1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-01-07 18:46:06 +01:00
LibrePilot/flight/pios/common/pios_rfm22b.c

2821 lines
103 KiB
C
Raw Normal View History

2012-02-29 05:30:06 +01:00
/**
******************************************************************************
* @addtogroup PIOS PIOS Core hardware abstraction layer
* @{
* @addtogroup PIOS_RFM22B Radio Functions
* @brief PIOS interface for for the RFM22B radio
* @{
*
* @file pios_rfm22b.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012.
* @brief Implements a driver the the RFM22B driver
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
2012-02-29 05:30:06 +01:00
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
// *****************************************************************
// RFM22B hardware layer
//
// This module uses the RFM22B's internal packet handling hardware to
// encapsulate our own packet data.
//
// The RFM22B internal hardware packet handler configuration is as follows ..
//
// 4-byte (32-bit) preamble .. alternating 0's & 1's
// 4-byte (32-bit) sync
// 1-byte packet length (number of data bytes to follow)
// 0 to 255 user data bytes
//
// Our own packet data will also contain it's own header and 32-bit CRC
// as a single 16-bit CRC is not sufficient for wireless comms.
//
// *****************************************************************
2012-02-29 05:30:06 +01:00
#include "pios.h"
#ifdef PIOS_INCLUDE_RFM22B
2012-02-29 05:30:06 +01:00
#include <pios_spi_priv.h>
#include <packet_handler.h>
#if defined(PIOS_INCLUDE_GCSRCVR)
#include <gcsreceiver.h>
#endif
#include <pios_rfm22b_priv.h>
2013-01-04 14:51:27 +01:00
#include <pios_ppm_out_priv.h>
#include <ecc.h>
2012-03-08 02:05:42 +01:00
/* Local Defines */
#define STACK_SIZE_BYTES 200
#define TASK_PRIORITY (tskIDLE_PRIORITY + 2)
#define ISR_TIMEOUT 2 // ms
#define EVENT_QUEUE_SIZE 5
#define RFM22B_DEFAULT_RX_DATARATE RFM22_datarate_9600
2013-04-07 03:16:46 +02:00
#define RFM22B_DEFAULT_TX_POWER RFM22_tx_pwr_txpow_0
#define RFM22B_LINK_QUALITY_THRESHOLD 20
#define RFM22B_NOMINAL_CARRIER_FREQUENCY 430000000
#define RFM22B_MAXIMUM_FREQUENCY 440000000
#define RFM22B_DEFAULT_FREQUENCY 433000000
#define RFM22B_FREQUENCY_HOP_STEP_SIZE 75000
// The maximum amount of time since the last message received to consider the connection broken.
#define DISCONNECT_TIMEOUT_MS 1000 // ms
// The maximum amount of time without activity before initiating a reset.
#define PIOS_RFM22B_SUPERVISOR_TIMEOUT 100 // ms
// The time between updates for sending stats the radio link.
#define RADIOSTATS_UPDATE_PERIOD_MS 250
// The number of stats updates that a modem can miss before it's considered disconnected
#define MAX_RADIOSTATS_MISS_COUNT 3
// The time between PPM updates
#define PPM_UPDATE_PERIOD_MS 20
// this is too adjust the RF module so that it is on frequency
#define OSC_LOAD_CAP 0x7F // cap = 12.5pf .. default
#define TX_PREAMBLE_NIBBLES 12 // 7 to 511 (number of nibbles)
#define RX_PREAMBLE_NIBBLES 6 // 5 to 31 (number of nibbles)
// the size of the rf modules internal FIFO buffers
#define FIFO_SIZE 64
#define TX_FIFO_HI_WATERMARK 62 // 0-63
#define TX_FIFO_LO_WATERMARK 32 // 0-63
#define RX_FIFO_HI_WATERMARK 32 // 0-63
// preamble byte (preceeds SYNC_BYTE's)
#define PREAMBLE_BYTE 0x55
// RF sync bytes (32-bit in all)
#define SYNC_BYTE_1 0x2D
#define SYNC_BYTE_2 0xD4
#define SYNC_BYTE_3 0x4B
#define SYNC_BYTE_4 0x59
#ifndef RX_LED_ON
#define RX_LED_ON
#define RX_LED_OFF
#define TX_LED_ON
#define TX_LED_OFF
#define LINK_LED_ON
#define LINK_LED_OFF
#define USB_LED_ON
#define USB_LED_OFF
#endif
/* Local type definitions */
struct pios_rfm22b_transition {
enum pios_radio_event (*entry_fn) (struct pios_rfm22b_dev *rfm22b_dev);
enum pios_radio_state next_state[RADIO_EVENT_NUM_EVENTS];
2012-02-29 05:30:06 +01:00
};
// Must ensure these prefilled arrays match the define sizes
static const uint8_t FULL_PREAMBLE[FIFO_SIZE] = {
PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,
PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,
PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,
PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,
PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,
PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,
PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,
PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,
PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,
PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,
PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,
PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,
PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE}; // 64 bytes
static const uint8_t HEADER[(TX_PREAMBLE_NIBBLES + 1)/2 + 2] = {PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE,PREAMBLE_BYTE, PREAMBLE_BYTE, SYNC_BYTE_1, SYNC_BYTE_2};
static const uint8_t OUT_FF[64] = {
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF};
/* Local function forwared declarations */
static void pios_rfm22_task(void *parameters);
static bool pios_rfm22_readStatus(struct pios_rfm22b_dev *rfm22b_dev);
static void pios_rfm22_setDatarate(struct pios_rfm22b_dev * rfm22b_dev, enum rfm22b_datarate datarate, bool data_whitening);
static void rfm22_rxFailure(struct pios_rfm22b_dev *rfm22b_dev);
static void pios_rfm22_inject_event(struct pios_rfm22b_dev *rfm22b_dev, enum pios_radio_event event, bool inISR);
static enum pios_radio_event rfm22_init(struct pios_rfm22b_dev *rfm22b_dev);
static enum pios_radio_event rfm22_receiveStatus(struct pios_rfm22b_dev *rfm22b_dev);
static enum pios_radio_event rfm22_receiveAck(struct pios_rfm22b_dev *rfm22b_dev);
static enum pios_radio_event rfm22_receiveNack(struct pios_rfm22b_dev *rfm22b_dev);
static enum pios_radio_event rfm22_sendAck(struct pios_rfm22b_dev *rfm22b_dev);
static enum pios_radio_event rfm22_sendNack(struct pios_rfm22b_dev *rfm22b_dev);
static enum pios_radio_event rfm22_requestConnection(struct pios_rfm22b_dev *rfm22b_dev);
static enum pios_radio_event rfm22_acceptConnection(struct pios_rfm22b_dev *rfm22b_dev);
static enum pios_radio_event radio_setRxMode(struct pios_rfm22b_dev *rfm22b_dev);
static enum pios_radio_event radio_rxData(struct pios_rfm22b_dev *rfm22b_dev);
static enum pios_radio_event radio_receivePacket(struct pios_rfm22b_dev *rfm22b_dev, PHPacketHandle p, uint16_t rx_len);
static enum pios_radio_event radio_txStart(struct pios_rfm22b_dev *rfm22b_dev);
static enum pios_radio_event radio_txData(struct pios_rfm22b_dev *rfm22b_dev);
static enum pios_radio_event rfm22_txFailure(struct pios_rfm22b_dev *rfm22b_dev);
static enum pios_radio_event rfm22_process_state_transition(struct pios_rfm22b_dev *rfm22b_dev, enum pios_radio_event event);
static void rfm22_process_event(struct pios_rfm22b_dev *rfm22b_dev, enum pios_radio_event event);
static enum pios_radio_event rfm22_timeout(struct pios_rfm22b_dev *rfm22b_dev);
static enum pios_radio_event rfm22_error(struct pios_rfm22b_dev *rfm22b_dev);
static enum pios_radio_event rfm22_fatal_error(struct pios_rfm22b_dev *rfm22b_dev);
static void rfm22_sendStatus(struct pios_rfm22b_dev *rfm22b_dev);
static void rfm22_sendPPM(struct pios_rfm22b_dev *rfm22b_dev);
static void rfm22b_add_rx_status(struct pios_rfm22b_dev *rfm22b_dev, enum pios_rfm22b_rx_packet_status status);
static void rfm22_setNominalCarrierFrequency(struct pios_rfm22b_dev *rfm22b_dev, uint32_t min_frequency, uint32_t max_frequency, uint32_t step_size);
static bool rfm22_setFreqHopChannel(struct pios_rfm22b_dev *rfm22b_dev, uint8_t channel);
static void rfm22_calculateLinkQuality(struct pios_rfm22b_dev *rfm22b_dev);
static bool rfm22_isConnected(struct pios_rfm22b_dev *rfm22b_dev);
static void rfm22_setConnectionParameters(struct pios_rfm22b_dev *rfm22b_dev);
static bool rfm22_timeToSend(struct pios_rfm22b_dev *rfm22b_dev);
static portTickType rfm22_coordinatorTime(struct pios_rfm22b_dev *rfm22b_dev, portTickType ticks);
static uint8_t rfm22_calcChannel(struct pios_rfm22b_dev *rfm22b_dev);
static bool rfm22_changeChannel(struct pios_rfm22b_dev *rfm22b_dev);
static void rfm22_clearLEDs();
// Utility functions.
static uint32_t pios_rfm22_time_difference_ms(portTickType start_time, portTickType end_time);
static struct pios_rfm22b_dev *pios_rfm22_alloc(void);
// SPI read/write functions
static void rfm22_assertCs(struct pios_rfm22b_dev *rfm22b_dev);
static void rfm22_deassertCs(struct pios_rfm22b_dev *rfm22b_dev);
static void rfm22_claimBus(struct pios_rfm22b_dev *rfm22b_dev);
static void rfm22_releaseBus(struct pios_rfm22b_dev *rfm22b_dev);
static void rfm22_write_claim(struct pios_rfm22b_dev *rfm22b_dev, uint8_t addr, uint8_t data);
static void rfm22_write(struct pios_rfm22b_dev *rfm22b_dev, uint8_t addr, uint8_t data);
static uint8_t rfm22_read(struct pios_rfm22b_dev *rfm22b_dev, uint8_t addr);
/* The state transition table */
static const struct pios_rfm22b_transition rfm22b_transitions[RADIO_STATE_NUM_STATES] = {
// Initialization thread
[RADIO_STATE_UNINITIALIZED] = {
.entry_fn = 0,
.next_state = {
[RADIO_EVENT_INITIALIZE] = RADIO_STATE_INITIALIZING,
[RADIO_EVENT_ERROR] = RADIO_STATE_ERROR,
},
},
[RADIO_STATE_INITIALIZING] = {
.entry_fn = rfm22_init,
.next_state = {
[RADIO_EVENT_INITIALIZED] = RADIO_STATE_RX_MODE,
[RADIO_EVENT_ERROR] = RADIO_STATE_ERROR,
[RADIO_EVENT_INITIALIZE] = RADIO_STATE_INITIALIZING,
[RADIO_EVENT_FATAL_ERROR] = RADIO_STATE_FATAL_ERROR,
},
},
[RADIO_STATE_REQUESTING_CONNECTION] = {
.entry_fn = rfm22_requestConnection,
.next_state = {
[RADIO_EVENT_TX_START] = RADIO_STATE_TX_START,
[RADIO_EVENT_TIMEOUT] = RADIO_STATE_TIMEOUT,
[RADIO_EVENT_ERROR] = RADIO_STATE_ERROR,
[RADIO_EVENT_INITIALIZE] = RADIO_STATE_INITIALIZING,
[RADIO_EVENT_FATAL_ERROR] = RADIO_STATE_FATAL_ERROR
},
},
[RADIO_STATE_ACCEPTING_CONNECTION] = {
.entry_fn = rfm22_acceptConnection,
.next_state = {
[RADIO_EVENT_DEFAULT] = RADIO_STATE_SENDING_ACK,
[RADIO_EVENT_TIMEOUT] = RADIO_STATE_TIMEOUT,
[RADIO_EVENT_ERROR] = RADIO_STATE_ERROR,
[RADIO_EVENT_INITIALIZE] = RADIO_STATE_INITIALIZING,
[RADIO_EVENT_FATAL_ERROR] = RADIO_STATE_FATAL_ERROR,
},
},
[RADIO_STATE_RX_MODE] = {
.entry_fn = radio_setRxMode,
.next_state = {
[RADIO_EVENT_TX_START] = RADIO_STATE_TX_START,
[RADIO_EVENT_ACK_TIMEOUT] = RADIO_STATE_RECEIVING_NACK,
[RADIO_EVENT_INT_RECEIVED] = RADIO_STATE_RX_DATA,
[RADIO_EVENT_FAILURE] = RADIO_STATE_RX_FAILURE,
[RADIO_EVENT_TIMEOUT] = RADIO_STATE_TIMEOUT,
[RADIO_EVENT_ERROR] = RADIO_STATE_ERROR,
[RADIO_EVENT_INITIALIZE] = RADIO_STATE_INITIALIZING,
[RADIO_EVENT_FATAL_ERROR] = RADIO_STATE_FATAL_ERROR,
},
},
[RADIO_STATE_RX_DATA] = {
.entry_fn = radio_rxData,
.next_state = {
[RADIO_EVENT_INT_RECEIVED] = RADIO_STATE_RX_DATA,
[RADIO_EVENT_TX_START] = RADIO_STATE_TX_START,
[RADIO_EVENT_REQUEST_CONNECTION] = RADIO_STATE_REQUESTING_CONNECTION,
[RADIO_EVENT_ACK_TIMEOUT] = RADIO_STATE_RECEIVING_NACK,
