr_driver, pios_dsm_id)) {
PIOS_Assert(0);
}
pios_rcvr_group_map[MANUALCONTROLSETTINGS_CHANNELGROUPS_DSMMAINPORT] = pios_dsm_rcvr_id;
}
#endif /* PIOS_INCLUDE_DSM */
bootcfg: use UAVobj to control boot-time HW config This should mark an end to the compile-time selection of HW configurations. Minor changes in board initialization for all platforms: - Most config structs are marked static to prevent badly written drivers from directly referring to config data. - Adapt to changes in .irq fields in config data. - Adapt to changes in USART IRQ handling. Major changes in board initialization for CC: - Use HwSettings UAVObj to decide which drivers to attach to the "main" port and the flexi port, and select the appropriate device configuration data. - HwSettings allows choosing between Disabled, Telemetry, SBUS, Spektrum,GPS, and I2C for each of the two ports. - Use ManualControlSettings.InputMode to init/configure the appropriate receiver module, and register its available rx channels with the PIOS_RCVR layer. Can choose between PWM, Spektrum and PPM at board init time. PPM driver is broken, and SBUS will work once it is added to this UAVObj as an option. - CC build now includes code for SBUS, Spektrum and PWM receivers in every firmware image. PIOS_USART driver: - Now handles its own low-level IRQs internally - If NULL upper-level IRQ handler is bound in at board init time then rx/tx is satisfied by internal PIOS_USART buffered IO routines which are (typically) attached to the COM layer. - If an alternate upper-level IRQ handler is bound in at board init then that handler is called and expected to clear down the USART IRQ sources. This is used by Spektrum and SBUS drivers. PIOS_SBUS and PIOS_SPEKTRUM drivers: - Improved data/API hiding - No longer assume they know where their config data is stored which allows for boot-time alternate configurations for the driver. - Now registers an upper-level IRQ handlerwith the USART layer to decouple the driver from which USART it is actually attached to.
2011-07-05 20:21:00 -04:00
break;
case HWSETTINGS_CC_MAINPORT_COMAUX:
break;
case HWSETTINGS_CC_MAINPORT_COMBRIDGE:
{
uint32_t pios_usart_generic_id;
if (PIOS_USART_Init(&pios_usart_generic_id, &pios_usart_generic_main_cfg)) {
PIOS_Assert(0);
}
uint8_t * rx_buffer = (uint8_t *) pvPortMalloc(PIOS_COM_BRIDGE_RX_BUF_LEN);
PIOS_Assert(rx_buffer);
uint8_t * tx_buffer = (uint8_t *) pvPortMalloc(PIOS_COM_BRIDGE_TX_BUF_LEN);
PIOS_Assert(tx_buffer);
if (PIOS_COM_Init(&pios_com_bridge_id, &pios_usart_com_driver, pios_usart_generic_id,
rx_buffer, PIOS_COM_BRIDGE_RX_BUF_LEN,
tx_buffer, PIOS_COM_BRIDGE_TX_BUF_LEN)) {
PIOS_Assert(0);
}
}
break;
}
bootcfg: use UAVobj to control boot-time HW config This should mark an end to the compile-time selection of HW configurations. Minor changes in board initialization for all platforms: - Most config structs are marked static to prevent badly written drivers from directly referring to config data. - Adapt to changes in .irq fields in config data. - Adapt to changes in USART IRQ handling. Major changes in board initialization for CC: - Use HwSettings UAVObj to decide which drivers to attach to the "main" port and the flexi port, and select the appropriate device configuration data. - HwSettings allows choosing between Disabled, Telemetry, SBUS, Spektrum,GPS, and I2C for each of the two ports. - Use ManualControlSettings.InputMode to init/configure the appropriate receiver module, and register its available rx channels with the PIOS_RCVR layer. Can choose between PWM, Spektrum and PPM at board init time. PPM driver is broken, and SBUS will work once it is added to this UAVObj as an option. - CC build now includes code for SBUS, Spektrum and PWM receivers in every firmware image. PIOS_USART driver: - Now handles its own low-level IRQs internally - If NULL upper-level IRQ handler is bound in at board init time then rx/tx is satisfied by internal PIOS_USART buffered IO routines which are (typically) attached to the COM layer. - If an alternate upper-level IRQ handler is bound in at board init then that handler is called and expected to clear down the USART IRQ sources. This is used by Spektrum and SBUS drivers. PIOS_SBUS and PIOS_SPEKTRUM drivers: - Improved data/API hiding - No longer assume they know where their config data is stored which allows for boot-time alternate configurations for the driver. - Now registers an upper-level IRQ handlerwith the USART layer to decouple the driver from which USART it is actually attached to.
2011-07-05 20:21:00 -04:00
/* Configure the flexi port */
uint8_t hwsettings_cc_flexiport;
HwSettingsCC_FlexiPortGet(&hwsettings_cc_flexiport);
switch (hwsettings_cc_flexiport) {
case HWSETTINGS_CC_FLEXIPORT_DISABLED:
break;
case HWSETTINGS_CC_FLEXIPORT_TELEMETRY:
#if defined(PIOS_INCLUDE_TELEMETRY_RF)
{
uint32_t pios_usart_generic_id;
if (PIOS_USART_Init(&pios_usart_generic_id, &pios_usart_generic_flexi_cfg)) {
bootcfg: use UAVobj to control boot-time HW config This should mark an end to the compile-time selection of HW configurations. Minor changes in board initialization for all platforms: - Most config structs are marked static to prevent badly written drivers from directly referring to config data. - Adapt to changes in .irq fields in config data. - Adapt to changes in USART IRQ handling. Major changes in board initialization for CC: - Use HwSettings UAVObj to decide which drivers to attach to the "main" port and the flexi port, and select the appropriate device configuration data. - HwSettings allows choosing between Disabled, Telemetry, SBUS, Spektrum,GPS, and I2C for each of the two ports. - Use ManualControlSettings.InputMode to init/configure the appropriate receiver module, and register its available rx channels with the PIOS_RCVR layer. Can choose between PWM, Spektrum and PPM at board init time. PPM driver is broken, and SBUS will work once it is added to this UAVObj as an option. - CC build now includes code for SBUS, Spektrum and PWM receivers in every firmware image. PIOS_USART driver: - Now handles its own low-level IRQs internally - If NULL upper-level IRQ handler is bound in at board init time then rx/tx is satisfied by internal PIOS_USART buffered IO routines which are (typically) attached to the COM layer. - If an alternate upper-level IRQ handler is bound in at board init then that handler is called and expected to clear down the USART IRQ sources. This is used by Spektrum and SBUS drivers. PIOS_SBUS and PIOS_SPEKTRUM drivers: - Improved data/API hiding - No longer assume they know where their config data is stored which allows for boot-time alternate configurations for the driver. - Now registers an upper-level IRQ handlerwith the USART layer to decouple the driver from which USART it is actually attached to.
