The exti layer now allows drivers to register interrupt callbacks
during board initialization. All details of the driver using a
particular EXTI pin have been removed from the EXTI layer so it
can now be used on any board without board-specific modification.
This includes some nice refinements provided by Mike Smith during
initial review. His original commits have been squashed into this
one.
Board specific HW configuration is now collected in a single .c
file for each board. This HW configuration is #include'd into
the FW, BL and BU builds for each board.
These new .c files are found in:
flight/board_hw_defs/<board_name>/board_hw_defs.c
Parts of this information were previously duplicated between
the BL and FW builds. This commit cleans up the duplication.
Using a #include on a .c file is a bit ugly but it allows us
to ensure that all of the symbols in the board_hw_defs.c file
are *ONLY* used in the PIOS_Board_Init() function for each
software build.
If no telemetry link is configured, this will force the board
to reset before finishing init. The BootFault logic will
catch this after 3 resets and will boot with default hwsettings
on the next reset.
This won't currently ever fire on OP though since we always
configure the serial telemetry interface. This just makes sure
the pattern is present in case anyone decides to compile without
serial telemetry.
OpenPilot platform (and thus sim too) was missed when the
DIAG_TASKS macro was broken out from the DIAGNOSTICS macro.
This allowed accesses to the TaskInfo UAVO even though it hadn't
been initialized.
Some modules are written such that they can be included
or excluded at runtime. These are added to the OPTMODULES
list in the makefile for a given board.
This change provides a mechanism to allow a build to force
a given module to be built-in (ie. always initialized)
regardless of the configuration in hwsettings.
The main use case for this is to handle a module being optional
on one platform but essential on another.
All modules added to the MODULES list in the Makefile will
automatically result in a matching #define in the form
MODULE_TheModuleName_BUILTIN
being defined in the CFLAGS for all compiled source.
Note that the capitalization of TheModuleName must match
exactly the capitalization used in the MODULES list.
This allows each device to be moved (at compile time) to a
different adapter. This is the first step to allowing devices
to be attached to different i2c adapters.
The main purpose of this new COM implementation is that it is
much simpler, and requires less code space. This takes a bit
of the pressure off of the CC bootloader which was right at
the limit of available code space in the bootloader partition.
This is not intended to ever be used by the application.
This driver also formalizes the assumptions in the bootloader's
usage of the COM layer. All messages are assumed to arrive
in atomic chunks from the HID layer.
These files do not contain content from the ID in the header.
This name seems to have been cut/pasted all over throughout
the openpilot source tree and should be removed from any files
that should not rightfully be attributed to this person.
This can be used by the GCS firmware uploader widget to boot
the firmware with a (temporarily) defaulted hwsettings uavo
so that a user can easily recover from a bad/incompatible
hwsettings configuration without wiping all settings.
This uses the same mechanism that the BootFault auto-recovery
code already uses in the CC firmware. The auto-recovery is
triggered by setting the failed-boot counter to a maximum
value forcing recovery on the next FW init.
The PIOS_COM_ReceiveBufferUsed() function call is no longer
necessary since the same semantics can be achieved using calls
to PIOS_COM_ReceiveBuffer().
Summary of changes:
* USB CDC and HID drivers are completely split apart.
* This will allow different max buffer sizes for HID and CDC.
* USB descriptors have been overhauled:
* Proper structs/macros/enums declared for USB (see pios_usb_defs.h)
* Two common descriptor definitions. One for HID+CDC another for HID only.
See pios_usb_desc_{hid_cdc,hid_only}.c for details.
* Long standing bugs in OP USB descriptors became much more obvious with the
new struct definitions.
* Board specific USB initialization is now in pios_usb_board_data.h in each build target.
* Definition of USB descriptors is now entirely indpendent of STM32 libs.
Glue into STM32 libs is provided by pios_usbhook.c.
* Removed a lot of stale/irrelevant USB #defines throughout the tree.
* Improved naming consistency throughout USB code:
* PIOS_USB_HID_* now refers to the HID endpoint code.
* PIOS_USB_CDC_* now refers to the CDC endpoint code.
* PIOS_USB_* now refers to the low-level USB code.
* PIOS_USB_BOARD_* now refers to board-specific USB data
* PIOS_USBHOOK_* is glue between PIOS and STM32 USB libs.
* struct usb_* and enum usb_* and USB_* and HID_* are all types from the USB spec.
* Shrunk the buffer size on the CDC call mgmt endpoint to save some RAM.