[RADIO_EVENT_RX_COMPLETE] = RADIO_STATE_SENDING_ACK,
[RADIO_EVENT_RX_MODE] = RADIO_STATE_RX_MODE,
[RADIO_EVENT_STATUS_RECEIVED] = RADIO_STATE_RECEIVING_STATUS,
[RADIO_EVENT_CONNECTION_REQUESTED] = RADIO_STATE_ACCEPTING_CONNECTION,
[RADIO_EVENT_PACKET_ACKED] = RADIO_STATE_RECEIVING_ACK,
[RADIO_EVENT_PACKET_NACKED] = RADIO_STATE_RECEIVING_NACK,
[RADIO_EVENT_FAILURE] = RADIO_STATE_RX_FAILURE,
[RADIO_EVENT_TIMEOUT] = RADIO_STATE_TIMEOUT,
[RADIO_EVENT_ERROR] = RADIO_STATE_ERROR,
[RADIO_EVENT_INITIALIZE] = RADIO_STATE_INITIALIZING,
[RADIO_EVENT_FATAL_ERROR] = RADIO_STATE_FATAL_ERROR,
},
},
[RADIO_STATE_RECEIVING_ACK] = {
.entry_fn = rfm22_receiveAck,
.next_state = {
[RADIO_EVENT_TX_START] = RADIO_STATE_TX_START,
[RADIO_EVENT_RX_MODE] = RADIO_STATE_RX_MODE,
[RADIO_EVENT_TIMEOUT] = RADIO_STATE_TIMEOUT,
[RADIO_EVENT_ERROR] = RADIO_STATE_ERROR,
[RADIO_EVENT_INITIALIZE] = RADIO_STATE_INITIALIZING,
[RADIO_EVENT_FATAL_ERROR] = RADIO_STATE_FATAL_ERROR,
},
},
[RADIO_STATE_RECEIVING_NACK] = {
.entry_fn = rfm22_receiveNack,
.next_state = {
[RADIO_EVENT_TX_START] = RADIO_STATE_TX_START,
[RADIO_EVENT_TIMEOUT] = RADIO_STATE_TIMEOUT,
[RADIO_EVENT_ERROR] = RADIO_STATE_ERROR,
[RADIO_EVENT_INITIALIZE] = RADIO_STATE_INITIALIZING,
[RADIO_EVENT_FATAL_ERROR] = RADIO_STATE_FATAL_ERROR,
},
},
[RADIO_STATE_RECEIVING_STATUS] = {
.entry_fn = rfm22_receiveStatus,
.next_state = {
[RADIO_EVENT_RX_COMPLETE] = RADIO_STATE_TX_START,
[RADIO_EVENT_TIMEOUT] = RADIO_STATE_TIMEOUT,
[RADIO_EVENT_ERROR] = RADIO_STATE_ERROR,
[RADIO_EVENT_INITIALIZE] = RADIO_STATE_INITIALIZING,
[RADIO_EVENT_FATAL_ERROR] = RADIO_STATE_FATAL_ERROR,
},
},
[RADIO_STATE_TX_START] = {
.entry_fn = radio_txStart,
.next_state = {
[RADIO_EVENT_INT_RECEIVED] = RADIO_STATE_TX_DATA,
[RADIO_EVENT_RX_MODE] = RADIO_STATE_RX_MODE,
[RADIO_EVENT_TIMEOUT] = RADIO_STATE_TIMEOUT,
[RADIO_EVENT_ERROR] = RADIO_STATE_ERROR,
[RADIO_EVENT_INITIALIZE] = RADIO_STATE_INITIALIZING,
[RADIO_EVENT_FATAL_ERROR] = RADIO_STATE_FATAL_ERROR,
},
},
[RADIO_STATE_TX_DATA] = {
.entry_fn = radio_txData,
.next_state = {
[RADIO_EVENT_INT_RECEIVED] = RADIO_STATE_TX_DATA,
[RADIO_EVENT_RX_MODE] = RADIO_STATE_RX_MODE,
[RADIO_EVENT_FAILURE] = RADIO_STATE_TX_FAILURE,
[RADIO_EVENT_TIMEOUT] = RADIO_STATE_TIMEOUT,
[RADIO_EVENT_ERROR] = RADIO_STATE_ERROR,
[RADIO_EVENT_INITIALIZE] = RADIO_STATE_INITIALIZING,
[RADIO_EVENT_FATAL_ERROR] = RADIO_STATE_FATAL_ERROR,
},
},
[RADIO_STATE_TX_FAILURE] = {
.entry_fn = rfm22_txFailure,
.next_state = {
[RADIO_EVENT_TX_START] = RADIO_STATE_TX_START,
[RADIO_EVENT_TIMEOUT] = RADIO_STATE_TIMEOUT,
[RADIO_EVENT_ERROR] = RADIO_STATE_ERROR,
[RADIO_EVENT_INITIALIZE] = RADIO_STATE_INITIALIZING,
[RADIO_EVENT_FATAL_ERROR] = RADIO_STATE_FATAL_ERROR,
},
},
[RADIO_STATE_SENDING_ACK] = {
.entry_fn = rfm22_sendAck,
.next_state = {
[RADIO_EVENT_TX_START] = RADIO_STATE_TX_START,
[RADIO_EVENT_TIMEOUT] = RADIO_STATE_TIMEOUT,
[RADIO_EVENT_ERROR] = RADIO_STATE_ERROR,
[RADIO_EVENT_INITIALIZE] = RADIO_STATE_INITIALIZING,
[RADIO_EVENT_FATAL_ERROR] = RADIO_STATE_FATAL_ERROR,
},
},
[RADIO_STATE_SENDING_NACK] = {
.entry_fn = rfm22_sendNack,
.next_state = {
[RADIO_EVENT_TX_START] = RADIO_STATE_TX_START,
[RADIO_EVENT_TIMEOUT] = RADIO_STATE_TIMEOUT,
[RADIO_EVENT_ERROR] = RADIO_STATE_ERROR,
[RADIO_EVENT_INITIALIZE] = RADIO_STATE_INITIALIZING,
[RADIO_EVENT_FATAL_ERROR] = RADIO_STATE_FATAL_ERROR,
},
},
[RADIO_STATE_TIMEOUT] = {
.entry_fn = rfm22_timeout,
.next_state = {
[RADIO_EVENT_TX_START] = RADIO_STATE_TX_START,
[RADIO_EVENT_RX_MODE] = RADIO_STATE_RX_MODE,
[RADIO_EVENT_ERROR] = RADIO_STATE_ERROR,
[RADIO_EVENT_INITIALIZE] = RADIO_STATE_INITIALIZING,
[RADIO_EVENT_FATAL_ERROR] = RADIO_STATE_FATAL_ERROR,
},
},
[RADIO_STATE_ERROR] = {
.entry_fn = rfm22_error,
.next_state = {
[RADIO_EVENT_INITIALIZE] = RADIO_STATE_INITIALIZING,
[RADIO_EVENT_FATAL_ERROR] = RADIO_STATE_FATAL_ERROR,
},
},
[RADIO_STATE_FATAL_ERROR] = {
.entry_fn = rfm22_fatal_error,
.next_state = {
},
},
};
// xtal 10 ppm, 434MHz
static const uint32_t data_rate[] = { 500, 1000, 2000, 4000, 8000, 9600, 16000, 19200, 24000, 32000, 57600, 64000, 128000, 192000, 256000};
static const uint8_t modulation_index[] = { 16, 8, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
static const uint8_t reg_1C[] = { 0x37, 0x37, 0x37, 0x37, 0x3A, 0x3B, 0x26, 0x28, 0x2E, 0x16, 0x06, 0x07, 0x83, 0x8A, 0x8C}; // rfm22_if_filter_bandwidth
static const uint8_t reg_1D[] = { 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x40, 0x44, 0x44, 0x44, 0x44}; // rfm22_afc_loop_gearshift_override
static const uint8_t reg_1E[] = { 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x02}; // rfm22_afc_timing_control
static const uint8_t reg_1F[] = { 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03}; // rfm22_clk_recovery_gearshift_override
static const uint8_t reg_20[] = { 0xE8, 0xF4, 0xFA, 0x70, 0x3F, 0x34, 0x3F, 0x34, 0x2A, 0x3F, 0x45, 0x3F, 0x5E, 0x3F, 0x2F}; // rfm22_clk_recovery_oversampling_ratio
static const uint8_t reg_21[] = { 0x60, 0x20, 0x00, 0x01, 0x02, 0x02, 0x02, 0x02, 0x03, 0x02, 0x01, 0x02, 0x01, 0x02, 0x02}; // rfm22_clk_recovery_offset2
static const uint8_t reg_22[] = { 0x20, 0x41, 0x83, 0x06, 0x0C, 0x75, 0x0C, 0x75, 0x12, 0x0C, 0xD7, 0x0c, 0x5D, 0x0C, 0xBB}; // rfm22_clk_recovery_offset1
static const uint8_t reg_23[] = { 0xC5, 0x89, 0x12, 0x25, 0x4A, 0x25, 0x4A, 0x25, 0x6F, 0x4A, 0xDC, 0x4A, 0x86, 0x4A, 0x0D}; // rfm22_clk_recovery_offset0
static const uint8_t reg_24[] = { 0x00, 0x00, 0x00, 0x02, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x05, 0x07, 0x07}; // rfm22_clk_recovery_timing_loop_gain1
static const uint8_t reg_25[] = { 0x0A, 0x23, 0x85, 0x0E, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x6E, 0xFF, 0x74, 0xFF, 0xFF}; // rfm22_clk_recovery_timing_loop_gain0
static const uint8_t reg_2A[] = { 0x0E, 0x0E, 0x0E, 0x0E, 0x0E, 0x0D, 0x0D, 0x0E, 0x12, 0x17, 0x2D, 0x31, 0x50, 0x50, 0x50}; // rfm22_afc_limiter .. AFC_pull_in_range = <20>AFCLimiter[7:0] x (hbsel+1) x 625 Hz
static const uint8_t reg_58[] = { 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80}; // rfm22_cpcuu
static const uint8_t reg_69[] = { 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x60, 0x20, 0x20, 0x20, 0x20}; // rfm22_agc_override1
static const uint8_t reg_6E[] = { 0x04, 0x08, 0x10, 0x20, 0x41, 0x4E, 0x83, 0x9D, 0xC4, 0x08, 0x0E, 0x10, 0x20, 0x31, 0x41}; // rfm22_tx_data_rate1
static const uint8_t reg_6F[] = { 0x19, 0x31, 0x62, 0xC5, 0x89, 0xA5, 0x12, 0x49, 0x9C, 0x31, 0xBF, 0x62, 0xC5, 0x27, 0x89}; // rfm22_tx_data_rate0
static const uint8_t reg_70[] = { 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x0D, 0x0C, 0x0C, 0x0D, 0x0D, 0x0D}; // rfm22_modulation_mode_control1
static const uint8_t reg_71[] = { 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23}; // rfm22_modulation_mode_control2
static const uint8_t reg_72[] = { 0x06, 0x06, 0x06, 0x06, 0x06, 0x08, 0x0D, 0x0F, 0x13, 0x1A, 0x2E, 0x33, 0x66, 0x9A, 0xCD}; // rfm22_frequency_deviation
static struct pios_rfm22b_dev * g_rfm22b_dev = NULL;
2012-02-29 05:30:06 +01:00
/*****************************************************************************
* External Interface Functions
*****************************************************************************/
2012-02-29 05:30:06 +01:00
/**
* Initialise an RFM22B device
*
* @param[out] rfm22b_id A pointer to store the device ID in.
* @param[in] spi_id The SPI bus index.
* @param[in] slave_num The SPI bus slave number.
* @param[in] cfg The device configuration.
*/
int32_t PIOS_RFM22B_Init(uint32_t *rfm22b_id, uint32_t spi_id, uint32_t slave_num, const struct pios_rfm22b_cfg *cfg)
2012-02-29 05:30:06 +01:00
{
PIOS_DEBUG_Assert(rfm22b_id);
PIOS_DEBUG_Assert(cfg);
// Allocate the device structure.
struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)pios_rfm22_alloc();
if (!rfm22b_dev) {
return(-1);
}
*rfm22b_id = (uint32_t)rfm22b_dev;
g_rfm22b_dev = rfm22b_dev;
// Store the SPI handle
rfm22b_dev->slave_num = slave_num;
rfm22b_dev->spi_id = spi_id;
// Initialize our configuration parameters
rfm22b_dev->send_ppm = false;
rfm22b_dev->datarate = RFM22B_DEFAULT_RX_DATARATE;
rfm22b_dev->tx_power = RFM22B_DEFAULT_TX_POWER;
// Initialize the com callbacks.
rfm22b_dev->com_config_cb = NULL;
rfm22b_dev->rx_in_cb = NULL;
rfm22b_dev->tx_out_cb = NULL;
// Initialize the stats.
rfm22b_dev->stats.packets_per_sec = 0;
rfm22b_dev->stats.rx_good = 0;
rfm22b_dev->stats.rx_corrected = 0;
rfm22b_dev->stats.rx_error = 0;
rfm22b_dev->stats.rx_missed = 0;
rfm22b_dev->stats.tx_dropped = 0;
rfm22b_dev->stats.tx_resent = 0;
rfm22b_dev->stats.resets = 0;
rfm22b_dev->stats.timeouts = 0;
rfm22b_dev->stats.link_quality = 0;
rfm22b_dev->stats.rssi = 0;
rfm22b_dev->stats.tx_seq = 0;
rfm22b_dev->stats.rx_seq = 0;
rfm22b_dev->stats.tx_failure = 0;
// Initialize the frequencies.
PIOS_RFM22B_SetInitialFrequency(*rfm22b_id, RFM22B_DEFAULT_FREQUENCY);
PIOS_RFM22B_SetFrequencyRange(*rfm22b_id, RFM22B_DEFAULT_FREQUENCY, RFM22B_DEFAULT_FREQUENCY, RFM22B_FREQUENCY_HOP_STEP_SIZE);
// Initialize the bindings.
for (uint32_t i = 0; i < OPLINKSETTINGS_BINDINGS_NUMELEM; ++i) {
rfm22b_dev->bindings[i].pairID = 0;
}
rfm22b_dev->coordinator = false;
// Create the event queue
rfm22b_dev->eventQueue = xQueueCreate(EVENT_QUEUE_SIZE, sizeof(enum pios_radio_event));
// Bind the configuration to the device instance
rfm22b_dev->cfg = *cfg;
// Create a semaphore to know if an ISR needs responding to
vSemaphoreCreateBinary( rfm22b_dev->isrPending );
// Create our (hopefully) unique 32 bit id from the processor serial number.
uint8_t crcs[] = { 0, 0, 0, 0 };
{
char serial_no_str[33];
PIOS_SYS_SerialNumberGet(serial_no_str);
// Create a 32 bit value using 4 8 bit CRC values.
for (uint8_t i = 0; serial_no_str[i] != 0; ++i)
crcs[i % 4] = PIOS_CRC_updateByte(crcs[i % 4], serial_no_str[i]);
}
rfm22b_dev->deviceID = crcs[0] | crcs[1] << 8 | crcs[2] << 16 | crcs[3] << 24;
DEBUG_PRINTF(2, "RF device ID: %x\n\r", rfm22b_dev->deviceID);
#if defined(PIOS_INCLUDE_GCSRCVR)
// Initialize the GCSReceive object
GCSReceiverInitialize();
#endif
// Initialize the external interrupt.
PIOS_EXTI_Init(cfg->exti_cfg);
// Register the watchdog timer for the radio driver task
#ifdef PIOS_WDG_RFM22B
PIOS_WDG_RegisterFlag(PIOS_WDG_RFM22B);
#endif /* PIOS_WDG_RFM22B */
// Initialize the ECC library.
initialize_ecc();
// Set the state to initializing.
rfm22b_dev->state = RADIO_STATE_UNINITIALIZED;
// Initialize the radio device.
pios_rfm22_inject_event(rfm22b_dev, RADIO_EVENT_INITIALIZE, false);
// Start the driver task. This task controls the radio state machine and removed all of the IO from the IRQ handler.
xTaskCreate(pios_rfm22_task, (signed char *)"PIOS_RFM22B_Task", STACK_SIZE_BYTES, (void*)rfm22b_dev, TASK_PRIORITY, &(rfm22b_dev->taskHandle));
return(0);
2012-02-29 05:30:06 +01:00
}
/**
* Re-initialize the modem after a configuration change.
*
* @param[in] rbm22b_id The RFM22B device ID.
