New targets:
- make blupd_all_clean
- make blupd_all
- make blupd_openpilot
- make blupd_ahrs
- make blupd_coptercontrol
- make blupd_pipxtreme
These targets are also included in the 'all_flight' target.
AHRS_comms still needs to be implemented. INS/GPS functionality still needs to be implemented. Double-check of the new drivers still needs to be done.
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@3162 ebee16cc-31ac-478f-84a7-5cbb03baadba
We where hammered on the head with interrupts that the driver does not need, not allowing the ISRs of other drivers to run
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@3018 ebee16cc-31ac-478f-84a7-5cbb03baadba
Needed to clear the NACK flag in the ISR, or the next transfers seem to get a nack too because the IRQ comes back
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@3017 ebee16cc-31ac-478f-84a7-5cbb03baadba
will need to be forward ported (and ideally pushed up stream) for FreeRTOS
updates
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@2939 ebee16cc-31ac-478f-84a7-5cbb03baadba
functions to use it easily
Conflicts:
flight/Modules/Attitude/attitude.c
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@2707 ebee16cc-31ac-478f-84a7-5cbb03baadba
The UAVObject initcall list is now automatically
generated at link time based on the exact set of
UAVObjects linked into the firmware image.
This will allow any subset of UAVObjects to be
used in any firmware image.
The uavobj_initcall() macro automatically adds the
marked function's address into the .initcalluavobj.init
ELF section.
The UAVObjectsInitializeAll() function now simply
iterates over the functions listed in the
.initcalluavobj.init section and calls them.
You can see the contents of this section in the ELF file
like this:
./tools/arm-2009q3/bin/arm-none-eabi-objdump \
--syms -j .initcalluavobj.init \
./build/openpilot/OpenPilot.elf
This is fundamentally the same mechanism that the Linux
kernel uses to initialize the specific set of components
that the user has selected in their kernel configuration.
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@2630 ebee16cc-31ac-478f-84a7-5cbb03baadba
only one CS line is asserted. No checks are enforced on this by the SPI code
as I cant see a clean way of it being aware of the CS lines. We could add
another CS mode those which is driver managed per transfer and has a GPIO i
line for each device.
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@2579 ebee16cc-31ac-478f-84a7-5cbb03baadba
Beginning of unifying the input types into PIOS_RECEIVER.
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@2568 ebee16cc-31ac-478f-84a7-5cbb03baadba
accounting for the fact they are transferred in pairs when using ADC2
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@2510 ebee16cc-31ac-478f-84a7-5cbb03baadba
1) Added nack counter monitoring
2) Made timeout for getting semaphore in I2C user space code use the one from
driver and record timeouts. This does not influence timeouts in the non
FreeRTOS case
3) Remove case block from the error handler so that all bus errors reset the
i2c interface
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@2469 ebee16cc-31ac-478f-84a7-5cbb03baadba
projects which messed up a timer on OP and serial on PipX. Now this is only
changed for AHRS. Ideally wouldn't even change for that but then ADC runs too
fast and we get a lot more CRC errors for dealing with all that data.
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@2459 ebee16cc-31ac-478f-84a7-5cbb03baadba