2011-07-05 20:21:00 -04:00
PIOS_Assert(0);
}
uint8_t * rx_buffer = (uint8_t *) pvPortMalloc(PIOS_COM_TELEM_RF_RX_BUF_LEN);
uint8_t * tx_buffer = (uint8_t *) pvPortMalloc(PIOS_COM_TELEM_RF_TX_BUF_LEN);
PIOS_Assert(rx_buffer);
PIOS_Assert(tx_buffer);
if (PIOS_COM_Init(&pios_com_telem_rf_id, &pios_usart_com_driver, pios_usart_generic_id,
rx_buffer, PIOS_COM_TELEM_RF_RX_BUF_LEN,
tx_buffer, PIOS_COM_TELEM_RF_TX_BUF_LEN)) {
bootcfg: use UAVobj to control boot-time HW config This should mark an end to the compile-time selection of HW configurations. Minor changes in board initialization for all platforms: - Most config structs are marked static to prevent badly written drivers from directly referring to config data. - Adapt to changes in .irq fields in config data. - Adapt to changes in USART IRQ handling. Major changes in board initialization for CC: - Use HwSettings UAVObj to decide which drivers to attach to the "main" port and the flexi port, and select the appropriate device configuration data. - HwSettings allows choosing between Disabled, Telemetry, SBUS, Spektrum,GPS, and I2C for each of the two ports. - Use ManualControlSettings.InputMode to init/configure the appropriate receiver module, and register its available rx channels with the PIOS_RCVR layer. Can choose between PWM, Spektrum and PPM at board init time. PPM driver is broken, and SBUS will work once it is added to this UAVObj as an option. - CC build now includes code for SBUS, Spektrum and PWM receivers in every firmware image. PIOS_USART driver: - Now handles its own low-level IRQs internally - If NULL upper-level IRQ handler is bound in at board init time then rx/tx is satisfied by internal PIOS_USART buffered IO routines which are (typically) attached to the COM layer. - If an alternate upper-level IRQ handler is bound in at board init then that handler is called and expected to clear down the USART IRQ sources. This is used by Spektrum and SBUS drivers. PIOS_SBUS and PIOS_SPEKTRUM drivers: - Improved data/API hiding - No longer assume they know where their config data is stored which allows for boot-time alternate configurations for the driver. - Now registers an upper-level IRQ handlerwith the USART layer to decouple the driver from which USART it is actually attached to.
2011-07-05 20:21:00 -04:00
PIOS_Assert(0);
}
}
#endif /* PIOS_INCLUDE_TELEMETRY_RF */
break;
case HWSETTINGS_CC_FLEXIPORT_COMBRIDGE:
{
uint32_t pios_usart_generic_id;
if (PIOS_USART_Init(&pios_usart_generic_id, &pios_usart_generic_flexi_cfg)) {
PIOS_Assert(0);
}
uint8_t * rx_buffer = (uint8_t *) pvPortMalloc(PIOS_COM_BRIDGE_RX_BUF_LEN);
uint8_t * tx_buffer = (uint8_t *) pvPortMalloc(PIOS_COM_BRIDGE_TX_BUF_LEN);
PIOS_Assert(rx_buffer);
PIOS_Assert(tx_buffer);
if (PIOS_COM_Init(&pios_com_bridge_id, &pios_usart_com_driver, pios_usart_generic_id,
rx_buffer, PIOS_COM_BRIDGE_RX_BUF_LEN,
tx_buffer, PIOS_COM_BRIDGE_TX_BUF_LEN)) {
PIOS_Assert(0);
}
}
break;
bootcfg: use UAVobj to control boot-time HW config This should mark an end to the compile-time selection of HW configurations. Minor changes in board initialization for all platforms: - Most config structs are marked static to prevent badly written drivers from directly referring to config data. - Adapt to changes in .irq fields in config data. - Adapt to changes in USART IRQ handling. Major changes in board initialization for CC: - Use HwSettings UAVObj to decide which drivers to attach to the "main" port and the flexi port, and select the appropriate device configuration data. - HwSettings allows choosing between Disabled, Telemetry, SBUS, Spektrum,GPS, and I2C for each of the two ports. - Use ManualControlSettings.InputMode to init/configure the appropriate receiver module, and register its available rx channels with the PIOS_RCVR layer. Can choose between PWM, Spektrum and PPM at board init time. PPM driver is broken, and SBUS will work once it is added to this UAVObj as an option. - CC build now includes code for SBUS, Spektrum and PWM receivers in every firmware image. PIOS_USART driver: - Now handles its own low-level IRQs internally - If NULL upper-level IRQ handler is bound in at board init time then rx/tx is satisfied by internal PIOS_USART buffered IO routines which are (typically) attached to the COM layer. - If an alternate upper-level IRQ handler is bound in at board init then that handler is called and expected to clear down the USART IRQ sources. This is used by Spektrum and SBUS drivers. PIOS_SBUS and PIOS_SPEKTRUM drivers: - Improved data/API hiding - No longer assume they know where their config data is stored which allows for boot-time alternate configurations for the driver. - Now registers an upper-level IRQ handlerwith the USART layer to decouple the driver from which USART it is actually attached to.