*/
void PIOS_RFM22B_Reinit(uint32_t rfm22b_id)
{
struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
if (PIOS_RFM22B_Validate(rfm22b_dev)) {
pios_rfm22_inject_event(rfm22b_dev, RADIO_EVENT_INITIALIZE, false);
}
}
/**
* The RFM22B external interrupt routine.
*/
bool PIOS_RFM22_EXT_Int(void)
{
if (!PIOS_RFM22B_Validate(g_rfm22b_dev)) {
return false;
}
// Inject an interrupt event into the state machine.
pios_rfm22_inject_event(g_rfm22b_dev, RADIO_EVENT_INT_RECEIVED, true);
return false;
}
/**
* Returns the unique device ID for the RFM22B device.
*
* @param[in] rfm22b_id The RFM22B device index.
* @return The unique device ID
*/
uint32_t PIOS_RFM22B_DeviceID(uint32_t rfm22b_id)
{
struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
if (PIOS_RFM22B_Validate(rfm22b_dev)) {
return rfm22b_dev->deviceID;
}
return 0;
}
/**
* Returns true if the modem is configured as a coordinator.
*
* @param[in] rfm22b_id The RFM22B device index.
* @return True if the modem is configured as a coordinator.
*/
bool PIOS_RFM22B_IsCoordinator(uint32_t rfm22b_id)
{
struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
if (PIOS_RFM22B_Validate(rfm22b_dev)) {
return rfm22b_dev->coordinator;
}
return false;
}
/**
* Returns true if the modem is not actively sending or receiving a packet.
*
* @param[in] rfm22b_id The RFM22B device index.
* @return True if the modem is not actively sending or receiving a packet.
*/
bool PIOS_RFM22B_InRxWait(uint32_t rfm22b_id)
{
struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
if (PIOS_RFM22B_Validate(rfm22b_dev)) {
return ((rfm22b_dev->rfm22b_state == RFM22B_STATE_RX_WAIT) || (rfm22b_dev->rfm22b_state == RFM22B_STATE_TRANSITION));
}
return false;
}
/**
* Sets the radio device transmit power.
*
* @param[in] rfm22b_id The RFM22B device index.
* @param[in] tx_pwr The transmit power.
*/
void PIOS_RFM22B_SetTxPower(uint32_t rfm22b_id, enum rfm22b_tx_power tx_pwr)
{
struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
if (!PIOS_RFM22B_Validate(rfm22b_dev)) {
return;
}
rfm22b_dev->tx_power = tx_pwr;
}
/**
* Sets the radio frequency range and initial frequency
*
* @param[in] rfm22b_id The RFM22B device index.
* @param[in] min_freq The minimum frequency
* @param[in] max_freq The maximum frequency
* @param[in] step_size The channel step size
*/
void PIOS_RFM22B_SetFrequencyRange(uint32_t rfm22b_id, uint32_t min_freq, uint32_t max_freq, uint32_t step_size)
{
struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
if (!PIOS_RFM22B_Validate(rfm22b_dev)) {
return;
}
rfm22b_dev->con_packet.min_frequency = min_freq;
rfm22b_dev->con_packet.max_frequency = max_freq;
rfm22b_dev->con_packet.channel_spacing = step_size;
}
/**
* Sets the initial radio frequency range
*
* @param[in] rfm22b_id The RFM22B device index.
* @param[in] init_freq The initial frequency
*/
void PIOS_RFM22B_SetInitialFrequency(uint32_t rfm22b_id, uint32_t init_freq)
{
struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
if (!PIOS_RFM22B_Validate(rfm22b_dev)) {
return;
}
rfm22b_dev->init_frequency = init_freq;
}
/**
* Set the com port configuration callback (to receive com configuration over the air)
*
* @param[in] rfm22b_id The rfm22b device.
* @param[in] cb A pointer to the callback function
*/
void PIOS_RFM22B_SetComConfigCallback(uint32_t rfm22b_id, PIOS_RFM22B_ComConfigCallback cb)
{
struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
if(!PIOS_RFM22B_Validate(rfm22b_dev)) {
return;
}
rfm22b_dev->com_config_cb = cb;
}
/**
* Set the list of modems that this modem will bind with.
*
* @param[in] rfm22b_id The rfm22b device.
* @param[in] bindingPairIDs The array of binding IDs.
* @param[in] mainPortSettings The array of main com port configurations.
* @param[in] flexiPortSettings The array of flexi com port configurations.
* @param[in] vcpPortSettings The array of VCP com port configurations.
* @param[in] comSpeeds The array of com port speeds.
*/
void PIOS_RFM22B_SetBindings(uint32_t rfm22b_id, const uint32_t bindingPairIDs[], const uint8_t mainPortSettings[],
const uint8_t flexiPortSettings[], const uint8_t vcpPortSettings[], const uint8_t comSpeeds[])
{
struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
if(!PIOS_RFM22B_Validate(rfm22b_dev)) {
return;
}
// This modem will be considered a coordinator if any bindings have been set.
rfm22b_dev->coordinator = false;
for (uint32_t i = 0; i < OPLINKSETTINGS_BINDINGS_NUMELEM; ++i) {
rfm22b_dev->bindings[i].pairID = bindingPairIDs[i];
rfm22b_dev->bindings[i].main_port = mainPortSettings[i];
rfm22b_dev->bindings[i].flexi_port = flexiPortSettings[i];
rfm22b_dev->bindings[i].vcp_port = vcpPortSettings[i];
rfm22b_dev->bindings[i].com_speed = comSpeeds[i];
rfm22b_dev->coordinator |= (rfm22b_dev->bindings[i].pairID != 0);
}
}
/**
* Returns the device statistics RFM22B device.
*
* @param[in] rfm22b_id The RFM22B device index.
* @param[out] stats The stats are returned in this structure
*/
void PIOS_RFM22B_GetStats(uint32_t rfm22b_id, struct rfm22b_stats *stats) {
struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
if(!PIOS_RFM22B_Validate(rfm22b_dev)) {
return;
}
// Calculate the current link quality
rfm22_calculateLinkQuality(rfm22b_dev);
// We are connected if our destination ID is in the pair stats.
if (rfm22b_dev->destination_id != 0xffffffff) {
for (uint8_t i = 0; i < OPLINKSTATUS_PAIRIDS_NUMELEM; ++i) {
if ((rfm22b_dev->pair_stats[i].pairID == rfm22b_dev->destination_id) &&
(rfm22b_dev->pair_stats[i].rssi > -127)) {
rfm22b_dev->stats.rssi = rfm22b_dev->pair_stats[i].rssi;
rfm22b_dev->stats.afc_correction = rfm22b_dev->pair_stats[i].afc_correction;
break;
}
}
}
*stats = rfm22b_dev->stats;
}
/**
* Get the stats of the oter radio devices that are in range.
*
* @param[out] device_ids A pointer to the array to store the device IDs.
* @param[out] RSSIs A pointer to the array to store the RSSI values in.
* @param[in] mx_pairs The length of the pdevice_ids and RSSIs arrays.
* @return The number of pair stats returned.
*/
uint8_t PIOS_RFM2B_GetPairStats(uint32_t rfm22b_id, uint32_t *device_ids, int8_t *RSSIs, uint8_t max_pairs)
2012-02-29 05:30:06 +01:00
{
struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
if (!PIOS_RFM22B_Validate(rfm22b_dev)) {
return 0;
}
uint8_t mp = (max_pairs >= OPLINKSTATUS_PAIRIDS_NUMELEM) ? max_pairs : OPLINKSTATUS_PAIRIDS_NUMELEM;
for (uint8_t i = 0; i < mp; ++i) {
device_ids[i] = rfm22b_dev->pair_stats[i].pairID;
RSSIs[i] = rfm22b_dev->pair_stats[i].rssi;
}
return mp;
2012-02-29 05:30:06 +01:00
}
2012-03-08 02:05:42 +01:00
/**
* Check the radio device for a valid connection
*
* @param[in] rfm22b_id The rfm22b device.
* @return true if there is a valid connection to paired radio, false otherwise.
*/
bool PIOS_RFM22B_LinkStatus(uint32_t rfm22b_id)
{
struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
if(!PIOS_RFM22B_Validate(rfm22b_dev)) {
return false;
}
return (rfm22_isConnected(rfm22b_dev) && (rfm22b_dev->stats.link_quality > RFM22B_LINK_QUALITY_THRESHOLD));
}
/**
* Put the RFM22B device into receive mode.
*
* @param[in] rfm22b_id The rfm22b device.
* @param[in] p The packet to receive into.
* @return true if Rx mode was entered sucessfully.
*/
bool PIOS_RFM22B_ReceivePacket(uint32_t rfm22b_id, PHPacketHandle p) {
struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
if (!PIOS_RFM22B_Validate(rfm22b_dev)) {
return false;
}
// Are we already in Rx mode?
if ((rfm22b_dev->rfm22b_state == RFM22B_STATE_RX_MODE) || (rfm22b_dev->rfm22b_state == RFM22B_STATE_RX_WAIT)) {
return false;
}
rfm22b_dev->rx_packet_handle = p;
// Claim the SPI bus.
rfm22_claimBus(rfm22b_dev);
// disable interrupts
rfm22_write(rfm22b_dev, RFM22_interrupt_enable1, 0x00);
rfm22_write(rfm22b_dev, RFM22_interrupt_enable2, 0x00);
// Switch to TUNE mode
rfm22_write(rfm22b_dev, RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon);
#ifdef PIOS_RFM22B_DEBUG_ON_TELEM
D2_LED_OFF;
#endif // PIOS_RFM22B_DEBUG_ON_TELEM
RX_LED_OFF;
TX_LED_OFF;
// empty the rx buffer
rfm22b_dev->rx_buffer_wr = 0;
// Clear the TX buffer.
rfm22b_dev->tx_data_rd = rfm22b_dev->tx_data_wr = 0;
// clear FIFOs
rfm22_write(rfm22b_dev, RFM22_op_and_func_ctrl2, RFM22_opfc2_ffclrrx | RFM22_opfc2_ffclrtx);
rfm22_write(rfm22b_dev, RFM22_op_and_func_ctrl2, 0x00);
// enable RX interrupts
rfm22_write(rfm22b_dev, RFM22_interrupt_enable1, RFM22_ie1_encrcerror | RFM22_ie1_enpkvalid |
RFM22_ie1_enrxffafull | RFM22_ie1_enfferr);
rfm22_write(rfm22b_dev, RFM22_interrupt_enable2, RFM22_ie2_enpreainval | RFM22_ie2_enpreaval |
RFM22_ie2_enswdet);
// enable the receiver
rfm22_write(rfm22b_dev, RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon | RFM22_opfc1_rxon);
// Release the SPI bus.
rfm22_releaseBus(rfm22b_dev);
// Indicate that we're in RX wait mode.
rfm22b_dev->rfm22b_state = RFM22B_STATE_RX_WAIT;
return true;
}
/**
* Transmit a packet via the RFM22B device.
*
* @param[in] rfm22b_id The rfm22b device.
* @param[in] p The packet to transmit.
* @return true if there if the packet was queued for transmission.
*/
bool PIOS_RFM22B_TransmitPacket(uint32_t rfm22b_id, PHPacketHandle p) {
struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
if (!PIOS_RFM22B_Validate(rfm22b_dev)) {
return false;
}
rfm22b_dev->tx_packet = p;
rfm22b_dev->packet_start_ticks = xTaskGetTickCount();
if (rfm22b_dev->packet_start_ticks == 0) {
rfm22b_dev->packet_start_ticks = 1;
}
// Claim the SPI bus.
rfm22_claimBus(rfm22b_dev);
// Disable interrupts
rfm22_write(rfm22b_dev, RFM22_interrupt_enable1, 0x00);
rfm22_write(rfm22b_dev, RFM22_interrupt_enable2, 0x00);
// set the tx power
rfm22_write(rfm22b_dev, RFM22_tx_power, RFM22_tx_pwr_lna_sw | rfm22b_dev->tx_power);
// TUNE mode
rfm22_write(rfm22b_dev, RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon);
// Queue the data up for sending
rfm22b_dev->tx_data_wr = PH_PACKET_SIZE(rfm22b_dev->tx_packet);
RX_LED_OFF;
// Set the destination address in the transmit header.
// The destination address is the first 4 bytes of the message.
uint8_t *tx_buffer = (uint8_t*)(rfm22b_dev->tx_packet);
rfm22_write(rfm22b_dev, RFM22_transmit_header0, tx_buffer[0]);
rfm22_write(rfm22b_dev, RFM22_transmit_header1, tx_buffer[1]);
rfm22_write(rfm22b_dev, RFM22_transmit_header2, tx_buffer[2]);
rfm22_write(rfm22b_dev, RFM22_transmit_header3, tx_buffer[3]);
// FIFO mode, GFSK modulation
uint8_t fd_bit = rfm22_read(rfm22b_dev, RFM22_modulation_mode_control2) & RFM22_mmc2_fd;
rfm22_write(rfm22b_dev, RFM22_modulation_mode_control2, fd_bit | RFM22_mmc2_dtmod_fifo | RFM22_mmc2_modtyp_gfsk);
// Clear the FIFOs.
rfm22_write(rfm22b_dev, RFM22_op_and_func_ctrl2, RFM22_opfc2_ffclrrx | RFM22_opfc2_ffclrtx);
rfm22_write(rfm22b_dev, RFM22_op_and_func_ctrl2, 0x00);
// Set the total number of data bytes we are going to transmit.
rfm22_write(rfm22b_dev, RFM22_transmit_packet_length, rfm22b_dev->tx_data_wr);
// Add some data to the chips TX FIFO before enabling the transmitter
rfm22_assertCs(rfm22b_dev);
PIOS_SPI_TransferByte(rfm22b_dev->spi_id, RFM22_fifo_access | 0x80);
int bytes_to_write = (rfm22b_dev->tx_data_wr - rfm22b_dev->tx_data_rd);
bytes_to_write = (bytes_to_write > FIFO_SIZE) ? FIFO_SIZE: bytes_to_write;
PIOS_SPI_TransferBlock(rfm22b_dev->spi_id, &tx_buffer[rfm22b_dev->tx_data_rd], NULL, bytes_to_write, NULL);
rfm22b_dev->tx_data_rd += bytes_to_write;
rfm22_deassertCs(rfm22b_dev);
// Enable TX interrupts.
rfm22_write(rfm22b_dev, RFM22_interrupt_enable1, RFM22_ie1_enpksent | RFM22_ie1_entxffaem);
// Enable the transmitter.
rfm22_write(rfm22b_dev, RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon | RFM22_opfc1_txon);
// Release the SPI bus.
rfm22_releaseBus(rfm22b_dev);
// We're in Tx mode.
rfm22b_dev->rfm22b_state = RFM22B_STATE_TX_MODE;
TX_LED_ON;
return true;
}
/**
* Process a Tx interrupt from the RFM22B device.
*
* @param[in] rfm22b_id The rfm22b device.
* @return PIOS_RFM22B_TX_COMPLETE on completed Tx, or PIOS_RFM22B_INT_SUCCESS/PIOS_RFM22B_INT_FAILURE.
