This allows the GCS to emulate a receiver device via the
telemetry link.
Select "GCS" as your input type in the manualcontrol config
screen and calibrate it as normal.
Note: The expected values for the channels are in microseconds
just like a PWM or PPM input device. The channel values
are validated against minimum/maximum pulse lengths just
like normal receivers.
This allows the spektrum and sbus receiver drivers to bind
directly to the usart layer using a properly exported API
rather than overriding the interrupt handler.
Bytes are now pushed directly from the usart layer into the
com layer without any buffering. The com layer performs all
of the buffering.
A further benefit from this approach is that we can put all
blocking/non-blocking behaviour into the COM layer and not
in the underlying drivers.
Misc related changes:
- Remove obsolete .handler field from irq configs
- Adapt all users of PIOS_COM_* functions to new API
- Fixup callers of PIOS_USB_HID_Init()
Each channel was previously tracking a separate driver.
Now, channels are grouped within a channel group to save
RAM used for tracking and to better reflect how channels
are actually mapped.
Working spektrum bind routine, depending your TX try BIND_PULSES 3,5,7,9 (5 works with DX7)
Boot process takes too long on MB so bind command misses the window (20-140ms).
Also reduce heap has it does not fit in SRAM anymore (not with current compiler).
(that's ok since if there is more space available, it will be reclaimed).
Merge branch 'master' into OP-423_Mathieu_Change_Init_To_Reduce_Memory_Footprint
Conflicts:
flight/CopterControl/System/inc/pios_config.h
flight/Modules/ManualControl/manualcontrol.c
This is a port of a work-in-progress by Sambas onto
the new driver infrastructure needed for boot-time
configuration.
PPM and PWM still don't coexist in a build but this
is closer.
The initial baud rates of each interface are now forced in the
board init code.
Any modules using USARTs should have fields added to
their settings object to allow the user to change the
baud rate from the default by using the COM layer APIs.
Developers requiring custom baud rates before the settings
objects are in place should locally edit the cfg structs
to specify the desired baud rates.
This should mark an end to the compile-time selection of HW
configurations.
Minor changes in board initialization for all platforms:
- Most config structs are marked static to prevent badly written
drivers from directly referring to config data.
- Adapt to changes in .irq fields in config data.
- Adapt to changes in USART IRQ handling.
Major changes in board initialization for CC:
- Use HwSettings UAVObj to decide which drivers to attach to
the "main" port and the flexi port, and select the appropriate
device configuration data.
- HwSettings allows choosing between Disabled, Telemetry, SBUS,
Spektrum,GPS, and I2C for each of the two ports.
- Use ManualControlSettings.InputMode to init/configure the
appropriate receiver module, and register its available rx channels
with the PIOS_RCVR layer. Can choose between PWM, Spektrum and PPM
at board init time. PPM driver is broken, and SBUS will work once
it is added to this UAVObj as an option.
- CC build now includes code for SBUS, Spektrum and PWM receivers in
every firmware image.
PIOS_USART driver:
- Now handles its own low-level IRQs internally
- If NULL upper-level IRQ handler is bound in at board init time
then rx/tx is satisfied by internal PIOS_USART buffered IO routines
which are (typically) attached to the COM layer.
- If an alternate upper-level IRQ handler is bound in at board init
then that handler is called and expected to clear down the USART
IRQ sources. This is used by Spektrum and SBUS drivers.
PIOS_SBUS and PIOS_SPEKTRUM drivers:
- Improved data/API hiding
- No longer assume they know where their config data is stored which
allows for boot-time alternate configurations for the driver.
- Now registers an upper-level IRQ handlerwith the USART layer to
decouple the driver from which USART it is actually attached to.
This separates the RTC device and interrupt handling
from the devices that rely on the tick notifications.
Drivers can now register tick notification functions
that will be called on each RTC tick event.
All receivers now fall under the same driver API provided
by pios_rcvr.c.
This is part of a larger sequence of commits that will
switch the receiver selection over to boot time dynamic
configuration via UAVObjects.
The FreeRTOS IDLE task was using 512 bytes of stack.
The UAVObject Event task was also using 512 bytes of stack.
Both have been reduced, recovering 400+ bytes of heap.
Also implement some ordering (quite ugly still) in the module init and task creation order so we can decide which module to start/init first
and which module to start/init last.
This will be replaced/adapter with the uavobject list later (once it's implemented).
reserving some space for module init and task create parameters to customize module/task creation (this will be usefull once we get the list and customization from customer).
Changes have been made for OP and CC. Tested comped with CC,OP, sim_posix.
Only ran on bench with CC for couple of minutes (code increase expected but no dropping of stack which is good).