2011-07-05 20:21:00 -04:00
case HWSETTINGS_CC_FLEXIPORT_GPS:
#if defined(PIOS_INCLUDE_GPS)
bootcfg: use UAVobj to control boot-time HW config This should mark an end to the compile-time selection of HW configurations. Minor changes in board initialization for all platforms: - Most config structs are marked static to prevent badly written drivers from directly referring to config data. - Adapt to changes in .irq fields in config data. - Adapt to changes in USART IRQ handling. Major changes in board initialization for CC: - Use HwSettings UAVObj to decide which drivers to attach to the "main" port and the flexi port, and select the appropriate device configuration data. - HwSettings allows choosing between Disabled, Telemetry, SBUS, Spektrum,GPS, and I2C for each of the two ports. - Use ManualControlSettings.InputMode to init/configure the appropriate receiver module, and register its available rx channels with the PIOS_RCVR layer. Can choose between PWM, Spektrum and PPM at board init time. PPM driver is broken, and SBUS will work once it is added to this UAVObj as an option. - CC build now includes code for SBUS, Spektrum and PWM receivers in every firmware image. PIOS_USART driver: - Now handles its own low-level IRQs internally - If NULL upper-level IRQ handler is bound in at board init time then rx/tx is satisfied by internal PIOS_USART buffered IO routines which are (typically) attached to the COM layer. - If an alternate upper-level IRQ handler is bound in at board init then that handler is called and expected to clear down the USART IRQ sources. This is used by Spektrum and SBUS drivers. PIOS_SBUS and PIOS_SPEKTRUM drivers: - Improved data/API hiding - No longer assume they know where their config data is stored which allows for boot-time alternate configurations for the driver. - Now registers an upper-level IRQ handlerwith the USART layer to decouple the driver from which USART it is actually attached to.
2011-07-05 20:21:00 -04:00
{
uint32_t pios_usart_generic_id;
if (PIOS_USART_Init(&pios_usart_generic_id, &pios_usart_generic_flexi_cfg)) {
bootcfg: use UAVobj to control boot-time HW config This should mark an end to the compile-time selection of HW configurations. Minor changes in board initialization for all platforms: - Most config structs are marked static to prevent badly written drivers from directly referring to config data. - Adapt to changes in .irq fields in config data. - Adapt to changes in USART IRQ handling. Major changes in board initialization for CC: - Use HwSettings UAVObj to decide which drivers to attach to the "main" port and the flexi port, and select the appropriate device configuration data. - HwSettings allows choosing between Disabled, Telemetry, SBUS, Spektrum,GPS, and I2C for each of the two ports. - Use ManualControlSettings.InputMode to init/configure the appropriate receiver module, and register its available rx channels with the PIOS_RCVR layer. Can choose between PWM, Spektrum and PPM at board init time. PPM driver is broken, and SBUS will work once it is added to this UAVObj as an option. - CC build now includes code for SBUS, Spektrum and PWM receivers in every firmware image. PIOS_USART driver: - Now handles its own low-level IRQs internally - If NULL upper-level IRQ handler is bound in at board init time then rx/tx is satisfied by internal PIOS_USART buffered IO routines which are (typically) attached to the COM layer. - If an alternate upper-level IRQ handler is bound in at board init then that handler is called and expected to clear down the USART IRQ sources. This is used by Spektrum and SBUS drivers. PIOS_SBUS and PIOS_SPEKTRUM drivers: - Improved data/API hiding - No longer assume they know where their config data is stored which allows for boot-time alternate configurations for the driver. - Now registers an upper-level IRQ handlerwith the USART layer to decouple the driver from which USART it is actually attached to.
2011-07-05 20:21:00 -04:00
PIOS_Assert(0);
}
uint8_t * rx_buffer = (uint8_t *) pvPortMalloc(PIOS_COM_GPS_RX_BUF_LEN);
PIOS_Assert(rx_buffer);
if (PIOS_COM_Init(&pios_com_gps_id, &pios_usart_com_driver, pios_usart_generic_id,
rx_buffer, PIOS_COM_GPS_RX_BUF_LEN,
2011-08-25 15:37:38 +02:00
NULL, 0)) {
bootcfg: use UAVobj to control boot-time HW config This should mark an end to the compile-time selection of HW configurations. Minor changes in board initialization for all platforms: - Most config structs are marked static to prevent badly written drivers from directly referring to config data. - Adapt to changes in .irq fields in config data. - Adapt to changes in USART IRQ handling. Major changes in board initialization for CC: - Use HwSettings UAVObj to decide which drivers to attach to the "main" port and the flexi port, and select the appropriate device configuration data. - HwSettings allows choosing between Disabled, Telemetry, SBUS, Spektrum,GPS, and I2C for each of the two ports. - Use ManualControlSettings.InputMode to init/configure the appropriate receiver module, and register its available rx channels with the PIOS_RCVR layer. Can choose between PWM, Spektrum and PPM at board init time. PPM driver is broken, and SBUS will work once it is added to this UAVObj as an option. - CC build now includes code for SBUS, Spektrum and PWM receivers in every firmware image. PIOS_USART driver: - Now handles its own low-level IRQs internally - If NULL upper-level IRQ handler is bound in at board init time then rx/tx is satisfied by internal PIOS_USART buffered IO routines which are (typically) attached to the COM layer. - If an alternate upper-level IRQ handler is bound in at board init then that handler is called and expected to clear down the USART IRQ sources. This is used by Spektrum and SBUS drivers. PIOS_SBUS and PIOS_SPEKTRUM drivers: - Improved data/API hiding - No longer assume they know where their config data is stored which allows for boot-time alternate configurations for the driver. - Now registers an upper-level IRQ handlerwith the USART layer to decouple the driver from which USART it is actually attached to.