*/
pios_rfm22b_int_result PIOS_RFM22B_ProcessTx(uint32_t rfm22b_id) {
struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
if (!PIOS_RFM22B_Validate(rfm22b_dev)) {
return PIOS_RFM22B_INT_FAILURE;
}
// Read the device status registers
if (!pios_rfm22_readStatus(rfm22b_dev)) {
return PIOS_RFM22B_INT_FAILURE;
}
// TX FIFO almost empty, it needs filling up
if (rfm22b_dev->status_regs.int_status_1.tx_fifo_almost_empty) {
// Add data to the TX FIFO buffer
uint8_t *tx_buffer = (uint8_t*)(rfm22b_dev->tx_packet);
uint16_t max_bytes = FIFO_SIZE - TX_FIFO_LO_WATERMARK - 1;
rfm22_claimBus(rfm22b_dev);
rfm22_assertCs(rfm22b_dev);
PIOS_SPI_TransferByte(rfm22b_dev->spi_id, RFM22_fifo_access | 0x80);
int bytes_to_write = (rfm22b_dev->tx_data_wr - rfm22b_dev->tx_data_rd);
bytes_to_write = (bytes_to_write > max_bytes) ? max_bytes: bytes_to_write;
PIOS_SPI_TransferBlock(rfm22b_dev->spi_id, &tx_buffer[rfm22b_dev->tx_data_rd], NULL, bytes_to_write, NULL);
rfm22b_dev->tx_data_rd += bytes_to_write;
rfm22_deassertCs(rfm22b_dev);
rfm22_releaseBus(rfm22b_dev);
return PIOS_RFM22B_INT_SUCCESS;
} else if (rfm22b_dev->status_regs.int_status_1.packet_sent_interrupt) {
// Transition out of Tx mode.
rfm22b_dev->rfm22b_state = RFM22B_STATE_TRANSITION;
return PIOS_RFM22B_TX_COMPLETE;
}
return 0;
}
/**
* Process a Rx interrupt from the RFM22B device.
*
* @param[in] rfm22b_id The rfm22b device.
* @return PIOS_RFM22B_RX_COMPLETE on completed Rx, or PIOS_RFM22B_INT_SUCCESS/PIOS_RFM22B_INT_FAILURE.
*/
pios_rfm22b_int_result PIOS_RFM22B_ProcessRx(uint32_t rfm22b_id) {
struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
if (!PIOS_RFM22B_Validate(rfm22b_dev)) {
return PIOS_RFM22B_INT_FAILURE;
}
uint8_t *rx_buffer = (uint8_t*)(rfm22b_dev->rx_packet_handle);
pios_rfm22b_int_result ret = PIOS_RFM22B_INT_SUCCESS;
// Read the device status registers
if (!pios_rfm22_readStatus(rfm22b_dev)) {
rfm22_rxFailure(rfm22b_dev);
return PIOS_RFM22B_INT_FAILURE;
}
// FIFO under/over flow error. Restart RX mode.
if (rfm22b_dev->status_regs.int_status_1.fifo_underoverflow_error ||
rfm22b_dev->status_regs.int_status_1.crc_error) {
rfm22_rxFailure(rfm22b_dev);
return PIOS_RFM22B_INT_FAILURE;
}
// Valid packet received
if (rfm22b_dev->status_regs.int_status_1.valid_packet_received) {
// Claim the SPI bus.
rfm22_claimBus(rfm22b_dev);
// read the total length of the packet data
uint32_t len = rfm22_read(rfm22b_dev, RFM22_received_packet_length);
// their must still be data in the RX FIFO we need to get
if (rfm22b_dev->rx_buffer_wr < len) {
int32_t bytes_to_read = len - rfm22b_dev->rx_buffer_wr;
// Fetch the data from the RX FIFO
rfm22_assertCs(rfm22b_dev);
PIOS_SPI_TransferByte(rfm22b_dev->spi_id,RFM22_fifo_access & 0x7F);
rfm22b_dev->rx_buffer_wr += (PIOS_SPI_TransferBlock(rfm22b_dev->spi_id,OUT_FF, (uint8_t *)&rx_buffer[rfm22b_dev->rx_buffer_wr],
bytes_to_read, NULL) == 0) ? bytes_to_read : 0;
rfm22_deassertCs(rfm22b_dev);
}
// Release the SPI bus.
rfm22_releaseBus(rfm22b_dev);
// Is there a length error?
if (rfm22b_dev->rx_buffer_wr != len) {
rfm22_rxFailure(rfm22b_dev);
return PIOS_RFM22B_INT_FAILURE;
}
// Increment the total byte received count.
rfm22b_dev->stats.rx_byte_count += rfm22b_dev->rx_buffer_wr;
// We're finished with Rx mode
rfm22b_dev->rfm22b_state = RFM22B_STATE_TRANSITION;
ret = PIOS_RFM22B_RX_COMPLETE;
} else if (rfm22b_dev->status_regs.int_status_1.rx_fifo_almost_full) {
// RX FIFO almost full, it needs emptying
// read data from the rf chips FIFO buffer
// Claim the SPI bus.
rfm22_claimBus(rfm22b_dev);
// Read the total length of the packet data
uint16_t len = rfm22_read(rfm22b_dev, RFM22_received_packet_length);
// The received packet is going to be larger than the specified length
if ((rfm22b_dev->rx_buffer_wr + RX_FIFO_HI_WATERMARK) > len) {
rfm22_releaseBus(rfm22b_dev);
rfm22_rxFailure(rfm22b_dev);
return PIOS_RFM22B_INT_FAILURE;
}
// Fetch the data from the RX FIFO
rfm22_assertCs(rfm22b_dev);
PIOS_SPI_TransferByte(rfm22b_dev->spi_id,RFM22_fifo_access & 0x7F);
rfm22b_dev->rx_buffer_wr += (PIOS_SPI_TransferBlock(rfm22b_dev->spi_id, OUT_FF, (uint8_t *)&rx_buffer[rfm22b_dev->rx_buffer_wr],
RX_FIFO_HI_WATERMARK, NULL) == 0) ? RX_FIFO_HI_WATERMARK : 0;
rfm22_deassertCs(rfm22b_dev);
// Release the SPI bus.
rfm22_releaseBus(rfm22b_dev);
// Make sure that we're in RX mode.
rfm22b_dev->rfm22b_state = RFM22B_STATE_RX_MODE;
} else if (rfm22b_dev->status_regs.int_status_2.valid_preamble_detected) {
// Valid preamble detected
RX_LED_ON;
#ifdef PIOS_RFM22B_DEBUG_ON_TELEM
D2_LED_ON;
#endif // PIOS_RFM22B_DEBUG_ON_TELEM
// We detected the preamble, now wait for sync.
rfm22b_dev->rfm22b_state = RFM22B_STATE_RX_WAIT_SYNC;
} else if (rfm22b_dev->status_regs.int_status_2.sync_word_detected) {
// Sync word detected
// Claim the SPI bus.
rfm22_claimBus(rfm22b_dev);
// read the 10-bit signed afc correction value
// bits 9 to 2
uint16_t afc_correction = (uint16_t)rfm22_read(rfm22b_dev, RFM22_afc_correction_read) << 8;
// bits 1 & 0
afc_correction |= (uint16_t)rfm22_read(rfm22b_dev, RFM22_ook_counter_value1) & 0x00c0;
afc_correction >>= 6;
// convert the afc value to Hz
int32_t afc_corr = (int32_t)(rfm22b_dev->frequency_step_size * afc_correction + 0.5f);
rfm22b_dev->afc_correction_Hz = (afc_corr < -127) ? -127 : ((afc_corr > 127) ? 127 : afc_corr);
// read rx signal strength .. 45 = -100dBm, 205 = -20dBm
uint8_t rssi = rfm22_read(rfm22b_dev, RFM22_rssi);
// convert to dBm
rfm22b_dev->rssi_dBm = (int8_t)(rssi >> 1) - 122;
// Release the SPI bus.
rfm22_releaseBus(rfm22b_dev);
// Indicate that we're in RX mode.
rfm22b_dev->rfm22b_state = RFM22B_STATE_RX_MODE;
} else if ((rfm22b_dev->rfm22b_state == RFM22B_STATE_RX_WAIT_SYNC) && !rfm22b_dev->status_regs.int_status_2.valid_preamble_detected) {
// Waiting for the preamble timed out.
rfm22_rxFailure(rfm22b_dev);
return PIOS_RFM22B_INT_FAILURE;
}
// Set the packet start time if necessary.
if ((rfm22b_dev->packet_start_ticks == 0) &&
((rfm22b_dev->rfm22b_state == RFM22B_STATE_RX_WAIT_SYNC) || (rfm22b_dev->rfm22b_state == RFM22B_STATE_RX_WAIT_SYNC))) {
rfm22b_dev->packet_start_ticks = xTaskGetTickCount();
if (rfm22b_dev->packet_start_ticks == 0)
rfm22b_dev->packet_start_ticks = 1;
}
return ret;
}
/**
* Validate that the device structure is valid.
*
* @param[in] rfm22b_dev The RFM22B device structure pointer.
*/
inline bool PIOS_RFM22B_Validate(struct pios_rfm22b_dev *rfm22b_dev)
{
return (rfm22b_dev != NULL && rfm22b_dev->magic == PIOS_RFM22B_DEV_MAGIC);
}
/*****************************************************************************
* The Device Control Thread
*****************************************************************************/
/**
* The task that controls the radio state machine.
*
* @param[in] paramters The task parameters.
*/
static void pios_rfm22_task(void *parameters)
{
struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)parameters;
if (!PIOS_RFM22B_Validate(rfm22b_dev)) {
return;
}
portTickType lastEventTicks = xTaskGetTickCount();
portTickType lastStatusTicks = lastEventTicks;
portTickType lastPPMTicks = lastEventTicks;
while(1) {
#ifdef PIOS_WDG_RFM22B
// Update the watchdog timer
PIOS_WDG_UpdateFlag(PIOS_WDG_RFM22B);
#endif /* PIOS_WDG_RFM22B */
// Wait for a signal indicating an external interrupt or a pending send/receive request.
if (xSemaphoreTake(rfm22b_dev->isrPending, ISR_TIMEOUT / portTICK_RATE_MS) == pdTRUE) {
lastEventTicks = xTaskGetTickCount();
// Process events through the state machine.
enum pios_radio_event event;
while (xQueueReceive(rfm22b_dev->eventQueue, &event, 0) == pdTRUE) {
if ((event == RADIO_EVENT_INT_RECEIVED) &&
((rfm22b_dev->state == RADIO_STATE_UNINITIALIZED) || (rfm22b_dev->state == RADIO_STATE_INITIALIZING)))
continue;
rfm22_process_event(rfm22b_dev, event);
}
} else {
// Has it been too long since the last event?
portTickType curTicks = xTaskGetTickCount();
if (pios_rfm22_time_difference_ms(lastEventTicks, curTicks) > PIOS_RFM22B_SUPERVISOR_TIMEOUT) {
// Transsition through an error event.
rfm22_process_event(rfm22b_dev, RADIO_EVENT_ERROR);
// Clear the event queue.
enum pios_radio_event event;
while (xQueueReceive(rfm22b_dev->eventQueue, &event, 0) == pdTRUE) {
// Do nothing;
}
lastEventTicks = xTaskGetTickCount();
}
}
// Change channels if necessary.
if (PIOS_RFM22B_InRxWait((uint32_t)rfm22b_dev)) {
rfm22_changeChannel(rfm22b_dev);
}
portTickType curTicks = xTaskGetTickCount();
uint32_t last_rec_ms = (rfm22b_dev->rx_complete_ticks == 0) ? 0 : pios_rfm22_time_difference_ms(rfm22b_dev->rx_complete_ticks, curTicks);
// Have we been sending / receiving this packet too long?
if ((rfm22b_dev->packet_start_ticks > 0) &&
(pios_rfm22_time_difference_ms(rfm22b_dev->packet_start_ticks, curTicks) > (rfm22b_dev->max_packet_time * 3))) {
rfm22_process_event(rfm22b_dev, RADIO_EVENT_TIMEOUT);
} else if (last_rec_ms > DISCONNECT_TIMEOUT_MS) {
// Has it been too long since we received a packet
rfm22_process_event(rfm22b_dev, RADIO_EVENT_ERROR);
} else {
// Are we waiting for an ACK?
if (rfm22b_dev->prev_tx_packet) {
// Should we resend the packet?
if ((pios_rfm22_time_difference_ms(rfm22b_dev->tx_complete_ticks, curTicks) > rfm22b_dev->max_ack_delay) &&
PIOS_RFM22B_InRxWait((uint32_t)rfm22b_dev)) {
rfm22b_dev->tx_complete_ticks = curTicks;
rfm22_process_event(rfm22b_dev, RADIO_EVENT_ACK_TIMEOUT);
}
} else {
// Queue up a PPM packet if it's time.
if (pios_rfm22_time_difference_ms(lastPPMTicks, curTicks) > PPM_UPDATE_PERIOD_MS) {
rfm22_sendPPM(rfm22b_dev);
lastPPMTicks = curTicks;
}
// Queue up a status packet if it's time.
if (pios_rfm22_time_difference_ms(lastStatusTicks, curTicks) > RADIOSTATS_UPDATE_PERIOD_MS) {
rfm22_sendStatus(rfm22b_dev);
lastStatusTicks = curTicks;
}
}
}
// Send a packet if it's our time slice
bool time_to_send = rfm22_timeToSend(rfm22b_dev);
#ifdef PIOS_RFM22B_DEBUG_ON_TELEM
if (time_to_send) {
D4_LED_ON;
} else {
D4_LED_OFF;
}
#endif
if (time_to_send && PIOS_RFM22B_InRxWait((uint32_t)rfm22b_dev)) {
rfm22_process_event(rfm22b_dev, RADIO_EVENT_TX_START);
}
}
}
/*****************************************************************************
* The State Machine Functions
*****************************************************************************/
/**
* Inject an event into the RFM22B state machine.
*
* @param[in] rfm22b_dev The device structure
* @param[in] event The event to inject
* @param[in] inISR Is this being called from an interrrup service routine?
*/
static void pios_rfm22_inject_event(struct pios_rfm22b_dev *rfm22b_dev, enum pios_radio_event event, bool inISR)
{
if (inISR) {
// Store the event.
portBASE_TYPE pxHigherPriorityTaskWoken1;
if (xQueueSendFromISR(rfm22b_dev->eventQueue, &event, &pxHigherPriorityTaskWoken1) != pdTRUE)
return;
// Signal the semaphore to wake up the handler thread.
portBASE_TYPE pxHigherPriorityTaskWoken2;
if (xSemaphoreGiveFromISR(rfm22b_dev->isrPending, &pxHigherPriorityTaskWoken2) != pdTRUE) {
// Something went fairly seriously wrong
rfm22b_dev->errors++;
}
portEND_SWITCHING_ISR((pxHigherPriorityTaskWoken2 == pdTRUE) || (pxHigherPriorityTaskWoken2 == pdTRUE));
} else {
// Store the event.
if (xQueueSend(rfm22b_dev->eventQueue, &event, portMAX_DELAY) != pdTRUE)
return;
// Signal the semaphore to wake up the handler thread.
if (xSemaphoreGive(rfm22b_dev->isrPending) != pdTRUE) {
// Something went fairly seriously wrong
rfm22b_dev->errors++;
}
}
}
/**
* Process the next state transition from the given event.