* Made a few more USB related variables static to save some RAM.
This patch is based on work of Crubier (LPF) and Cossacs (AxisLock mode).
I've just reworked it a bit by adding a dynamic memory allocation for
static module data.
This detects a locked out state and fails the init. The new
bootfault detection code will automatically drop to default
hwsettings after 3 consecutive boot failures. That will put
the board back into an unlocked state where the user can now
enable a telemetry link using the GCS and everything will be
OK.
NOTE: Any configured telemetry link will be considered enough
to boot up. If you only configure a serial telemetry
link but don't know how to hook anything up to it, this
will not save you.
As the ultimate recovery, you can always load firmware on the
board that wipes the settings entirely and start over.
This module and its associated settings uavo can be used
to test various fault conditions during initialization.
To enable the module, add the TEST_FAULTS=YES to your make
command line:
make fw_coptercontrol TEST_FAULTS=YES
Once this module is part of your firmware load, you can
enable it in the hwsettings uavo and then select the
type of fault to insert by editing the faultsettings uavo.
On the next reset, the configured fault will be inserted
into the init sequence to allow you to test the boot fault
recovery code.
With a fault inserted, you should see 3 failed boot attempts
followed by a successful (recovery) boot. You will see the
BootFault alarm set to Critical, and the RAM version of your
hwsettings will be reset to defaults. Since the defaults have
all optional modules disabled, the fault module will be out of
the way during the recovery boot.
You can then "Load" the flash version of the hwsettings uavo
in the object browser, disable the Fault module and then "Save"
the hwsettings module back to the board. The next reset will
boot normally without the fault inserted.
After 3 failed warm start attempts, the init sequence
will force the RAM version of the HWSettings object
to its defaults. This should allow a user to regain
connectivity to a board that is continually faulting
during init.
This is accomplished by:
- Incrementing a boot counter that is stored in the
STM32 BKP registers. These registers survive a
warm start but are cleared on a cold start (ie. powerup).
- On multiple failures, force hwsettings to defaults
and raise the (new) BootFault alarm to prevent arming.
- Resetting the boot counter whenever the system manages
to successfully run the System Module task.
NOTE: This does not actually change the hwsettings object in
flash. That's up to the user.
This is intended to catch ONLY faults during early initialization.
It should not be used to recover from faults after the application
is up and running.
The GCS hwsettings config widget now disallows any
configuration that disables both HID and VCP telemetry
over the USB port.
The firmware will allow it if the UAVObj is set manually.
This allows a mechanism to reduce RAM usage by another
500 more bytes if USB telemetry can be sacrificed in
certain configurations.
Not all transmitters will continue to run when disconnected.
USB is one example of this. When the USB cable was disconnected,
any transmitter blocked here would wait forever.
This was particularly noticeable when the telemetry Tx task
blocked forever on USB disconnect. This also resulted in
the telemetry Rx task blocking forever waiting on the UAVTalk
connection lock.
We now block for a max of 5s waiting for space in the transmit
buffer.
This allows the HID and VCP functions to be configured
separately so that additional functions can be more easily
bound to the VCP port.
This change also provides a safety net that forces either
the HID or VCP to be configured for USB Telemetry. This
safety net may vanish in the future once the GCS can check
it. Disabling USB Telemetry entirely would save more than
400 bytes of RAM.
The uavtalk layer was previously implementing a poor
version of packet fragmentation based on a hard-coded
max packet size. Since this was hard-coded, there was
no guarantee that it would match the underlying devices.
Now that the COM layer sending routines support fragmentation,
remove fragmentation and use the COM layer directly.
This will support future buffer size reductions in the COM
layer.
PIOS_COM_SendBufferNonBlocking() will now fragment its buffer
to match the max size of the underlying device.
This allows the buffer size of the underlying device to shrink
below the maximum message size, thus allowing us to use smaller
buffers on memory-constrained platforms.
Apple is very particular about requiring the bDeviceClass
to be set to 2 (Commmunication Device) even for composite
devices which seems wrong.
Device is enumerated without error on Mac now. Not sure if it
works though.
Reduced scope of many variables since they were being
exposed unnecessarily.
Renamed pios_usb_hid_prop code to pios_usbhook to reflect
the fact that it implements all of the callout functions
that are hooked into the stm32 usb library.
No code changes, just file, variable and define names are changed.
First, it better describes the serial protocol used by DSMx satellite
receivers. Second, many people using Spektrum radio, assume Spektrum
protocol. This is the attempt to address those inaccuracies.