2011-07-05 20:21:00 -04:00
PIOS_Assert(0);
}
}
#endif /* PIOS_INCLUDE_GPS */
break;
case HWSETTINGS_CC_FLEXIPORT_DSM2:
case HWSETTINGS_CC_FLEXIPORT_DSMX10BIT:
case HWSETTINGS_CC_FLEXIPORT_DSMX11BIT:
#if defined(PIOS_INCLUDE_DSM)
bootcfg: use UAVobj to control boot-time HW config This should mark an end to the compile-time selection of HW configurations. Minor changes in board initialization for all platforms: - Most config structs are marked static to prevent badly written drivers from directly referring to config data. - Adapt to changes in .irq fields in config data. - Adapt to changes in USART IRQ handling. Major changes in board initialization for CC: - Use HwSettings UAVObj to decide which drivers to attach to the "main" port and the flexi port, and select the appropriate device configuration data. - HwSettings allows choosing between Disabled, Telemetry, SBUS, Spektrum,GPS, and I2C for each of the two ports. - Use ManualControlSettings.InputMode to init/configure the appropriate receiver module, and register its available rx channels with the PIOS_RCVR layer. Can choose between PWM, Spektrum and PPM at board init time. PPM driver is broken, and SBUS will work once it is added to this UAVObj as an option. - CC build now includes code for SBUS, Spektrum and PWM receivers in every firmware image. PIOS_USART driver: - Now handles its own low-level IRQs internally - If NULL upper-level IRQ handler is bound in at board init time then rx/tx is satisfied by internal PIOS_USART buffered IO routines which are (typically) attached to the COM layer. - If an alternate upper-level IRQ handler is bound in at board init then that handler is called and expected to clear down the USART IRQ sources. This is used by Spektrum and SBUS drivers. PIOS_SBUS and PIOS_SPEKTRUM drivers: - Improved data/API hiding - No longer assume they know where their config data is stored which allows for boot-time alternate configurations for the driver. - Now registers an upper-level IRQ handlerwith the USART layer to decouple the driver from which USART it is actually attached to.
2011-07-05 20:21:00 -04:00
{
enum pios_dsm_proto proto;
switch (hwsettings_cc_flexiport) {
case HWSETTINGS_CC_FLEXIPORT_DSM2:
proto = PIOS_DSM_PROTO_DSM2;
break;
case HWSETTINGS_CC_FLEXIPORT_DSMX10BIT:
proto = PIOS_DSM_PROTO_DSMX10BIT;
break;
case HWSETTINGS_CC_FLEXIPORT_DSMX11BIT:
proto = PIOS_DSM_PROTO_DSMX11BIT;
break;
default:
bootcfg: use UAVobj to control boot-time HW config This should mark an end to the compile-time selection of HW configurations. Minor changes in board initialization for all platforms: - Most config structs are marked static to prevent badly written drivers from directly referring to config data. - Adapt to changes in .irq fields in config data. - Adapt to changes in USART IRQ handling. Major changes in board initialization for CC: - Use HwSettings UAVObj to decide which drivers to attach to the "main" port and the flexi port, and select the appropriate device configuration data. - HwSettings allows choosing between Disabled, Telemetry, SBUS, Spektrum,GPS, and I2C for each of the two ports. - Use ManualControlSettings.InputMode to init/configure the appropriate receiver module, and register its available rx channels with the PIOS_RCVR layer. Can choose between PWM, Spektrum and PPM at board init time. PPM driver is broken, and SBUS will work once it is added to this UAVObj as an option. - CC build now includes code for SBUS, Spektrum and PWM receivers in every firmware image. PIOS_USART driver: - Now handles its own low-level IRQs internally - If NULL upper-level IRQ handler is bound in at board init time then rx/tx is satisfied by internal PIOS_USART buffered IO routines which are (typically) attached to the COM layer. - If an alternate upper-level IRQ handler is bound in at board init then that handler is called and expected to clear down the USART IRQ sources. This is used by Spektrum and SBUS drivers. PIOS_SBUS and PIOS_SPEKTRUM drivers: - Improved data/API hiding - No longer assume they know where their config data is stored which allows for boot-time alternate configurations for the driver. - Now registers an upper-level IRQ handlerwith the USART layer to decouple the driver from which USART it is actually attached to.
2011-07-05 20:21:00 -04:00
PIOS_Assert(0);
break;
bootcfg: use UAVobj to control boot-time HW config This should mark an end to the compile-time selection of HW configurations. Minor changes in board initialization for all platforms: - Most config structs are marked static to prevent badly written drivers from directly referring to config data. - Adapt to changes in .irq fields in config data. - Adapt to changes in USART IRQ handling. Major changes in board initialization for CC: - Use HwSettings UAVObj to decide which drivers to attach to the "main" port and the flexi port, and select the appropriate device configuration data. - HwSettings allows choosing between Disabled, Telemetry, SBUS, Spektrum,GPS, and I2C for each of the two ports. - Use ManualControlSettings.InputMode to init/configure the appropriate receiver module, and register its available rx channels with the PIOS_RCVR layer. Can choose between PWM, Spektrum and PPM at board init time. PPM driver is broken, and SBUS will work once it is added to this UAVObj as an option. - CC build now includes code for SBUS, Spektrum and PWM receivers in every firmware image. PIOS_USART driver: - Now handles its own low-level IRQs internally - If NULL upper-level IRQ handler is bound in at board init time then rx/tx is satisfied by internal PIOS_USART buffered IO routines which are (typically) attached to the COM layer. - If an alternate upper-level IRQ handler is bound in at board init then that handler is called and expected to clear down the USART IRQ sources. This is used by Spektrum and SBUS drivers. PIOS_SBUS and PIOS_SPEKTRUM drivers: - Improved data/API hiding - No longer assume they know where their config data is stored which allows for boot-time alternate configurations for the driver. - Now registers an upper-level IRQ handlerwith the USART layer to decouple the driver from which USART it is actually attached to.