*
* @param[in] rfm22b_dev The device structure
* @param[in] event The event to process
* @return enum pios_radio_event The next event to inject
*/
static enum pios_radio_event rfm22_process_state_transition(struct pios_rfm22b_dev *rfm22b_dev, enum pios_radio_event event)
{
// No event
if (event >= RADIO_EVENT_NUM_EVENTS) {
return RADIO_EVENT_NUM_EVENTS;
}
// Don't transition if there is no transition defined
enum pios_radio_state next_state = rfm22b_transitions[rfm22b_dev->state].next_state[event];
if (!next_state) {
return RADIO_EVENT_NUM_EVENTS;
}
/*
* Move to the next state
*
* This is done prior to calling the new state's entry function to
* guarantee that the entry function never depends on the previous
* state. This way, it cannot ever know what the previous state was.
*/
rfm22b_dev->state = next_state;
/* Call the entry function (if any) for the next state. */
if (rfm22b_transitions[rfm22b_dev->state].entry_fn) {
return rfm22b_transitions[rfm22b_dev->state].entry_fn(rfm22b_dev);
}
return RADIO_EVENT_NUM_EVENTS;
}
/**
* Process the given event through the state transition table.
* This could cause a series of events and transitions to take place.
*
* @param[in] rfm22b_dev The device structure
* @param[in] event The event to process
*/
static void rfm22_process_event(struct pios_rfm22b_dev *rfm22b_dev, enum pios_radio_event event)
{
// Process all state transitions.
while(event != RADIO_EVENT_NUM_EVENTS) {
event = rfm22_process_state_transition(rfm22b_dev, event);
}
}
/*****************************************************************************
* The Device Initialization / Configuration Functions
*****************************************************************************/
/**
* Initialize (or re-initialize) the RFM22B radio device.
*
* @param[in] rfm22b_dev The device structure
* @return enum pios_radio_event The next event to inject
*/
static enum pios_radio_event rfm22_init(struct pios_rfm22b_dev *rfm22b_dev)
{
// Initialize the register values.
rfm22b_dev->status_regs.int_status_1.raw = 0;
rfm22b_dev->status_regs.int_status_2.raw = 0;
rfm22b_dev->status_regs.device_status.raw = 0;
rfm22b_dev->status_regs.ezmac_status.raw = 0;
// Clean the LEDs
rfm22_clearLEDs();
// Initialize the detected device statistics.
for (uint8_t i = 0; i < OPLINKSTATUS_PAIRIDS_NUMELEM; ++i) {
rfm22b_dev->pair_stats[i].pairID = 0;
rfm22b_dev->pair_stats[i].rssi = -127;
rfm22b_dev->pair_stats[i].afc_correction = 0;
rfm22b_dev->pair_stats[i].lastContact = 0;
}
// Initlize the link stats.
for (uint8_t i = 0; i < RFM22B_RX_PACKET_STATS_LEN; ++i) {
rfm22b_dev->rx_packet_stats[i] = 0;
}
// Initialize the state
rfm22b_dev->stats.link_state = OPLINKSTATUS_LINKSTATE_DISCONNECTED;
rfm22b_dev->destination_id = 0xffffffff;
rfm22b_dev->send_status = false;
rfm22b_dev->send_connection_request = false;
// Initialize the packets.
rfm22b_dev->rx_packet_len = 0;
rfm22b_dev->tx_packet = NULL;
rfm22b_dev->prev_tx_packet = NULL;
rfm22b_dev->data_packet.header.data_size = 0;
// Initialize the devide state
rfm22b_dev->rx_buffer_wr = 0;
rfm22b_dev->tx_data_rd = rfm22b_dev->tx_data_wr = 0;
rfm22b_dev->frequency_hop_channel = 0;
rfm22b_dev->afc_correction_Hz = 0;
rfm22b_dev->packet_start_ticks = 0;
rfm22b_dev->tx_complete_ticks = 0;
rfm22b_dev->rx_complete_ticks = 0;
rfm22b_dev->rfm22b_state = RFM22B_STATE_INITIALIZING;
// software reset the RF chip .. following procedure according to Si4x3x Errata (rev. B)
rfm22_write_claim(rfm22b_dev, RFM22_op_and_func_ctrl1, RFM22_opfc1_swres);
for (uint8_t i = 0; i < 50; ++i) {
// read the status registers
pios_rfm22_readStatus(rfm22b_dev);
// Is the chip ready?
if (rfm22b_dev->status_regs.int_status_2.chip_ready)
break;
// Wait 1ms if not.
PIOS_DELAY_WaitmS(1);
}
// ****************
// read status - clears interrupt
pios_rfm22_readStatus(rfm22b_dev);
// Claim the SPI bus.
rfm22_claimBus(rfm22b_dev);
// disable all interrupts
rfm22_write(rfm22b_dev, RFM22_interrupt_enable1, 0x00);
rfm22_write(rfm22b_dev, RFM22_interrupt_enable2, 0x00);
// read the RF chip ID bytes
// read the device type
uint8_t device_type = rfm22_read(rfm22b_dev, RFM22_DEVICE_TYPE) & RFM22_DT_MASK;
// read the device version
uint8_t device_version = rfm22_read(rfm22b_dev, RFM22_DEVICE_VERSION) & RFM22_DV_MASK;
#if defined(RFM22_DEBUG)
DEBUG_PRINTF(2, "rf device type: %d\n\r", device_type);
DEBUG_PRINTF(2, "rf device version: %d\n\r", device_version);
#endif
if (device_type != 0x08) {
#if defined(RFM22_DEBUG)
DEBUG_PRINTF(2, "rf device type: INCORRECT - should be 0x08\n\r");
#endif
// incorrect RF module type
return RADIO_EVENT_FATAL_ERROR;
}
if (device_version != RFM22_DEVICE_VERSION_B1) {
#if defined(RFM22_DEBUG)
DEBUG_PRINTF(2, "rf device version: INCORRECT\n\r");
#endif
// incorrect RF module version
return RADIO_EVENT_FATAL_ERROR;
}
// calibrate our RF module to be exactly on frequency .. different for every module
rfm22_write(rfm22b_dev, RFM22_xtal_osc_load_cap, OSC_LOAD_CAP);
// disable Low Duty Cycle Mode
rfm22_write(rfm22b_dev, RFM22_op_and_func_ctrl2, 0x00);
// 1MHz clock output
rfm22_write(rfm22b_dev, RFM22_cpu_output_clk, RFM22_coc_1MHz);
// READY mode
rfm22_write(rfm22b_dev, RFM22_op_and_func_ctrl1, RFM22_opfc1_xton);
// choose the 3 GPIO pin functions
// GPIO port use default value
rfm22_write(rfm22b_dev, RFM22_io_port_config, RFM22_io_port_default);
if (rfm22b_dev->cfg.gpio_direction == GPIO0_TX_GPIO1_RX) {
// GPIO0 = TX State (to control RF Switch)
rfm22_write(rfm22b_dev, RFM22_gpio0_config, RFM22_gpio0_config_drv3 | RFM22_gpio0_config_txstate);
// GPIO1 = RX State (to control RF Switch)
rfm22_write(rfm22b_dev, RFM22_gpio1_config, RFM22_gpio1_config_drv3 | RFM22_gpio1_config_rxstate);
} else {
// GPIO0 = TX State (to control RF Switch)
rfm22_write(rfm22b_dev, RFM22_gpio0_config, RFM22_gpio0_config_drv3 | RFM22_gpio0_config_rxstate);
// GPIO1 = RX State (to control RF Switch)
rfm22_write(rfm22b_dev, RFM22_gpio1_config, RFM22_gpio1_config_drv3 | RFM22_gpio1_config_txstate);
}
// GPIO2 = Clear Channel Assessment
rfm22_write(rfm22b_dev, RFM22_gpio2_config, RFM22_gpio2_config_drv3 | RFM22_gpio2_config_cca);
// FIFO mode, GFSK modulation
uint8_t fd_bit = rfm22_read(rfm22b_dev, RFM22_modulation_mode_control2) & RFM22_mmc2_fd;
rfm22_write(rfm22b_dev, RFM22_modulation_mode_control2, RFM22_mmc2_trclk_clk_none | RFM22_mmc2_dtmod_fifo | fd_bit | RFM22_mmc2_modtyp_gfsk);
// setup to read the internal temperature sensor
// ADC used to sample the temperature sensor
uint8_t adc_config = RFM22_ac_adcsel_temp_sensor | RFM22_ac_adcref_bg;
rfm22_write(rfm22b_dev, RFM22_adc_config, adc_config);
// adc offset
rfm22_write(rfm22b_dev, RFM22_adc_sensor_amp_offset, 0);
// temp sensor calibration .. <20>40C to +64C 0.5C resolution
rfm22_write(rfm22b_dev, RFM22_temp_sensor_calib, RFM22_tsc_tsrange0 | RFM22_tsc_entsoffs);
// temp sensor offset
rfm22_write(rfm22b_dev, RFM22_temp_value_offset, 0);
// start an ADC conversion
rfm22_write(rfm22b_dev, RFM22_adc_config, adc_config | RFM22_ac_adcstartbusy);
// set the RSSI threshold interrupt to about -90dBm
rfm22_write(rfm22b_dev, RFM22_rssi_threshold_clear_chan_indicator, (-90 + 122) * 2);
// enable the internal Tx & Rx packet handlers (without CRC)
rfm22_write(rfm22b_dev, RFM22_data_access_control, RFM22_dac_enpacrx | RFM22_dac_enpactx);
// x-nibbles tx preamble
rfm22_write(rfm22b_dev, RFM22_preamble_length, TX_PREAMBLE_NIBBLES);
// x-nibbles rx preamble detection
rfm22_write(rfm22b_dev, RFM22_preamble_detection_ctrl1, RX_PREAMBLE_NIBBLES << 3);
// header control - using a 4 by header with broadcast of 0xffffffff
rfm22_write(rfm22b_dev, RFM22_header_control1,
RFM22_header_cntl1_bcen_0 |
RFM22_header_cntl1_bcen_1 |
RFM22_header_cntl1_bcen_2 |
RFM22_header_cntl1_bcen_3 |
RFM22_header_cntl1_hdch_0 |
RFM22_header_cntl1_hdch_1 |
RFM22_header_cntl1_hdch_2 |
RFM22_header_cntl1_hdch_3);
// Check all bit of all bytes of the header
rfm22_write(rfm22b_dev, RFM22_header_enable0, 0xff);
rfm22_write(rfm22b_dev, RFM22_header_enable1, 0xff);
rfm22_write(rfm22b_dev, RFM22_header_enable2, 0xff);
rfm22_write(rfm22b_dev, RFM22_header_enable3, 0xff);
// Set the ID to be checked
uint32_t id = rfm22b_dev->deviceID;
rfm22_write(rfm22b_dev, RFM22_check_header0, id & 0xff);
rfm22_write(rfm22b_dev, RFM22_check_header1, (id >> 8) & 0xff);
rfm22_write(rfm22b_dev, RFM22_check_header2, (id >> 16) & 0xff);
rfm22_write(rfm22b_dev, RFM22_check_header3, (id >> 24) & 0xff);
// 4 header bytes, synchronization word length 3, 2, 1 & 0 used, packet length included in header.
rfm22_write(rfm22b_dev, RFM22_header_control2,
RFM22_header_cntl2_hdlen_3210 |
RFM22_header_cntl2_synclen_3210 |
((TX_PREAMBLE_NIBBLES >> 8) & 0x01));
// sync word
rfm22_write(rfm22b_dev, RFM22_sync_word3, SYNC_BYTE_1);
rfm22_write(rfm22b_dev, RFM22_sync_word2, SYNC_BYTE_2);
rfm22_write(rfm22b_dev, RFM22_sync_word1, SYNC_BYTE_3);
rfm22_write(rfm22b_dev, RFM22_sync_word0, SYNC_BYTE_4);
// TX FIFO Almost Full Threshold (0 - 63)
rfm22_write(rfm22b_dev, RFM22_tx_fifo_control1, TX_FIFO_HI_WATERMARK);
// TX FIFO Almost Empty Threshold (0 - 63)
rfm22_write(rfm22b_dev, RFM22_tx_fifo_control2, TX_FIFO_LO_WATERMARK);
// RX FIFO Almost Full Threshold (0 - 63)
rfm22_write(rfm22b_dev, RFM22_rx_fifo_control, RX_FIFO_HI_WATERMARK);
// Set the frequency calibration
rfm22_write(rfm22b_dev, RFM22_xtal_osc_load_cap, rfm22b_dev->cfg.RFXtalCap);
// Release the bus
rfm22_releaseBus(rfm22b_dev);
// Initialize the frequency and datarate to te default.
rfm22_setNominalCarrierFrequency(rfm22b_dev, rfm22b_dev->init_frequency, rfm22b_dev->init_frequency, RFM22B_FREQUENCY_HOP_STEP_SIZE);
pios_rfm22_setDatarate(rfm22b_dev, RFM22B_DEFAULT_RX_DATARATE, true);
return RADIO_EVENT_INITIALIZED;
}
/**
* Set the air datarate for the RFM22B device.
*
* Carson's rule:
* The signal bandwidth is about 2(Delta-f + fm) ..
*
* Delta-f = frequency deviation
* fm = maximum frequency of the signal
*
* @param[in] rfm33b_dev The device structure pointer.
* @param[in] datarate The air datarate.
* @param[in] data_whitening Is data whitening desired?
