lost. Warning though: it takes ~5-10 seconds for the flight telemetry status
to go from connected so this solution still isn't great.
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@2070 ebee16cc-31ac-478f-84a7-5cbb03baadba
fly (EKF rate up to a limit). Also, now the algorithm selects if you are
indoor or outdoor as well as if you use a mag indoor (if you do set the z
variance higher than it calibrates to).
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@1841 ebee16cc-31ac-478f-84a7-5cbb03baadba
Flight: Create PositionDesired (the active waypoint) UAVObject and make the FlightSituationActual no update since it not used.
Flight: New velocity desired object that passes information between the look computing the desired velocity and the PID loop to get it (updated at different rates)
UAVObjects/PositionActual: Remove unused GPS fields
UAVObjects/PositionActual VelocityActual: Split the velocity into a separate object. ALso make sure all the information telemetered around is in cm to avoid using floats.
UAVObject/GuidanceSettings: New guidance settings object for the guidance module
Flight/Posix: Add the new objects to the Posix sim
Flight/Guidance: Computes a desired velocity based on position error than runs a PID loop to control roll and pitch to achieve that velocity. All distances are in cm, and updated the PositionActual fields to reflect this and use int32.
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@1760 ebee16cc-31ac-478f-84a7-5cbb03baadba
Calibration should take less time now too (using second moments to estimate
variance in one pass). Now need to change to multiple messages to get the
calibration in to keep the request message size minimal. Also currently
running sensor calibrate doesn't store the gyro bias so if you want to use this
you'll have to tweak it manually. I'll fix that step tomorrow.
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@1741 ebee16cc-31ac-478f-84a7-5cbb03baadba
1. Added reenumeration function and call it on USB init (device will appear after reprogramming now)
2. Moved buffer.c to general flight/Libraries location
3. Removed the 62 byte transmission limitation by adding a transmission buffer
4. Sped up USB communication by increasing endpoint polling frequency
Note, that the nonblocking and blocking USB send functions are not blocking entirely correcting. The blocking calls the nonblocking, and the nonblocking blocks until the last chunk has started tranmission if it's a big transmission. The buffering I added would generalize to non-blocking nicely, but would require using the EP1(IN) callback to handle most of the tranmission. This creates a lot of issues if one function is pushing data onto the buffer and the interrupt is sending.
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@1403 ebee16cc-31ac-478f-84a7-5cbb03baadba
into NED reference frame and used in the INSGPS algorithm, although currently this
information isn't propagated back to OP. Data structures related to the GPS position
into the algorithm and the position estimate out will likely be in flux.
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@1334 ebee16cc-31ac-478f-84a7-5cbb03baadba
Eclipse Workspace:
- Made project in Eclipse workspace point to trunk/flight
- Re imported launch configurations from previous version
OpenOCD
- added "ft2232_device_desc "Dual RS232-HS"" back to jtag cfg files because windows didn't like it w/o it.
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@1305 ebee16cc-31ac-478f-84a7-5cbb03baadba
The gdb init files would previously reset the target immediately
when gdb started up. This is sometimes an unpleasant side-effect
of running gdb.
In order to connect to the target, use the new "connect" function.
To reset the target use "mon reset".
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@1236 ebee16cc-31ac-478f-84a7-5cbb03baadba
1) floss-jtag.arhs.cfg
2) floss-jtag.openpilot.cfg
But the Eclipse project the "external tools configurations" for the OpenOCD Debug is looking for the "floss-jtag.cfg" file in the command line arguments. The added file "floss-jtag.cfg" is a simply a copy of "floss-jtag.openpilot.cfg". The .arhs.cfg doesn't play well by itself.
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@1129 ebee16cc-31ac-478f-84a7-5cbb03baadba
Split the floss-jtag.cfg file into separate versions
for OP and AHRS.
Push AHRS onto non-default ports for gdb, tcl and
telnet.
Update the AHRS gdb setup script to point at the new
gdb port.
Add (commented out) example sytax to support distinguishing
between multiple floss-jtag boards that don't have serial
numbers. Uses the usb bus address of each device as the
selector. See this patch posted to the openocd mailing list
for how to add this functionality to openocd:
http://lists.berlios.de/pipermail/openocd-development/2010-June/015785.html
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@755 ebee16cc-31ac-478f-84a7-5cbb03baadba