This gives task creation at the time wherethe all heap is available.
For CopterControl the following make options are available:
USE_TELEMETRY=[YES|NO|1|3] (default is YES, USART1)
USE_GPS=[YES|NO|1|3] (default is NO, USART3)
USE_SPEKTRUM=[YES|NO|1|3] (default is NO, USART3)
USE_SBUS=[YES|NO|1] (default is NO, USART1 only)
heap reamining is low (about 500) but stacks can be ajusted (specially the 200 bytes from system) to give the level close to 1Ko if needed.
Merge branch 'master' into OP-423_Mathieu_Change_Init_To_Reduce_Memory_Footprint
Conflicts:
flight/CopterControl/System/inc/FreeRTOSConfig.h
flight/CopterControl/System/inc/pios_config.h
- create linker section for those <module>Initialize()
- later this list will incorporate parameters as well. (this probably will be more a OP feature to swap/remove/delete module on the fly.
- this is not done at compile time anymore by Makefile.
- this will allow us to have control on the module start at run-time (not implemented but build the ground for it).
- this simplify the startup (Part of code re-org).
- this change does not affect sim_posix and win32 (since they don't need that)
- ensure it's compiling for PiOS.posix
- port to PiOS.win32 but not tested (not compiled)
- tested on CC
- compile on OP.
- this free ~200 bytes.
- current avalable bytes (is we keep the same remaining bytes on the stack than before) is easily passed the 1.2Ko mark on CC with new gcc (4.5.2)
- this does not include init-reorg for each module (I still think more can be freed)
It was tested being merged with OP-472_CorvusCorax_CopterControl-Guidance_v3
branch, Spektrum on USART3 and GPS on USART1 and seems to work.
Currently defaults mimic original behavior, that is, if USE_SPEKTRUM
is not defined - define USE_PWM and USE_GPS. Thsi should be refactored
later to make it configurable from the Makefile.
Also it was not ported to the OP MB: it currently does not support the
S.Bus hardware and still has original behavior with the patch. But this
is one more step to dynamic configuration of ports.
TODO: This should be dynamic in the future.
But for now define any compatile combination of:
USE_I2C (shared with USART3)
USE_TELEMETRY
USE_GPS
USE_SPEKTRUM
USE_SBUS (USART1 only, it needs an invertor)
and optionally define PIOS_PORT_* to USART port numbers
Defaults are:
#define PIOS_PORT_TELEMETRY 1
#define PIOS_PORT_GPS 3
#define PIOS_PORT_SPEKTRUM 3
#define PIOS_PORT_SBUS 1
#define USE_TELEMETRY
#define USE_GPS
Telemetry, GPS and PWM input are enabled by default.
- switch back to MSP stack before starting the scheduler so that the sheduler can use the IRQ stack (when/if needed).
- call the C portable function in heap1 to claim some stack back (the number to claim is taken from linker file).
- start the scheduler from reset vector (I move this here from main because it make sense to not go back to C (so that I don't need to copy the rolled stack in case the sheduler returns). This make it more clean.
- Also I have added the call to the mem manager if sheduler return. that way, we don't reset indefinitely if memory runs out. We will go to this handler and figure things out (right now, it's just looping but at least not rebooting. Probably trap NMI would be better (later improvement).
The part missing for this part is the weak attribute for the function in heap1.c so that we don't have to update everything with empty stub.
I think the weak atrribute for C function called in assembly is arch dependent so I am not sure if this is possible (will look into it, maybe somebody outthere nows).
Right now, it's heap1 dependent and won't work with heap2. I will clean that up the next couple of days.
I did some test and it looks good.
this is without init code re-organization so we don't free as much as we will be it's good starts.
This compile with sim_posix (since it does not affect portable code) so this is really clean.
I only tested this with CC. I will port it for OP when I will work on heap2.
- use IRQStack for ISRs (at begening of SRAM) (let's call it the irq stack)
- use end of heap for stack needed during initialization (let's call it the init stack).
- the systemStats in GCS indicate the remaining bytes in the IRQ stack (this is realy usefull to monitor our (nested) IRQs.
This is the base ground to provide as much memory as possible available at task creation time.
Next step is to re-organize the initialization in order to move all the init out of the thread's stacks onto the init stack.
This will provide as much memory as possible available at task creation time.
Basically the stack during initialization will be destroyed once the scheduler starts and dynamic alloc are made (since the init stack is at the end of the heap). We will need to make sure we don't clobber the heap during initialization otherwise this will lead to stack corruption.
When running flight software from master (cf74908), my
config was pushing the system module stack usage to within
16 bytes of its limit. This triggers a stack overflow
alarm which prevents the quad from arming/flying.