2011-07-05 20:21:00 -04:00
}
uint32_t pios_usart_dsm_id;
if (PIOS_USART_Init(&pios_usart_dsm_id, &pios_usart_dsm_flexi_cfg)) {
PIOS_Assert(0);
}
uint32_t pios_dsm_id;
if (PIOS_DSM_Init(&pios_dsm_id,
&pios_dsm_flexi_cfg,
&pios_usart_com_driver,
pios_usart_dsm_id,
proto, hwsettings_DSMxBind)) {
PIOS_Assert(0);
}
uint32_t pios_dsm_rcvr_id;
if (PIOS_RCVR_Init(&pios_dsm_rcvr_id, &pios_dsm_rcvr_driver, pios_dsm_id)) {
PIOS_Assert(0);
}
pios_rcvr_group_map[MANUALCONTROLSETTINGS_CHANNELGROUPS_DSMFLEXIPORT] = pios_dsm_rcvr_id;
bootcfg: use UAVobj to control boot-time HW config This should mark an end to the compile-time selection of HW configurations. Minor changes in board initialization for all platforms: - Most config structs are marked static to prevent badly written drivers from directly referring to config data. - Adapt to changes in .irq fields in config data. - Adapt to changes in USART IRQ handling. Major changes in board initialization for CC: - Use HwSettings UAVObj to decide which drivers to attach to the "main" port and the flexi port, and select the appropriate device configuration data. - HwSettings allows choosing between Disabled, Telemetry, SBUS, Spektrum,GPS, and I2C for each of the two ports. - Use ManualControlSettings.InputMode to init/configure the appropriate receiver module, and register its available rx channels with the PIOS_RCVR layer. Can choose between PWM, Spektrum and PPM at board init time. PPM driver is broken, and SBUS will work once it is added to this UAVObj as an option. - CC build now includes code for SBUS, Spektrum and PWM receivers in every firmware image. PIOS_USART driver: - Now handles its own low-level IRQs internally - If NULL upper-level IRQ handler is bound in at board init time then rx/tx is satisfied by internal PIOS_USART buffered IO routines which are (typically) attached to the COM layer. - If an alternate upper-level IRQ handler is bound in at board init then that handler is called and expected to clear down the USART IRQ sources. This is used by Spektrum and SBUS drivers. PIOS_SBUS and PIOS_SPEKTRUM drivers: - Improved data/API hiding - No longer assume they know where their config data is stored which allows for boot-time alternate configurations for the driver. - Now registers an upper-level IRQ handlerwith the USART layer to decouple the driver from which USART it is actually attached to.
2011-07-05 20:21:00 -04:00
}
#endif /* PIOS_INCLUDE_DSM */
bootcfg: use UAVobj to control boot-time HW config This should mark an end to the compile-time selection of HW configurations. Minor changes in board initialization for all platforms: - Most config structs are marked static to prevent badly written drivers from directly referring to config data. - Adapt to changes in .irq fields in config data. - Adapt to changes in USART IRQ handling. Major changes in board initialization for CC: - Use HwSettings UAVObj to decide which drivers to attach to the "main" port and the flexi port, and select the appropriate device configuration data. - HwSettings allows choosing between Disabled, Telemetry, SBUS, Spektrum,GPS, and I2C for each of the two ports. - Use ManualControlSettings.InputMode to init/configure the appropriate receiver module, and register its available rx channels with the PIOS_RCVR layer. Can choose between PWM, Spektrum and PPM at board init time. PPM driver is broken, and SBUS will work once it is added to this UAVObj as an option. - CC build now includes code for SBUS, Spektrum and PWM receivers in every firmware image. PIOS_USART driver: - Now handles its own low-level IRQs internally - If NULL upper-level IRQ handler is bound in at board init time then rx/tx is satisfied by internal PIOS_USART buffered IO routines which are (typically) attached to the COM layer. - If an alternate upper-level IRQ handler is bound in at board init then that handler is called and expected to clear down the USART IRQ sources. This is used by Spektrum and SBUS drivers. PIOS_SBUS and PIOS_SPEKTRUM drivers: - Improved data/API hiding - No longer assume they know where their config data is stored which allows for boot-time alternate configurations for the driver. - Now registers an upper-level IRQ handlerwith the USART layer to decouple the driver from which USART it is actually attached to.
2011-07-05 20:21:00 -04:00
break;
case HWSETTINGS_CC_FLEXIPORT_COMAUX:
break;
case HWSETTINGS_CC_FLEXIPORT_I2C:
#if defined(PIOS_INCLUDE_I2C)
{
2012-01-14 15:17:24 -05:00
if (PIOS_I2C_Init(&pios_i2c_flexi_adapter_id, &pios_i2c_flexi_adapter_cfg)) {
bootcfg: use UAVobj to control boot-time HW config This should mark an end to the compile-time selection of HW configurations. Minor changes in board initialization for all platforms: - Most config structs are marked static to prevent badly written drivers from directly referring to config data. - Adapt to changes in .irq fields in config data. - Adapt to changes in USART IRQ handling. Major changes in board initialization for CC: - Use HwSettings UAVObj to decide which drivers to attach to the "main" port and the flexi port, and select the appropriate device configuration data. - HwSettings allows choosing between Disabled, Telemetry, SBUS, Spektrum,GPS, and I2C for each of the two ports. - Use ManualControlSettings.InputMode to init/configure the appropriate receiver module, and register its available rx channels with the PIOS_RCVR layer. Can choose between PWM, Spektrum and PPM at board init time. PPM driver is broken, and SBUS will work once it is added to this UAVObj as an option. - CC build now includes code for SBUS, Spektrum and PWM receivers in every firmware image. PIOS_USART driver: - Now handles its own low-level IRQs internally - If NULL upper-level IRQ handler is bound in at board init time then rx/tx is satisfied by internal PIOS_USART buffered IO routines which are (typically) attached to the COM layer. - If an alternate upper-level IRQ handler is bound in at board init then that handler is called and expected to clear down the USART IRQ sources. This is used by Spektrum and SBUS drivers. PIOS_SBUS and PIOS_SPEKTRUM drivers: - Improved data/API hiding - No longer assume they know where their config data is stored which allows for boot-time alternate configurations for the driver. - Now registers an upper-level IRQ handlerwith the USART layer to decouple the driver from which USART it is actually attached to.