*/
static void pios_rfm22_setDatarate(struct pios_rfm22b_dev *rfm22b_dev, enum rfm22b_datarate datarate, bool data_whitening)
{
uint32_t datarate_bps = data_rate[datarate];
rfm22b_dev->max_packet_time = (uint16_t)((float)(PIOS_PH_MAX_PACKET * 8 * 1000) / (float)(datarate_bps) + 0.5f);
// Generate a pseudo-random number from 0-8 to add to the delay
uint8_t random = PIOS_CRC_updateByte(0, (uint8_t)(xTaskGetTickCount() & 0xff)) & 0x03;
rfm22b_dev->max_ack_delay = (uint16_t)((float)((sizeof(PHAckNackPacket) * 8 + TX_PREAMBLE_NIBBLES * 4) * 1000) / (float)(datarate_bps) + 0.5f) * 4 + 4 + random;
// Claim the SPI bus.
rfm22_claimBus(rfm22b_dev);
// rfm22_if_filter_bandwidth
rfm22_write(rfm22b_dev, 0x1C, reg_1C[datarate]);
// rfm22_afc_loop_gearshift_override
rfm22_write(rfm22b_dev, 0x1D, reg_1D[datarate]);
// RFM22_afc_timing_control
rfm22_write(rfm22b_dev, 0x1E, reg_1E[datarate]);
// RFM22_clk_recovery_gearshift_override
rfm22_write(rfm22b_dev, 0x1F, reg_1F[datarate]);
// rfm22_clk_recovery_oversampling_ratio
rfm22_write(rfm22b_dev, 0x20, reg_20[datarate]);
// rfm22_clk_recovery_offset2
rfm22_write(rfm22b_dev, 0x21, reg_21[datarate]);
// rfm22_clk_recovery_offset1
rfm22_write(rfm22b_dev, 0x22, reg_22[datarate]);
// rfm22_clk_recovery_offset0
rfm22_write(rfm22b_dev, 0x23, reg_23[datarate]);
// rfm22_clk_recovery_timing_loop_gain1
rfm22_write(rfm22b_dev, 0x24, reg_24[datarate]);
// rfm22_clk_recovery_timing_loop_gain0
rfm22_write(rfm22b_dev, 0x25, reg_25[datarate]);
// rfm22_agc_override1
rfm22_write(rfm22b_dev, RFM22_agc_override1, reg_69[datarate]);
// rfm22_afc_limiter
rfm22_write(rfm22b_dev, 0x2A, reg_2A[datarate]);
// rfm22_tx_data_rate1
rfm22_write(rfm22b_dev, 0x6E, reg_6E[datarate]);
// rfm22_tx_data_rate0
rfm22_write(rfm22b_dev, 0x6F, reg_6F[datarate]);
if (!data_whitening) {
// rfm22_modulation_mode_control1
rfm22_write(rfm22b_dev, 0x70, reg_70[datarate] & ~RFM22_mmc1_enwhite);
} else {
// rfm22_modulation_mode_control1
rfm22_write(rfm22b_dev, 0x70, reg_70[datarate] | RFM22_mmc1_enwhite);
}
// rfm22_modulation_mode_control2
rfm22_write(rfm22b_dev, 0x71, reg_71[datarate]);
// rfm22_frequency_deviation
rfm22_write(rfm22b_dev, 0x72, reg_72[datarate]);
// rfm22_cpcuu
rfm22_write(rfm22b_dev, 0x58, reg_58[datarate]);
rfm22_write(rfm22b_dev, RFM22_ook_counter_value1, 0x00);
rfm22_write(rfm22b_dev, RFM22_ook_counter_value2, 0x00);
// Release the bus
rfm22_releaseBus(rfm22b_dev);
}
/**
* Set the nominal carrier frequency and channel step size.
*
* @param[in] rfm33b_dev The device structure pointer.
* @param[in] min_frequency The minimum frequenc to transmit on (in Hz).
* @param[in] max_frequency The maximum frequenc to transmit on (in Hz).
* @param[in] step_size The channel spacing (in Hz).
*/
static void rfm22_setNominalCarrierFrequency(struct pios_rfm22b_dev *rfm22b_dev, uint32_t min_frequency, uint32_t max_frequency, uint32_t step_size)
{
uint32_t frequency_hz = min_frequency;
// holds the hbsel (1 or 2)
uint8_t hbsel;
if (frequency_hz < 480000000) {
hbsel = 0;
} else {
hbsel = 1;
}
float freq_mhz = (float)(frequency_hz) / 1000000.0f;
float xtal_freq_khz = 30000.0f;
float sfreq = freq_mhz / (10.0f * (xtal_freq_khz / 30000.0f) * (1 + hbsel));
uint32_t fb = (uint32_t)sfreq - 24 + (64 + 32 * hbsel);
uint32_t fc = (uint32_t)((sfreq - (uint32_t)sfreq) * 64000.0f);
uint8_t fch = (fc >> 8) & 0xff;
uint8_t fcl = fc & 0xff;
// Claim the SPI bus.
rfm22_claimBus(rfm22b_dev);
// Calculate the number of frequency hopping channels.
rfm22b_dev->num_channels = (step_size == 0) ? 1 : (uint16_t)((max_frequency - min_frequency) / step_size);
// initialize the frequency hopping step size (specified in 10khz increments).
uint32_t freq_hop_step_size = step_size / 10000;
if (freq_hop_step_size > 255) {
freq_hop_step_size = 255;
}
rfm22_write(rfm22b_dev, RFM22_frequency_hopping_step_size, (uint8_t)freq_hop_step_size);
// frequency hopping channel (0-255)
rfm22b_dev->frequency_step_size = 156.25f * hbsel;
// frequency hopping channel (0-255)
rfm22b_dev->frequency_hop_channel = 0;
rfm22_write(rfm22b_dev, RFM22_frequency_hopping_channel_select, 0);
// no frequency offset
rfm22_write(rfm22b_dev, RFM22_frequency_offset1, 0);
rfm22_write(rfm22b_dev, RFM22_frequency_offset2, 0);
// set the carrier frequency
rfm22_write(rfm22b_dev, RFM22_frequency_band_select, fb & 0xff);
rfm22_write(rfm22b_dev, RFM22_nominal_carrier_frequency1, fch);
rfm22_write(rfm22b_dev, RFM22_nominal_carrier_frequency0, fcl);
// Release the bus
rfm22_releaseBus(rfm22b_dev);
}
/**
* Set the frequency hopping channel.
*
* @param[in] rfm33b_dev The device structure pointer.
*/
static bool rfm22_setFreqHopChannel(struct pios_rfm22b_dev *rfm22b_dev, uint8_t channel)
{
// set the frequency hopping channel
if (rfm22b_dev->frequency_hop_channel == channel) {
return false;
}
#ifdef PIOS_RFM22B_DEBUG_ON_TELEM
D3_LED_TOGGLE;
#endif // PIOS_RFM22B_DEBUG_ON_TELEM
rfm22b_dev->frequency_hop_channel = channel;
rfm22_write_claim(rfm22b_dev, RFM22_frequency_hopping_channel_select, channel);
return true;
}
/**
* Read the RFM22B interrupt and device status registers
*
* @param[in] rfm22b_dev The device structure
*/
static bool pios_rfm22_readStatus(struct pios_rfm22b_dev *rfm22b_dev)
{
// 1. Read the interrupt statuses with burst read
rfm22_claimBus(rfm22b_dev); // Set RC and the semaphore
uint8_t write_buf[3] = {RFM22_interrupt_status1 & 0x7f, 0xFF, 0xFF};
uint8_t read_buf[3];
rfm22_assertCs(rfm22b_dev);
PIOS_SPI_TransferBlock(rfm22b_dev->spi_id, write_buf, read_buf, sizeof(write_buf), NULL);
rfm22_deassertCs(rfm22b_dev);
rfm22b_dev->status_regs.int_status_1.raw = read_buf[1];
rfm22b_dev->status_regs.int_status_2.raw = read_buf[2];
// Device status
rfm22b_dev->status_regs.device_status.raw = rfm22_read(rfm22b_dev, RFM22_device_status);
// EzMAC status
rfm22b_dev->status_regs.ezmac_status.raw = rfm22_read(rfm22b_dev, RFM22_ezmac_status);
// Release the bus
rfm22_releaseBus(rfm22b_dev);
// the RF module has gone and done a reset - we need to re-initialize the rf module
if (rfm22b_dev->status_regs.int_status_2.poweron_reset) {
return false;
}
return true;
}
/**
* Recover from a failure in receiving a packet.
*
* @param[in] rfm22b_dev The device structure
* @return enum pios_radio_event The next event to inject
*/
static void rfm22_rxFailure(struct pios_rfm22b_dev *rfm22b_dev)
{
rfm22b_dev->stats.rx_failure++;
rfm22b_dev->rx_buffer_wr = 0;
rfm22b_dev->packet_start_ticks = 0;
rfm22b_dev->rfm22b_state = RFM22B_STATE_TRANSITION;
rfm22b_dev->rx_complete_ticks = xTaskGetTickCount();
if (rfm22b_dev->rx_complete_ticks == 0) {
rfm22b_dev->rx_complete_ticks = 1;
}
}
/*****************************************************************************
* Radio Transmit and Receive functions.
*****************************************************************************/
/**
* Start a transmit if possible
*
* @param[in] radio_dev The device structure
* @return enum pios_radio_event The next event to inject
*/
static enum pios_radio_event radio_txStart(struct pios_rfm22b_dev *radio_dev)
{
PHPacketHandle p = NULL;
// Don't send if it's not our turn, or if we're receiving a packet.
if (!rfm22_timeToSend(radio_dev) || !PIOS_RFM22B_InRxWait((uint32_t)radio_dev)) {
return RADIO_EVENT_RX_MODE;
}
// See if there's a packet ready to send.
if (radio_dev->tx_packet) {
p = radio_dev->tx_packet;
} else {
// Don't send a packet if we're waiting for an ACK
if (radio_dev->prev_tx_packet) {
return RADIO_EVENT_RX_MODE;
}
// Send a connection request?
if (!p && radio_dev->send_connection_request) {
p = (PHPacketHandle)&(radio_dev->con_packet);
radio_dev->send_connection_request = false;
}
#ifdef PIOS_PPM_RECEIVER
// Send a PPM packet?
if (!p && radio_dev->send_ppm) {
p = (PHPacketHandle)&(radio_dev->ppm_packet);
radio_dev->send_ppm = false;
}
#endif
// Send status?
if (!p && radio_dev->send_status) {
p = (PHPacketHandle)&(radio_dev->status_packet);
radio_dev->send_status = false;
}
// Try to get some data to send
if (!p) {
bool need_yield = false;
p = &radio_dev->data_packet;
p->header.type = PACKET_TYPE_DATA;
p->header.destination_id = radio_dev->destination_id;
if (radio_dev->tx_out_cb && (p->header.data_size == 0)) {
p->header.data_size = (radio_dev->tx_out_cb)(radio_dev->tx_out_context, p->data, PH_MAX_DATA, NULL, &need_yield);
}
// Don't send any data until we're connected.
if (!rfm22_isConnected(radio_dev)) {
p->header.data_size = 0;
}
if (p->header.data_size == 0) {
p = NULL;
}
}
}
if (!p) {
return RADIO_EVENT_RX_MODE;
}
#ifdef PIOS_RFM22B_DEBUG_ON_TELEM
D1_LED_ON;
#endif
// Add the packet sequence number.
p->header.seq_num = radio_dev->stats.tx_seq++;
// Pass the time of the previous transmitted packet to use for synchronizing the clocks.
p->header.prev_tx_time = radio_dev->tx_complete_ticks;
// Change the channel if necessary, but not when ACKing the connection request message.
if ((p->header.type != PACKET_TYPE_ACK) || (radio_dev->rx_packet.header.type != PACKET_TYPE_CON_REQUEST)) {
rfm22_changeChannel(radio_dev);
}
// Add the error correcting code.
encode_data((unsigned char*)p, PHPacketSize(p), (unsigned char*)p);
// Transmit the packet.
PIOS_RFM22B_TransmitPacket((uint32_t)radio_dev, p);
return RADIO_EVENT_NUM_EVENTS;
}
/**
* Receive packet data.
*
* @param[in] rfm22b_dev The device structure
* @return enum pios_radio_event The next event to inject
*/
static enum pios_radio_event radio_txData(struct pios_rfm22b_dev *radio_dev)
{
enum pios_radio_event ret_event = RADIO_EVENT_NUM_EVENTS;
pios_rfm22b_int_result res = PIOS_RFM22B_ProcessTx((uint32_t)radio_dev);
// Is the transmition complete
if (res == PIOS_RFM22B_TX_COMPLETE) {
radio_dev->stats.tx_byte_count += PH_PACKET_SIZE(radio_dev->tx_packet);
radio_dev->tx_complete_ticks = xTaskGetTickCount();
// Is this an ACK?
bool is_ack = (radio_dev->tx_packet->header.type == PACKET_TYPE_ACK);
ret_event = RADIO_EVENT_RX_MODE;
if (is_ack) {
// If this is an ACK for a connection request message we need to
// configure this modem from the connection request message.
if (radio_dev->rx_packet.header.type == PACKET_TYPE_CON_REQUEST) {
rfm22_setConnectionParameters(radio_dev);
}
} else if ((radio_dev->tx_packet->header.type != PACKET_TYPE_NACK) && (radio_dev->tx_packet->header.type != PACKET_TYPE_PPM) &&
(radio_dev->tx_packet->header.type != PACKET_TYPE_STATUS) && (radio_dev->tx_packet->header.type != PACKET_TYPE_PPM)) {
// We need to wait for an ACK if this packet it not an ACK, NACK, or PPM.
radio_dev->prev_tx_packet = radio_dev->tx_packet;
}
radio_dev->tx_packet = 0;
radio_dev->tx_data_wr = radio_dev->tx_data_rd = 0;
// Start a new transaction
radio_dev->packet_start_ticks = 0;
#ifdef PIOS_RFM22B_DEBUG_ON_TELEM
D1_LED_OFF;
#endif
}
return ret_event;
}
/**
* Switch the radio into receive mode.
*
* @param[in] rfm22b_dev The device structure
* @return enum pios_radio_event The next event to inject
*/
static enum pios_radio_event radio_setRxMode(struct pios_rfm22b_dev *rfm22b_dev)
{
if (!PIOS_RFM22B_ReceivePacket((uint32_t)rfm22b_dev, &(rfm22b_dev->rx_packet))) {
return RADIO_EVENT_NUM_EVENTS;
}
rfm22b_dev->packet_start_ticks = 0;
// No event generated
return RADIO_EVENT_NUM_EVENTS;
}
/**
* Complete the receipt of a packet.
*
* @param[in] radio_dev The device structure
* @param[in] p The packet handle of the received packet.
* @param[in] rc_len The number of bytes received.