This change increases the available stack size such
that there are 72 bytes of stack free (a previously stated
safe margin) when my quad is sitting idle and unarmed on
the bench.
Macros for JTAG program and wipe for each target are now
provided in firmware-defs.mk.
The _wipe target for each firmware and bootloader image will
erase either the bootloader (bl_*_wipe) or firmware (fw_*_wipe)
bank.
The USE_BOOTLOADER compile flag was only being used
to determine where the ISR vector table was located.
Provide this explicitly from the linker since it knows
exactly where it is putting the ISR vector table.
- New macros for fw, bl and bu rules in top-level make
- Per-board info factored into make/board/*/board-info.mk
- Per-board info now shared btw. fw, bl and blupd for each board
- BOARD_TYPE, BOARD_REVISION, BOOTLOADER_VERSION, HW_TYPE
- MCU, CHIP, BOARD, MODEL, MODEL_SUFFIX
- START_OF_BL_CODE, START_OF_FW_CODE
- blupd_* goals renamed to bu_*
- all_blupd goal renamed to all_bu
- firmware goals renamed to fw_*, board name goals are preserved
- bu_*_program now writes updater to correct address for all boards
- BL updater firmware builds now produce .opf format including
version info blob.
- BL updater firmware name now includes board name.
- INS makefile brought up to date w.r.t. linker scripts
This does not affect the size of the image or the RAM
used by the firmware image. All debugging symbols are
stripped from the elf file during the conversion to a
.bin file.
This change is made up of a number of tightly coupled
changes:
- Deprecate the use of the USE_BOOTLOADER command-line
option. It is now hard-coded in each Makefile.
Overriding it on the command line is not allowed.
- Split apart the memory declaration and the section
declaration in all linker files (*_memory.ld and
*_sections.ld).
- Describe the split between bootloader and app sections
of flash in each board's _memory.ld file.
- Change program target to selectively erase flash so
that the installed bootloader is preserved across even
JTAG programming operations.
- All elf files are built with debug symbols and are not
stripped. This should help debugging with gdb. The
images programmed on the boards are all .bin files now
which do not include symbols.
The .bin.o rule places the contents of a raw .bin file
into an .o file wrapped within fixed symbols for start
and end. This can be used to embed a binary file inside
of an executable.
The symbols for the embedded binary blob are:
_binary_start
_binary_end
_binary_size
NOTE: The way the .bin.o rule is currently written, you
can only embed one binary blob in an executable since the
symbol names will collide if you add multiple blobs. This
limitation is easily removed later if necessary.
Also change AttitudeActual to update at 10Hz rather than 2 Hz. The increased bandwidth is minimal and the resulting "polish" that it adds to the look-and-feel of the GCS is signifcant.
firmware include and delete all the extra foss-jtag config files. There is now
a legacy file for the revA board a second for AHRS that changes the port
Stabilization, carries the desired rate or attitude as well as a flag on how to
intepret it.
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@2930 ebee16cc-31ac-478f-84a7-5cbb03baadba
This significantly reduces the amount of duplication
across the various firmware makefiles.
The new firmware-defs.mk file should contain only
macros/declarations that will apply to all firmware
makefiles.
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@2854 ebee16cc-31ac-478f-84a7-5cbb03baadba
order to free a timer. Mode PIOS_DELAY (not working cleanly) to TIM3 because
Spektrum resets TIM2 count.
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@2758 ebee16cc-31ac-478f-84a7-5cbb03baadba
also increase the telem queue to decrease event errors (can be reverted later if
we need the memory back)
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@2730 ebee16cc-31ac-478f-84a7-5cbb03baadba
functions to use it easily
Conflicts:
flight/Modules/Attitude/attitude.c
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@2707 ebee16cc-31ac-478f-84a7-5cbb03baadba
Putting Corvus patch back in. Need to delete uavobjects-synthetics directory
for this to work.
This reverts commit 9cd98bec8fb5e0679c625eb256a94d161a8ce345.
Conflicts:
flight/CopterControl/Makefile
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@2671 ebee16cc-31ac-478f-84a7-5cbb03baadba
2. Disable FirmareIAP module in CC (somehow causes lockups when also using vTaskDelayUntil in Attitude WTF)
3. Make the SPI bus run a little faster so we can handle the 3200 Hz from accel
while running the filter at 333 Hz
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@2664 ebee16cc-31ac-478f-84a7-5cbb03baadba
Note: This patch did not build after a clean build.
This reverts commit 7e75b5d16481a32689433c868b67916816d8b9fb.
Conflicts:
flight/CopterControl/Makefile
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@2651 ebee16cc-31ac-478f-84a7-5cbb03baadba