2011-07-05 20:21:00 -04:00
PIOS_Assert(0);
}
}
bootcfg: use UAVobj to control boot-time HW config This should mark an end to the compile-time selection of HW configurations. Minor changes in board initialization for all platforms: - Most config structs are marked static to prevent badly written drivers from directly referring to config data. - Adapt to changes in .irq fields in config data. - Adapt to changes in USART IRQ handling. Major changes in board initialization for CC: - Use HwSettings UAVObj to decide which drivers to attach to the "main" port and the flexi port, and select the appropriate device configuration data. - HwSettings allows choosing between Disabled, Telemetry, SBUS, Spektrum,GPS, and I2C for each of the two ports. - Use ManualControlSettings.InputMode to init/configure the appropriate receiver module, and register its available rx channels with the PIOS_RCVR layer. Can choose between PWM, Spektrum and PPM at board init time. PPM driver is broken, and SBUS will work once it is added to this UAVObj as an option. - CC build now includes code for SBUS, Spektrum and PWM receivers in every firmware image. PIOS_USART driver: - Now handles its own low-level IRQs internally - If NULL upper-level IRQ handler is bound in at board init time then rx/tx is satisfied by internal PIOS_USART buffered IO routines which are (typically) attached to the COM layer. - If an alternate upper-level IRQ handler is bound in at board init then that handler is called and expected to clear down the USART IRQ sources. This is used by Spektrum and SBUS drivers. PIOS_SBUS and PIOS_SPEKTRUM drivers: - Improved data/API hiding - No longer assume they know where their config data is stored which allows for boot-time alternate configurations for the driver. - Now registers an upper-level IRQ handlerwith the USART layer to decouple the driver from which USART it is actually attached to.
2011-07-05 20:21:00 -04:00
#endif /* PIOS_INCLUDE_I2C */
break;
}
/* Configure the rcvr port */
uint8_t hwsettings_rcvrport;
HwSettingsCC_RcvrPortGet(&hwsettings_rcvrport);
bootcfg: use UAVobj to control boot-time HW config This should mark an end to the compile-time selection of HW configurations. Minor changes in board initialization for all platforms: - Most config structs are marked static to prevent badly written drivers from directly referring to config data. - Adapt to changes in .irq fields in config data. - Adapt to changes in USART IRQ handling. Major changes in board initialization for CC: - Use HwSettings UAVObj to decide which drivers to attach to the "main" port and the flexi port, and select the appropriate device configuration data. - HwSettings allows choosing between Disabled, Telemetry, SBUS, Spektrum,GPS, and I2C for each of the two ports. - Use ManualControlSettings.InputMode to init/configure the appropriate receiver module, and register its available rx channels with the PIOS_RCVR layer. Can choose between PWM, Spektrum and PPM at board init time. PPM driver is broken, and SBUS will work once it is added to this UAVObj as an option. - CC build now includes code for SBUS, Spektrum and PWM receivers in every firmware image. PIOS_USART driver: - Now handles its own low-level IRQs internally - If NULL upper-level IRQ handler is bound in at board init time then rx/tx is satisfied by internal PIOS_USART buffered IO routines which are (typically) attached to the COM layer. - If an alternate upper-level IRQ handler is bound in at board init then that handler is called and expected to clear down the USART IRQ sources. This is used by Spektrum and SBUS drivers. PIOS_SBUS and PIOS_SPEKTRUM drivers: - Improved data/API hiding - No longer assume they know where their config data is stored which allows for boot-time alternate configurations for the driver. - Now registers an upper-level IRQ handlerwith the USART layer to decouple the driver from which USART it is actually attached to.
2011-07-05 20:21:00 -04:00
switch (hwsettings_rcvrport) {
case HWSETTINGS_CC_RCVRPORT_DISABLED:
bootcfg: use UAVobj to control boot-time HW config This should mark an end to the compile-time selection of HW configurations. Minor changes in board initialization for all platforms: - Most config structs are marked static to prevent badly written drivers from directly referring to config data. - Adapt to changes in .irq fields in config data. - Adapt to changes in USART IRQ handling. Major changes in board initialization for CC: - Use HwSettings UAVObj to decide which drivers to attach to the "main" port and the flexi port, and select the appropriate device configuration data. - HwSettings allows choosing between Disabled, Telemetry, SBUS, Spektrum,GPS, and I2C for each of the two ports. - Use ManualControlSettings.InputMode to init/configure the appropriate receiver module, and register its available rx channels with the PIOS_RCVR layer. Can choose between PWM, Spektrum and PPM at board init time. PPM driver is broken, and SBUS will work once it is added to this UAVObj as an option. - CC build now includes code for SBUS, Spektrum and PWM receivers in every firmware image. PIOS_USART driver: - Now handles its own low-level IRQs internally - If NULL upper-level IRQ handler is bound in at board init time then rx/tx is satisfied by internal PIOS_USART buffered IO routines which are (typically) attached to the COM layer. - If an alternate upper-level IRQ handler is bound in at board init then that handler is called and expected to clear down the USART IRQ sources. This is used by Spektrum and SBUS drivers. PIOS_SBUS and PIOS_SPEKTRUM drivers: - Improved data/API hiding - No longer assume they know where their config data is stored which allows for boot-time alternate configurations for the driver. - Now registers an upper-level IRQ handlerwith the USART layer to decouple the driver from which USART it is actually attached to.
2011-07-05 20:21:00 -04:00
break;
case HWSETTINGS_CC_RCVRPORT_PWM:
bootcfg: use UAVobj to control boot-time HW config This should mark an end to the compile-time selection of HW configurations. Minor changes in board initialization for all platforms: - Most config structs are marked static to prevent badly written drivers from directly referring to config data. - Adapt to changes in .irq fields in config data. - Adapt to changes in USART IRQ handling. Major changes in board initialization for CC: - Use HwSettings UAVObj to decide which drivers to attach to the "main" port and the flexi port, and select the appropriate device configuration data. - HwSettings allows choosing between Disabled, Telemetry, SBUS, Spektrum,GPS, and I2C for each of the two ports. - Use ManualControlSettings.InputMode to init/configure the appropriate receiver module, and register its available rx channels with the PIOS_RCVR layer. Can choose between PWM, Spektrum and PPM at board init time. PPM driver is broken, and SBUS will work once it is added to this UAVObj as an option. - CC build now includes code for SBUS, Spektrum and PWM receivers in every firmware image. PIOS_USART driver: - Now handles its own low-level IRQs internally - If NULL upper-level IRQ handler is bound in at board init time then rx/tx is satisfied by internal PIOS_USART buffered IO routines which are (typically) attached to the COM layer. - If an alternate upper-level IRQ handler is bound in at board init then that handler is called and expected to clear down the USART IRQ sources. This is used by Spektrum and SBUS drivers. PIOS_SBUS and PIOS_SPEKTRUM drivers: - Improved data/API hiding - No longer assume they know where their config data is stored which allows for boot-time alternate configurations for the driver. - Now registers an upper-level IRQ handlerwith the USART layer to decouple the driver from which USART it is actually attached to.