* @return enum pios_radio_event The next event to inject
*/
static enum pios_radio_event radio_receivePacket(struct pios_rfm22b_dev *radio_dev, PHPacketHandle p, uint16_t rx_len)
{
portTickType curTicks = xTaskGetTickCount();
// Attempt to correct any errors in the packet.
decode_data((unsigned char*)p, rx_len);
bool good_packet = check_syndrome() == 0;
bool corrected_packet = false;
// We have an error. Try to correct it.
if(!good_packet && (correct_errors_erasures((unsigned char*)p, rx_len, 0, 0) != 0)) {
// We corrected it
corrected_packet = true;
}
// Set the packet status
if (good_packet) {
rfm22b_add_rx_status(radio_dev, RADIO_GOOD_RX_PACKET);
} else if(corrected_packet) {
// We corrected the error.
rfm22b_add_rx_status(radio_dev, RADIO_CORRECTED_RX_PACKET);
} else {
// We couldn't correct the error, so drop the packet.
rfm22b_add_rx_status(radio_dev, RADIO_ERROR_RX_PACKET);
}
enum pios_radio_event ret_event = RADIO_EVENT_RX_COMPLETE;
if (good_packet || corrected_packet) {
switch (p->header.type) {
case PACKET_TYPE_STATUS:
ret_event = RADIO_EVENT_STATUS_RECEIVED;
// Send a connection request message if we're not connected, and this is a status message from a modem that we're bound to.
if (radio_dev->coordinator && !rfm22_isConnected(radio_dev)) {
PHStatusPacketHandle status = (PHStatusPacketHandle)&(radio_dev->rx_packet);
uint32_t source_id = status->source_id;
for (uint8_t i = 0; OPLINKSETTINGS_BINDINGS_NUMELEM; ++i) {
if (radio_dev->bindings[i].pairID == source_id) {
radio_dev->cur_binding = i;
ret_event = RADIO_EVENT_REQUEST_CONNECTION;
break;
}
}
}
break;
case PACKET_TYPE_CON_REQUEST:
ret_event = RADIO_EVENT_CONNECTION_REQUESTED;
break;
case PACKET_TYPE_DATA:
{
// Send the data to the com port
bool rx_need_yield;
if (radio_dev->rx_in_cb)
(radio_dev->rx_in_cb)(radio_dev->rx_in_context, p->data, p->header.data_size, NULL, &rx_need_yield);
break;
}
case PACKET_TYPE_DUPLICATE_DATA:
break;
case PACKET_TYPE_ACK:
ret_event = RADIO_EVENT_PACKET_ACKED;
break;
case PACKET_TYPE_NACK:
ret_event = RADIO_EVENT_PACKET_NACKED;
break;
case PACKET_TYPE_PPM:
{
#if defined(PIOS_INCLUDE_GCSRCVR) || (defined(PIOS_INCLUDE_PPM_OUT) && defined(PIOS_PPM_OUTPUT)) || defined(PIOS_INCLUDE_RFM22B_RCVR)
PHPpmPacketHandle ppmp = (PHPpmPacketHandle)p;
#if defined(PIOS_INCLUDE_GCSRCVR) || (defined(PIOS_INCLUDE_PPM_OUT) && defined(PIOS_PPM_OUTPUT))
bool ppm_output = false;
#endif
#endif
#if defined(PIOS_INCLUDE_RFM22B_RCVR)
ppm_output = true;
radio_dev->ppm_fresh = true;
for (uint8_t i = 0; i < PIOS_RFM22B_RCVR_MAX_CHANNELS; ++i) {
radio_dev->ppm_channel[i] = ppmp->channels[i];
}
#endif
#if defined(PIOS_INCLUDE_PPM_OUT) && defined(PIOS_PPM_OUTPUT)
if (PIOS_PPM_OUTPUT) {
ppm_output = true;
for (uint8_t i = 0; i < PIOS_RFM22B_RCVR_MAX_CHANNELS; ++i) {
PIOS_PPM_OUT_Set(PIOS_PPM_OUTPUT, i, ppmp->channels[i]);
}
}
#endif
#if defined(PIOS_INCLUDE_GCSRCVR)
if (!ppm_output) {
GCSReceiverData gcsRcvr;
for (uint8_t i = 0; (i < PIOS_RFM22B_RCVR_MAX_CHANNELS) && (i < GCSRECEIVER_CHANNEL_NUMELEM); ++i) {
gcsRcvr.Channel[i] = ppmp->channels[i];
}
GCSReceiverSet(&gcsRcvr);
}
#endif
break;
}
default:
break;
}
uint16_t seq_num = radio_dev->rx_packet.header.seq_num;
if (rfm22_isConnected(radio_dev)) {
// Adjust the clock syncronization if this is the remote modem.
// The coordinator sends the time that the previous packet was finised transmitting,
// which should match the time that the last packet was received.
uint16_t prev_seq_num = radio_dev->stats.rx_seq;
if (seq_num == (prev_seq_num + 1)) {
portTickType local_rx_time = radio_dev->rx_complete_ticks;
portTickType remote_tx_time = radio_dev->rx_packet.header.prev_tx_time;
radio_dev->time_delta = remote_tx_time - local_rx_time;
} else if (seq_num > prev_seq_num) {
// Add any missed packets into the stats.
uint16_t missed_packets = seq_num - prev_seq_num - 1;
radio_dev->stats.rx_missed += missed_packets;
}
}
// Update the sequence number
radio_dev->stats.rx_seq = seq_num;
} else {
ret_event = RADIO_EVENT_RX_COMPLETE;
}
// Log the time that the packet was received.
radio_dev->rx_complete_ticks = curTicks;
if (radio_dev->rx_complete_ticks == 0)
radio_dev->rx_complete_ticks = 1;
return ret_event;
}
/**
* Receive the packet data.
*
* @param[in] rfm22b_dev The device structure
* @return enum pios_radio_event The next event to inject
*/
static enum pios_radio_event radio_rxData(struct pios_rfm22b_dev *radio_dev)
{
enum pios_radio_event ret_event = RADIO_EVENT_NUM_EVENTS;
pios_rfm22b_int_result res = PIOS_RFM22B_ProcessRx((uint32_t)radio_dev);
switch (res) {
case PIOS_RFM22B_RX_COMPLETE:
// Receive the packet.
ret_event = radio_receivePacket(radio_dev, radio_dev->rx_packet_handle, radio_dev->rx_buffer_wr);
radio_dev->rx_buffer_wr = 0;
#ifdef PIOS_RFM22B_DEBUG_ON_TELEM
D2_LED_OFF;
#endif
// Start a new transaction
radio_dev->packet_start_ticks = 0;
break;
case PIOS_RFM22B_INT_FAILURE:
ret_event = RADIO_EVENT_RX_MODE;
break;
default:
// do nothing.
break;
}
return ret_event;
}
/*****************************************************************************
* Packet Transmition Functions
*****************************************************************************/
/**
* Send a radio status message.
*
* @param[in] rfm22b_dev The device structure
*/
static void rfm22_sendStatus(struct pios_rfm22b_dev *rfm22b_dev)
{
// Don't send if a status is already queued.
if (rfm22b_dev->send_status) {
return;
}
// Update the link quality metric.
rfm22_calculateLinkQuality(rfm22b_dev);
// Queue the status message
if (rfm22_isConnected(rfm22b_dev)) {
rfm22b_dev->status_packet.header.destination_id = rfm22b_dev->destination_id;
} else if (rfm22b_dev->coordinator) {
return;
} else {
rfm22b_dev->status_packet.header.destination_id = 0xffffffff; // Broadcast
}
rfm22b_dev->status_packet.header.type = PACKET_TYPE_STATUS;
rfm22b_dev->status_packet.header.data_size = PH_STATUS_DATA_SIZE(&(rfm22b_dev->status_packet));
rfm22b_dev->status_packet.source_id = rfm22b_dev->deviceID;
rfm22b_dev->status_packet.link_quality = rfm22b_dev->stats.link_quality;
rfm22b_dev->status_packet.received_rssi = rfm22b_dev->rssi_dBm;
rfm22b_dev->send_status = true;
return;
}
/**
* Send a PPM packet.
*
* @param[in] rfm22b_dev The device structure
*/
static void rfm22_sendPPM(__attribute__((unused)) struct pios_rfm22b_dev *rfm22b_dev)
{
#ifdef PIOS_PPM_RECEIVER
// Only send PPM if we're connected
if (!rfm22_isConnected(rfm22b_dev)) {
return;
}
// Just return if the PPM receiver is not configured.
if (PIOS_PPM_RECEIVER == 0) {
return;
}
// See if we have any valid channels.
bool valid_input_detected = false;
for (uint8_t i = 0; i < PIOS_PPM_NUM_INPUTS; ++i) {
rfm22b_dev->ppm_packet.channels[i] = PIOS_RCVR_Read(PIOS_PPM_RECEIVER, i + 1);
if((rfm22b_dev->ppm_packet.channels[i] != PIOS_RCVR_INVALID) && (rfm22b_dev->ppm_packet.channels[i] != PIOS_RCVR_TIMEOUT))
valid_input_detected = true;
}
// Send the PPM packet if it's valid
if (valid_input_detected) {
rfm22b_dev->ppm_packet.header.destination_id = rfm22b_dev->destination_id;
rfm22b_dev->ppm_packet.header.type = PACKET_TYPE_PPM;
rfm22b_dev->ppm_packet.header.data_size = PH_PPM_DATA_SIZE(&(rfm22b_dev->ppm_packet));
rfm22b_dev->send_ppm = true;
}
#endif
}
/**
* Send an ACK to a received packet.
*
* @param[in] rfm22b_dev The device structure
* @return enum pios_radio_event The next event to inject
*/
static enum pios_radio_event rfm22_sendAck(struct pios_rfm22b_dev *rfm22b_dev)
{
// We don't ACK PPM or status packets.
if ((rfm22b_dev->rx_packet.header.type != PACKET_TYPE_PPM) && (rfm22b_dev->rx_packet.header.type != PACKET_TYPE_STATUS)) {
PHAckNackPacketHandle aph = (PHAckNackPacketHandle)(&(rfm22b_dev->ack_nack_packet));
aph->header.destination_id = rfm22b_dev->destination_id;
aph->header.type = PACKET_TYPE_ACK;
aph->header.data_size = PH_ACK_NACK_DATA_SIZE(aph);
rfm22b_dev->tx_packet = (PHPacketHandle)aph;
}
return RADIO_EVENT_TX_START;
}
/**
* Send an NACK to a received packet.
*
* @param[in] rfm22b_dev The device structure
* @return enum pios_radio_event The next event to inject
*/
static enum pios_radio_event rfm22_sendNack(struct pios_rfm22b_dev *rfm22b_dev)
{
PHAckNackPacketHandle aph = (PHAckNackPacketHandle)(&(rfm22b_dev->ack_nack_packet));
aph->header.destination_id = rfm22b_dev->destination_id;
aph->header.type = PACKET_TYPE_NACK;
aph->header.data_size = PH_ACK_NACK_DATA_SIZE(aph);
rfm22b_dev->tx_packet = (PHPacketHandle)aph;
return RADIO_EVENT_TX_START;
}
/**
* Send a connection request message.
*
* @param[in] rfm22b_dev The device structure
* @return enum pios_radio_event The next event to inject
*/
static enum pios_radio_event rfm22_requestConnection(struct pios_rfm22b_dev *rfm22b_dev)
{
PHConnectionPacketHandle cph = &(rfm22b_dev->con_packet);
// Set our connection state to requesting connection.
rfm22b_dev->stats.link_state = OPLINKSTATUS_LINKSTATE_CONNECTING;
// Fill in the connection request
rfm22b_dev->destination_id = rfm22b_dev->bindings[rfm22b_dev->cur_binding].pairID;
cph->header.destination_id = rfm22b_dev->destination_id;
cph->header.type = PACKET_TYPE_CON_REQUEST;
cph->header.data_size = PH_CONNECTION_DATA_SIZE(&(rfm22b_dev->con_packet));
cph->source_id = rfm22b_dev->deviceID;
cph->status_rx_time = rfm22b_dev->rx_complete_ticks;
cph->main_port = rfm22b_dev->bindings[rfm22b_dev->cur_binding].main_port;
cph->flexi_port = rfm22b_dev->bindings[rfm22b_dev->cur_binding].flexi_port;
cph->vcp_port = rfm22b_dev->bindings[rfm22b_dev->cur_binding].vcp_port;
cph->com_speed = rfm22b_dev->bindings[rfm22b_dev->cur_binding].com_speed;
rfm22b_dev->send_connection_request = true;
rfm22b_dev->prev_tx_packet = NULL;
return RADIO_EVENT_TX_START;
}
/*****************************************************************************
* Packet Receipt Functions
*****************************************************************************/
/**
* Receive an ACK.
*
* @param[in] rfm22b_dev The device structure
* @return enum pios_radio_event The next event to inject
*/
static enum pios_radio_event rfm22_receiveAck(struct pios_rfm22b_dev *rfm22b_dev)
{
PHPacketHandle prev = rfm22b_dev->prev_tx_packet;
// Clear the previous TX packet.
rfm22b_dev->prev_tx_packet = NULL;
// Was this a connection request?
switch (prev->header.type) {
case PACKET_TYPE_CON_REQUEST:
rfm22_setConnectionParameters(rfm22b_dev);
break;
case PACKET_TYPE_DATA:
rfm22b_dev->data_packet.header.data_size = 0;
break;
}
// Should we try to start another TX?
return RADIO_EVENT_TX_START;
}
/**
* Receive an MACK.
*
* @param[in] rfm22b_dev The device structure
* @return enum pios_radio_event The next event to inject
*/
static enum pios_radio_event rfm22_receiveNack(struct pios_rfm22b_dev *rfm22b_dev)
{
// Resend the previous TX packet.
rfm22b_dev->tx_packet = rfm22b_dev->prev_tx_packet;
rfm22b_dev->prev_tx_packet = NULL;
// Increment the reset packet counter if we're connected.
if (rfm22_isConnected(rfm22b_dev)) {
rfm22b_add_rx_status(rfm22b_dev, RADIO_RESENT_TX_PACKET);
}
return RADIO_EVENT_TX_START;
}
/**
* Receive a status packet
*
* @param[in] rfm22b_dev The device structure
* @return enum pios_radio_event The next event to inject
*/
static enum pios_radio_event rfm22_receiveStatus(struct pios_rfm22b_dev *rfm22b_dev)
{
PHStatusPacketHandle status = (PHStatusPacketHandle)&(rfm22b_dev->rx_packet);
int8_t rssi = rfm22b_dev->rssi_dBm;
int8_t afc = rfm22b_dev->afc_correction_Hz;
uint32_t id = status->source_id;
// Have we seen this device recently?
bool found = false;
uint8_t id_idx = 0;
for ( ; id_idx < OPLINKSTATUS_PAIRIDS_NUMELEM; ++id_idx) {
if(rfm22b_dev->pair_stats[id_idx].pairID == id) {
found = true;
break;
}
}
// If we have seen it, update the RSSI and reset the last contact couter
if(found) {
rfm22b_dev->pair_stats[id_idx].rssi = rssi;
rfm22b_dev->pair_stats[id_idx].afc_correction = afc;
rfm22b_dev->pair_stats[id_idx].lastContact = 0;
// If we haven't seen it, find a slot to put it in.
} else {
uint8_t min_idx = 0;
int8_t min_rssi = rfm22b_dev->pair_stats[0].rssi;
for (id_idx = 1; id_idx < OPLINKSTATUS_PAIRIDS_NUMELEM; ++id_idx) {
if(rfm22b_dev->pair_stats[id_idx].rssi < min_rssi) {
min_rssi = rfm22b_dev->pair_stats[id_idx].rssi;
min_idx = id_idx;
}
}
rfm22b_dev->pair_stats[min_idx].pairID = id;
rfm22b_dev->pair_stats[min_idx].rssi = rssi;
rfm22b_dev->pair_stats[min_idx].afc_correction = afc;
rfm22b_dev->pair_stats[min_idx].lastContact = 0;
}
return RADIO_EVENT_RX_COMPLETE;
}
/*****************************************************************************
* Link Statistics Functions
*****************************************************************************/
/**
* Calculate the link quality from the packet receipt, tranmittion statistics.
*
* @param[in] rfm22b_dev The device structure
*/
static void rfm22_calculateLinkQuality(struct pios_rfm22b_dev *rfm22b_dev)
{
// Add the RX packet statistics
rfm22b_dev->stats.rx_good = 0;
rfm22b_dev->stats.rx_corrected = 0;
rfm22b_dev->stats.rx_error = 0;
rfm22b_dev->stats.tx_resent = 0;
for (uint8_t i = 0; i < RFM22B_RX_PACKET_STATS_LEN; ++i) {
uint32_t val = rfm22b_dev->rx_packet_stats[i];
for (uint8_t j = 0; j < 16; ++j) {
switch ((val >> (j * 2)) & 0x3) {
case RADIO_GOOD_RX_PACKET:
rfm22b_dev->stats.rx_good++;
break;
case RADIO_CORRECTED_RX_PACKET:
rfm22b_dev->stats.rx_corrected++;
break;
case RADIO_ERROR_RX_PACKET:
rfm22b_dev->stats.rx_error++;
break;
case RADIO_RESENT_TX_PACKET:
rfm22b_dev->stats.tx_resent++;
break;
}
}
}
// Calculate the link quality metric, which is related to the number of good packets in relation to the number of bad packets.
