CRC. This wasn't the case on F1. With CRC the last byte of the buffer passed
to PIOS_SPI_TransferBlock is NOT USED. This is the case on both F1 and F2.
Also need to DeInit DMA before enabling or it doesn't enable successfully.
Finally added a timeout which sets a fail on the pios spi transfer in the case
that either of the dma channels fails to enable.
This allows the spektrum and sbus receiver drivers to bind
directly to the usart layer using a properly exported API
rather than overriding the interrupt handler.
Bytes are now pushed directly from the usart layer into the
com layer without any buffering. The com layer performs all
of the buffering.
A further benefit from this approach is that we can put all
blocking/non-blocking behaviour into the COM layer and not
in the underlying drivers.
Misc related changes:
- Remove obsolete .handler field from irq configs
- Adapt all users of PIOS_COM_* functions to new API
- Fixup callers of PIOS_USB_HID_Init()
The initial baud rates of each interface are now forced in the
board init code.
Any modules using USARTs should have fields added to
their settings object to allow the user to change the
baud rate from the default by using the COM layer APIs.
Developers requiring custom baud rates before the settings
objects are in place should locally edit the cfg structs
to specify the desired baud rates.
This should mark an end to the compile-time selection of HW
configurations.
Minor changes in board initialization for all platforms:
- Most config structs are marked static to prevent badly written
drivers from directly referring to config data.
- Adapt to changes in .irq fields in config data.
- Adapt to changes in USART IRQ handling.
Major changes in board initialization for CC:
- Use HwSettings UAVObj to decide which drivers to attach to
the "main" port and the flexi port, and select the appropriate
device configuration data.
- HwSettings allows choosing between Disabled, Telemetry, SBUS,
Spektrum,GPS, and I2C for each of the two ports.
- Use ManualControlSettings.InputMode to init/configure the
appropriate receiver module, and register its available rx channels
with the PIOS_RCVR layer. Can choose between PWM, Spektrum and PPM
at board init time. PPM driver is broken, and SBUS will work once
it is added to this UAVObj as an option.
- CC build now includes code for SBUS, Spektrum and PWM receivers in
every firmware image.
PIOS_USART driver:
- Now handles its own low-level IRQs internally
- If NULL upper-level IRQ handler is bound in at board init time
then rx/tx is satisfied by internal PIOS_USART buffered IO routines
which are (typically) attached to the COM layer.
- If an alternate upper-level IRQ handler is bound in at board init
then that handler is called and expected to clear down the USART
IRQ sources. This is used by Spektrum and SBUS drivers.
PIOS_SBUS and PIOS_SPEKTRUM drivers:
- Improved data/API hiding
- No longer assume they know where their config data is stored which
allows for boot-time alternate configurations for the driver.
- Now registers an upper-level IRQ handlerwith the USART layer to
decouple the driver from which USART it is actually attached to.
Macros for JTAG program and wipe for each target are now
provided in firmware-defs.mk.
The _wipe target for each firmware and bootloader image will
erase either the bootloader (bl_*_wipe) or firmware (fw_*_wipe)
bank.
The USE_BOOTLOADER compile flag was only being used
to determine where the ISR vector table was located.
Provide this explicitly from the linker since it knows
exactly where it is putting the ISR vector table.