2011-07-05 20:21:00 -04:00
#if defined(PIOS_INCLUDE_PWM)
{
uint32_t pios_pwm_id;
PIOS_PWM_Init(&pios_pwm_id, &pios_pwm_cfg);
uint32_t pios_pwm_rcvr_id;
if (PIOS_RCVR_Init(&pios_pwm_rcvr_id, &pios_pwm_rcvr_driver, pios_pwm_id)) {
PIOS_Assert(0);
}
pios_rcvr_group_map[MANUALCONTROLSETTINGS_CHANNELGROUPS_PWM] = pios_pwm_rcvr_id;
bootcfg: use UAVobj to control boot-time HW config This should mark an end to the compile-time selection of HW configurations. Minor changes in board initialization for all platforms: - Most config structs are marked static to prevent badly written drivers from directly referring to config data. - Adapt to changes in .irq fields in config data. - Adapt to changes in USART IRQ handling. Major changes in board initialization for CC: - Use HwSettings UAVObj to decide which drivers to attach to the "main" port and the flexi port, and select the appropriate device configuration data. - HwSettings allows choosing between Disabled, Telemetry, SBUS, Spektrum,GPS, and I2C for each of the two ports. - Use ManualControlSettings.InputMode to init/configure the appropriate receiver module, and register its available rx channels with the PIOS_RCVR layer. Can choose between PWM, Spektrum and PPM at board init time. PPM driver is broken, and SBUS will work once it is added to this UAVObj as an option. - CC build now includes code for SBUS, Spektrum and PWM receivers in every firmware image. PIOS_USART driver: - Now handles its own low-level IRQs internally - If NULL upper-level IRQ handler is bound in at board init time then rx/tx is satisfied by internal PIOS_USART buffered IO routines which are (typically) attached to the COM layer. - If an alternate upper-level IRQ handler is bound in at board init then that handler is called and expected to clear down the USART IRQ sources. This is used by Spektrum and SBUS drivers. PIOS_SBUS and PIOS_SPEKTRUM drivers: - Improved data/API hiding - No longer assume they know where their config data is stored which allows for boot-time alternate configurations for the driver. - Now registers an upper-level IRQ handlerwith the USART layer to decouple the driver from which USART it is actually attached to.
2011-07-05 20:21:00 -04:00
}
#endif /* PIOS_INCLUDE_PWM */
break;
case HWSETTINGS_CC_RCVRPORT_PPM:
case HWSETTINGS_CC_RCVRPORT_PPMOUTPUTS:
bootcfg: use UAVobj to control boot-time HW config This should mark an end to the compile-time selection of HW configurations. Minor changes in board initialization for all platforms: - Most config structs are marked static to prevent badly written drivers from directly referring to config data. - Adapt to changes in .irq fields in config data. - Adapt to changes in USART IRQ handling. Major changes in board initialization for CC: - Use HwSettings UAVObj to decide which drivers to attach to the "main" port and the flexi port, and select the appropriate device configuration data. - HwSettings allows choosing between Disabled, Telemetry, SBUS, Spektrum,GPS, and I2C for each of the two ports. - Use ManualControlSettings.InputMode to init/configure the appropriate receiver module, and register its available rx channels with the PIOS_RCVR layer. Can choose between PWM, Spektrum and PPM at board init time. PPM driver is broken, and SBUS will work once it is added to this UAVObj as an option. - CC build now includes code for SBUS, Spektrum and PWM receivers in every firmware image. PIOS_USART driver: - Now handles its own low-level IRQs internally - If NULL upper-level IRQ handler is bound in at board init time then rx/tx is satisfied by internal PIOS_USART buffered IO routines which are (typically) attached to the COM layer. - If an alternate upper-level IRQ handler is bound in at board init then that handler is called and expected to clear down the USART IRQ sources. This is used by Spektrum and SBUS drivers. PIOS_SBUS and PIOS_SPEKTRUM drivers: - Improved data/API hiding - No longer assume they know where their config data is stored which allows for boot-time alternate configurations for the driver. - Now registers an upper-level IRQ handlerwith the USART layer to decouple the driver from which USART it is actually attached to.
2011-07-05 20:21:00 -04:00
#if defined(PIOS_INCLUDE_PPM)
{
uint32_t pios_ppm_id;
PIOS_PPM_Init(&pios_ppm_id, &pios_ppm_cfg);
uint32_t pios_ppm_rcvr_id;
if (PIOS_RCVR_Init(&pios_ppm_rcvr_id, &pios_ppm_rcvr_driver, pios_ppm_id)) {
PIOS_Assert(0);
}
pios_rcvr_group_map[MANUALCONTROLSETTINGS_CHANNELGROUPS_PPM] = pios_ppm_rcvr_id;
bootcfg: use UAVobj to control boot-time HW config This should mark an end to the compile-time selection of HW configurations. Minor changes in board initialization for all platforms: - Most config structs are marked static to prevent badly written drivers from directly referring to config data. - Adapt to changes in .irq fields in config data. - Adapt to changes in USART IRQ handling. Major changes in board initialization for CC: - Use HwSettings UAVObj to decide which drivers to attach to the "main" port and the flexi port, and select the appropriate device configuration data. - HwSettings allows choosing between Disabled, Telemetry, SBUS, Spektrum,GPS, and I2C for each of the two ports. - Use ManualControlSettings.InputMode to init/configure the appropriate receiver module, and register its available rx channels with the PIOS_RCVR layer. Can choose between PWM, Spektrum and PPM at board init time. PPM driver is broken, and SBUS will work once it is added to this UAVObj as an option. - CC build now includes code for SBUS, Spektrum and PWM receivers in every firmware image. PIOS_USART driver: - Now handles its own low-level IRQs internally - If NULL upper-level IRQ handler is bound in at board init time then rx/tx is satisfied by internal PIOS_USART buffered IO routines which are (typically) attached to the COM layer. - If an alternate upper-level IRQ handler is bound in at board init then that handler is called and expected to clear down the USART IRQ sources. This is used by Spektrum and SBUS drivers. PIOS_SBUS and PIOS_SPEKTRUM drivers: - Improved data/API hiding - No longer assume they know where their config data is stored which allows for boot-time alternate configurations for the driver. - Now registers an upper-level IRQ handlerwith the USART layer to decouple the driver from which USART it is actually attached to.