// Note: This assumes that the number of packets sampled for the stats is 64.
// Using this equation, error and resent packets are counted as -2, and corrected packets are counted as -1.
// The range is 0 (all error or resent packets) to 128 (all good packets).
rfm22b_dev->stats.link_quality = 64 + rfm22b_dev->stats.rx_good - rfm22b_dev->stats.rx_error - rfm22b_dev->stats.tx_resent;
}
/**
* Add a status value to the RX packet status array.
*
* @param[in] rfm22b_dev The device structure
* @param[in] status The packet status value
*/
static void rfm22b_add_rx_status(struct pios_rfm22b_dev *rfm22b_dev, enum pios_rfm22b_rx_packet_status status)
{
// Shift the status registers
for (uint8_t i = RFM22B_RX_PACKET_STATS_LEN - 1; i > 0; --i) {
rfm22b_dev->rx_packet_stats[i] = (rfm22b_dev->rx_packet_stats[i] << 2) | (rfm22b_dev->rx_packet_stats[i - 1] >> 30);
}
rfm22b_dev->rx_packet_stats[0] = (rfm22b_dev->rx_packet_stats[0] << 2) | status;
}
/*****************************************************************************
* Connection Handling Functions
*****************************************************************************/
/**
* Are we connected to the remote modem?
*
* @param[in] rfm22b_dev The device structure
*/
static bool rfm22_isConnected(struct pios_rfm22b_dev *rfm22b_dev)
{
return (rfm22b_dev->stats.link_state == OPLINKSTATUS_LINKSTATE_CONNECTED);
}
/**
* Set the connection parameters from a connection request message.
*
* @param[in] rfm22b_dev The device structure
*/
static void rfm22_setConnectionParameters(struct pios_rfm22b_dev *rfm22b_dev)
{
PHConnectionPacketHandle cph = &(rfm22b_dev->con_packet);
// Set our connection state to connected
rfm22b_dev->stats.link_state = OPLINKSTATUS_LINKSTATE_CONNECTED;
// Call the com port configuration function
if (rfm22b_dev->com_config_cb) {
rfm22b_dev->com_config_cb(cph->main_port, cph->flexi_port, cph->vcp_port, cph->com_speed,
cph->min_frequency, cph->max_frequency, cph->channel_spacing);
}
// Configure this modem from the connection request message.
rfm22_setNominalCarrierFrequency(rfm22b_dev, cph->min_frequency, cph->max_frequency, cph->channel_spacing);
pios_rfm22_setDatarate(rfm22b_dev, rfm22b_dev->datarate, true);
}
/**
* Accept a connection request.
*
* @param[in] rfm22b_dev The device structure
* @return enum pios_radio_event The next event to inject
*/
static enum pios_radio_event rfm22_acceptConnection(struct pios_rfm22b_dev *rfm22b_dev)
{
// Set our connection state to connected
rfm22b_dev->stats.link_state = OPLINKSTATUS_LINKSTATE_CONNECTED;
// Copy the connection packet
PHConnectionPacketHandle cph = (PHConnectionPacketHandle)(&(rfm22b_dev->rx_packet));
PHConnectionPacketHandle lcph = (PHConnectionPacketHandle)(&(rfm22b_dev->con_packet));
memcpy((uint8_t*)lcph, (uint8_t*)cph, PH_PACKET_SIZE((PHPacketHandle)cph));
// Set the destination ID to the source of the connection request message.
rfm22b_dev->destination_id = cph->source_id;
// The remote modem sets the time delta between the two modems using the differene between the clock
// on the local modem when it sent the status packet and the time on the coordinator modem when it was received.
portTickType local_tx_time = rfm22b_dev->tx_complete_ticks;
portTickType remote_rx_time = cph->status_rx_time;
rfm22b_dev->time_delta = remote_rx_time - local_tx_time;
return RADIO_EVENT_DEFAULT;
}
/*****************************************************************************
* Frequency Hopping Functions
*****************************************************************************/
/**
* Return the extimated current clock ticks count on the coordinator modem.
* This is the master clock used for all synchronization.
*
* @param[in] rfm22b_dev The device structure
*/
static portTickType rfm22_coordinatorTime(struct pios_rfm22b_dev *rfm22b_dev, portTickType ticks)
{
if (rfm22b_dev->coordinator) {
return ticks;
}
return ticks + rfm22b_dev->time_delta;
}
/**
* Return true if this modem is in the send interval, which allows the modem to initiate a transmit.
*
* @param[in] rfm22b_dev The device structure
*/
static bool rfm22_timeToSend(struct pios_rfm22b_dev *rfm22b_dev)
{
portTickType time = rfm22_coordinatorTime(rfm22b_dev, xTaskGetTickCount());
// Divide time into 8ms blocks. Coordinator sends in firs 2 ms, and remote send in 5th and 6th ms.
bool tts = (rfm22b_dev->coordinator) ? ((time & 0x06) == 0) : (((time + 4) & 0x06) == 0);
// Noone starts a transmit just prior to a channel change.
return tts && ((time & 0x7e) < 0x7b);
}
/**
* Calculate what the current channel shold be.
*
* @param[in] rfm22b_dev The device structure
*/
static uint8_t rfm22_calcChannel(struct pios_rfm22b_dev *rfm22b_dev)
{
portTickType time = rfm22_coordinatorTime(rfm22b_dev, xTaskGetTickCount());
// We change channels every 128 ms.
uint16_t n = (time >> 7) & 0xffff;
// The channel is calculated using the 16 bit CRC as the pseudo random number generator.
n = PIOS_CRC16_updateByte(n, 0);
float num_channels = rfm22b_dev->num_channels;
return (uint8_t)(num_channels * (float)n / (float)0xffff);
}
/**
* Change channels to the calculated current channel.
*
* @param[in] rfm22b_dev The device structure
*/
static bool rfm22_changeChannel(struct pios_rfm22b_dev *rfm22b_dev)
{
if (rfm22_isConnected(rfm22b_dev)) {
return rfm22_setFreqHopChannel(rfm22b_dev, rfm22_calcChannel(rfm22b_dev));
}
return false;
}
/*****************************************************************************
* Error Handling Functions
*****************************************************************************/
/**
* Recover from a transmit failure.
*
* @param[in] rfm22b_dev The device structure
* @return enum pios_radio_event The next event to inject
*/
static enum pios_radio_event rfm22_txFailure(struct pios_rfm22b_dev *rfm22b_dev)
{
rfm22b_dev->stats.tx_failure++;
rfm22b_dev->packet_start_ticks = 0;
rfm22b_dev->tx_data_wr = rfm22b_dev->tx_data_rd = 0;
return RADIO_EVENT_TX_START;
}
/**
* Recover from a timeout event.
*
* @param[in] rfm22b_dev The device structure
* @return enum pios_radio_event The next event to inject
*/
static enum pios_radio_event rfm22_timeout(struct pios_rfm22b_dev *rfm22b_dev)
{
rfm22b_dev->stats.timeouts++;
rfm22b_dev->packet_start_ticks = 0;
// Release the Tx packet if it's set.
if (rfm22b_dev->tx_packet != 0) {
rfm22b_dev->tx_data_rd = rfm22b_dev->tx_data_wr = 0;
}
rfm22b_dev->rfm22b_state = RFM22B_STATE_TRANSITION;
rfm22b_dev->rx_buffer_wr = 0;
TX_LED_OFF;
RX_LED_OFF;
#ifdef PIOS_RFM22B_DEBUG_ON_TELEM
D1_LED_OFF;
D2_LED_OFF;
D3_LED_OFF;
D4_LED_OFF;
#endif
return RADIO_EVENT_RX_MODE;
}
/**
* Recover from a severe error.
*
* @param[in] rfm22b_dev The device structure
* @return enum pios_radio_event The next event to inject
*/
static enum pios_radio_event rfm22_error(struct pios_rfm22b_dev *rfm22b_dev)
{
rfm22b_dev->stats.resets++;
rfm22_clearLEDs();
return RADIO_EVENT_INITIALIZE;
}
/**
* A fatal error has occured in the state machine.
* this should not happen.
*
* @parem [in] rfm22b_dev The device structure
* @return enum pios_radio_event The next event to inject
*/
static enum pios_radio_event rfm22_fatal_error(__attribute__((unused)) struct pios_rfm22b_dev *rfm22b_dev)
{
// RF module error .. flash the LED's
rfm22_clearLEDs();
for(unsigned int j = 0; j < 16; j++) {
USB_LED_ON;
LINK_LED_ON;
RX_LED_OFF;
TX_LED_OFF;
PIOS_DELAY_WaitmS(200);
USB_LED_OFF;
LINK_LED_OFF;
RX_LED_ON;
TX_LED_ON;
PIOS_DELAY_WaitmS(200);
}
PIOS_DELAY_WaitmS(1000);
PIOS_Assert(0);
return RADIO_EVENT_FATAL_ERROR;
}
/*****************************************************************************
* Utility Functions
*****************************************************************************/
/**
* Calculate the time difference between the start time and end time.
* Times are in ticks. Also handles rollover.
*
* @param[in] start_time The start time in ticks.
* @param[in] end_time The end time in ticks.
*/
static uint32_t pios_rfm22_time_difference_ms(portTickType start_time, portTickType end_time)
{
if(end_time >= start_time) {
return (end_time - start_time) * portTICK_RATE_MS;
}
// Rollover
return ((portMAX_DELAY - start_time) + end_time) * portTICK_RATE_MS;
}
/**
* Allocate the device structure
*/
#if defined(PIOS_INCLUDE_FREERTOS)
static struct pios_rfm22b_dev *pios_rfm22_alloc(void)
{
struct pios_rfm22b_dev * rfm22b_dev;
rfm22b_dev = (struct pios_rfm22b_dev *)pvPortMalloc(sizeof(*rfm22b_dev));
rfm22b_dev->spi_id = 0;
if (!rfm22b_dev) {
return NULL;
}
rfm22b_dev->magic = PIOS_RFM22B_DEV_MAGIC;
return(rfm22b_dev);
}
#else
static struct pios_rfm22b_dev pios_rfm22b_devs[PIOS_RFM22B_MAX_DEVS];
static uint8_t pios_rfm22b_num_devs;
static struct pios_rfm22b_dev *pios_rfm22_alloc(void)
{
struct pios_rfm22b_dev * rfm22b_dev;
if (pios_rfm22b_num_devs >= PIOS_RFM22B_MAX_DEVS) {
return NULL;
}
rfm22b_dev = &pios_rfm22b_devs[pios_rfm22b_num_devs++];
rfm22b_dev->magic = PIOS_RFM22B_DEV_MAGIC;
return (rfm22b_dev);
}
#endif
/**
* Turn off all of the LEDs
*/
static void rfm22_clearLEDs(void) {
LINK_LED_OFF;
RX_LED_OFF;
TX_LED_OFF;
#ifdef PIOS_RFM22B_DEBUG_ON_TELEM
D1_LED_OFF;
D2_LED_OFF;
D3_LED_OFF;
D4_LED_OFF;
#endif
}
/*****************************************************************************
* SPI Read/Write Functions
*****************************************************************************/
/**
* Assert the chip select line.
*
* @param[in] rfm22b_dev The RFM22B device.
*/
static void rfm22_assertCs(struct pios_rfm22b_dev *rfm22b_dev)
{
PIOS_DELAY_WaituS(1);
if(rfm22b_dev->spi_id != 0) {
PIOS_SPI_RC_PinSet(rfm22b_dev->spi_id, rfm22b_dev->slave_num, 0);
}
}
/**
* Deassert the chip select line.
*
* @param[in] rfm22b_dev The RFM22B device structure pointer.
*/
static void rfm22_deassertCs(struct pios_rfm22b_dev *rfm22b_dev)
{
if(rfm22b_dev->spi_id != 0) {
PIOS_SPI_RC_PinSet(rfm22b_dev->spi_id, rfm22b_dev->slave_num, 1);
}
}
/**
* Claim the SPI bus.
*
* @param[in] rfm22b_dev The RFM22B device structure pointer.
*/
static void rfm22_claimBus(struct pios_rfm22b_dev *rfm22b_dev)
{
if(rfm22b_dev->spi_id != 0) {
PIOS_SPI_ClaimBus(rfm22b_dev->spi_id);
}
}
/**
* Release the SPI bus.
*
* @param[in] rfm22b_dev The RFM22B device structure pointer.
*/
static void rfm22_releaseBus(struct pios_rfm22b_dev *rfm22b_dev)
{
if(rfm22b_dev->spi_id != 0) {
PIOS_SPI_ReleaseBus(rfm22b_dev->spi_id);
}
}
/**
* Claim the semaphore and write a byte to a register
*
* @param[in] rfm22b_dev The RFM22B device.
* @param[in] addr The address to write to
* @param[in] data The datat to write to that address
*/
static void rfm22_write_claim(struct pios_rfm22b_dev *rfm22b_dev, uint8_t addr, uint8_t data)
{
rfm22_claimBus(rfm22b_dev);
rfm22_assertCs(rfm22b_dev);
uint8_t buf[2] = {addr | 0x80, data};
PIOS_SPI_TransferBlock(rfm22b_dev->spi_id, buf, NULL, sizeof(buf), NULL);
rfm22_deassertCs(rfm22b_dev);
rfm22_releaseBus(rfm22b_dev);
}
/**
* Write a byte to a register without claiming the semaphore
*
* @param[in] rfm22b_dev The RFM22B device.
* @param[in] addr The address to write to
* @param[in] data The datat to write to that address
*/
static void rfm22_write(struct pios_rfm22b_dev *rfm22b_dev, uint8_t addr, uint8_t data)
{
rfm22_assertCs(rfm22b_dev);
uint8_t buf[2] = {addr | 0x80, data};
PIOS_SPI_TransferBlock(rfm22b_dev->spi_id, buf, NULL, sizeof(buf), NULL);
rfm22_deassertCs(rfm22b_dev);
}
/**
* Read a byte from an RFM22b register without claiming the bus
*
* @param[in] rfm22b_dev The RFM22B device structure pointer.
* @param[in] addr The address to read from
* @return Returns the result of the register read
*/
static uint8_t rfm22_read(struct pios_rfm22b_dev *rfm22b_dev, uint8_t addr)
{
uint8_t out[2] = {addr & 0x7F, 0xFF};
uint8_t in[2];
rfm22_assertCs(rfm22b_dev);
PIOS_SPI_TransferBlock(rfm22b_dev->spi_id, out, in, sizeof(out), NULL);
rfm22_deassertCs(rfm22b_dev);
return in[1];
}
#endif /* PIOS_INCLUDE_RFM22B */
/**
* @}
* @}
*/