2011-07-05 20:21:00 -04:00
}
#endif /* PIOS_INCLUDE_PPM */
break;
}
#if defined(PIOS_INCLUDE_GCSRCVR)
GCSReceiverInitialize();
2012-02-02 19:58:42 -07:00
uint32_t pios_gcsrcvr_id;
PIOS_GCSRCVR_Init(&pios_gcsrcvr_id);
uint32_t pios_gcsrcvr_rcvr_id;
2012-02-02 19:58:42 -07:00
if (PIOS_RCVR_Init(&pios_gcsrcvr_rcvr_id, &pios_gcsrcvr_rcvr_driver, pios_gcsrcvr_id)) {
PIOS_Assert(0);
bootcfg: use UAVobj to control boot-time HW config This should mark an end to the compile-time selection of HW configurations. Minor changes in board initialization for all platforms: - Most config structs are marked static to prevent badly written drivers from directly referring to config data. - Adapt to changes in .irq fields in config data. - Adapt to changes in USART IRQ handling. Major changes in board initialization for CC: - Use HwSettings UAVObj to decide which drivers to attach to the "main" port and the flexi port, and select the appropriate device configuration data. - HwSettings allows choosing between Disabled, Telemetry, SBUS, Spektrum,GPS, and I2C for each of the two ports. - Use ManualControlSettings.InputMode to init/configure the appropriate receiver module, and register its available rx channels with the PIOS_RCVR layer. Can choose between PWM, Spektrum and PPM at board init time. PPM driver is broken, and SBUS will work once it is added to this UAVObj as an option. - CC build now includes code for SBUS, Spektrum and PWM receivers in every firmware image. PIOS_USART driver: - Now handles its own low-level IRQs internally - If NULL upper-level IRQ handler is bound in at board init time then rx/tx is satisfied by internal PIOS_USART buffered IO routines which are (typically) attached to the COM layer. - If an alternate upper-level IRQ handler is bound in at board init then that handler is called and expected to clear down the USART IRQ sources. This is used by Spektrum and SBUS drivers. PIOS_SBUS and PIOS_SPEKTRUM drivers: - Improved data/API hiding - No longer assume they know where their config data is stored which allows for boot-time alternate configurations for the driver. - Now registers an upper-level IRQ handlerwith the USART layer to decouple the driver from which USART it is actually attached to.
2011-07-05 20:21:00 -04:00
}
pios_rcvr_group_map[MANUALCONTROLSETTINGS_CHANNELGROUPS_GCS] = pios_gcsrcvr_rcvr_id;
#endif /* PIOS_INCLUDE_GCSRCVR */
/* Remap AFIO pin for PB4 (Servo 5 Out)*/
GPIO_PinRemapConfig( GPIO_Remap_SWJ_NoJTRST, ENABLE);
#ifndef PIOS_DEBUG_ENABLE_DEBUG_PINS
switch (hwsettings_rcvrport) {
case HWSETTINGS_CC_RCVRPORT_DISABLED:
case HWSETTINGS_CC_RCVRPORT_PWM:
case HWSETTINGS_CC_RCVRPORT_PPM:
PIOS_Servo_Init(&pios_servo_cfg);
break;
case HWSETTINGS_CC_RCVRPORT_PPMOUTPUTS:
case HWSETTINGS_CC_RCVRPORT_OUTPUTS:
PIOS_Servo_Init(&pios_servo_rcvr_cfg);
break;
}
#else
PIOS_DEBUG_Init(&pios_tim_servo_all_channels, NELEMENTS(pios_tim_servo_all_channels));
#endif /* PIOS_DEBUG_ENABLE_DEBUG_PINS */
switch(bdinfo->board_rev) {
case 0x01:
// Revision 1 with invensense gyros, start the ADC
PIOS_ADC_Init();
#if defined(PIOS_INCLUDE_ADXL345)
PIOS_ADXL345_Init(pios_spi_flash_accel_id, 0);
#endif
break;
case 0x02:
// Revision 2 with L3GD20 gyros, start a SPI interface and connect to it
GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable, ENABLE);
#if defined(PIOS_INCLUDE_L3GD20)
// Set up the SPI interface to the serial flash
if (PIOS_SPI_Init(&pios_spi_gyro_id, &pios_spi_gyro_cfg)) {
PIOS_Assert(0);
}
PIOS_L3GD20_Init(pios_spi_gyro_id, 0, &pios_l3gd20_cfg);
PIOS_Assert(PIOS_L3GD20_Test() == 0);
#endif /* PIOS_INCLUDE_L3GD20 */
#if defined(PIOS_INCLUDE_BMA180)
PIOS_BMA180_Init(pios_spi_flash_accel_id, 0, &pios_bma180_cfg);
PIOS_Assert(PIOS_BMA180_Test() == 0);
#endif /* PIOS_INCLUDE_BMA180 */
break;
default:
PIOS_Assert(0);
}
PIOS_GPIO_Init();
/* Make sure we have at least one telemetry link configured or else fail initialization */
PIOS_Assert(pios_com_telem_rf_id || pios_com_telem_usb_id);
}
/**
* @}
*/