- both CC serial ports are now disabled by default (no telemetry);
- serial ports now have DSM2, DSMX (10bit) and DSMX (11bit) options;
- ReceiverGroups now have DSM (MainPort) and DSM (FlexiPort) options.
For DSM2 protocol there is an explicit resolution bit in the stream, so
the DSM2 should be selected. For DSMX there is no such bit, and user
should choose the resolution from the list configuring the spektrum port.
ReceiverGroups have single DSM option which is handled by the same driver.
Downside: this implementation saves received frame first, unrolls by the
end of frame. This should be ok, but may be improved by unrolling channels
on the fly in the rx callback.
Another minor difference is that a ChannelGroup is now bound to port:
DSM (MainPort) or DSM (FlexiPort). This was considered as acceptable
solution in order to not have 6 DSM options for each ChannelGroup and
even more in case of new DSM protocol variations.
Known problem: it is not possible to choose same protocols like
DSM2/DSM2 for two ports. It can be enabled by adding an exception to
common rule, though.
The DSMX throttle channel misbehavior (zero value) is not treated
specially yet. It should trigger the failsafe being out of bounds.
More info and data dumps are required to handle this properly.
PPM. This saves resources. Good suggestion Os. In this configuration we
could allow 12 channels of output but for now I'll leave it capped at 10 to
lessen resources on the mixer table.
With spektrum and camera stab enabled there was
1632 bytes heap remaining
180 bytes irq stack remaining
In the previous version the decoder could in rare cases get synced from
the middle of data stream in case of data byte equal to the S.Bus start
of frame (SOF) byte (wrong data will be rejected but it was not perfect).
Now it waits for the real start of frame and then checks the SOF byte.
- does not glitch when used in 2-frame mode (DM9, 9503, etc)
- does NOT provides yet DSMX stream decoding - do NOT merge
- uses a bit more time in the interrupt, but frees 16 bytes of RAM.
This is done to help decoding the weird DSMX stream which does not
contain explicit resolution/frame/lost frames info and needs special
processing (to be done yet).
TelemetrySettings object removed (saved 200+ bytes of RAM). Telemetry
port speed moved to the HwSettings object. Added GPS port speed setting.
GCS code updated to reflect changes and support both fields.
Besides of knob PID tuning it is now possible to use throttle channel
to ramp-shape PID coefficients. This can be used to lower some PIDs on
VTOL while sinking to prevent wobble.
To use the feature select throttle as control input, choose throttle
range max and min values, assign the instance to particular PID
coefficient and define a range for it. When throttle is lower than
defined throttle range min value (or higher than max), then min and max
PID values will be used accordingly. Changing throttle from throttle
min to max will linearly scale PID value.
Note that it is possible to set MinPID > MaxPID. In that case increasing
control input value will decrease the PID coefficient.
Up to 3 independent instances can be configured. The number can be
increased changing the UAVO definition, but at the cost of extra RAM.
This module will periodically update values of stabilization PID settings
depending on configured input control channels. New values of stabilization
settings are not saved to flash, but updated in RAM. It is expected that the
module will be enabled only for tuning. When desired values are found, they
can be read via GCS and saved permanently. Then this module should be
disabled again.
TIM5-8. Also TIM1 was not handled probably (for CC either) as the name of the
IRQ is TIM1_CC and TIM1_UP for the capture compare versus update. I haven't
checked the downstream code that the registers it uses to map from a context to
event is invariant under timer channel.
TIM5-8. Also TIM1 was not handled probably (for CC either) as the name of the
IRQ is TIM1_CC and TIM1_UP for the capture compare versus update. I haven't
checked the downstream code that the registers it uses to map from a context to
event is invariant under timer channel.
them symbolic constants.
- A timeout is 0
- A missing driver is 65534
- An invalid channel is 65535
ManualControl: Make it deal with the values explicitly. A timed out value
should not be treated like a minimum duration signal. Instead it does not
updated the scaled value but marks the data window as invalid to trigger the
failsafe.
Move the configuration files for INS from AHRS* to INS*. Strip out unused
fields in settings and merge calibration and settings since settings has
basically no information.
Allocate per-instance data for drivers from the heap
rather than as static variables from the .data segment.
This converts > 800 bytes of RAM from being always consumed
as static data into being allocated from the heap only when
a particular feature is enabled in the hwsettings object.
A minimal config (no receivers, flexi port disabled, main port
disabled) leaves 2448 bytes of free heap. That's our new baseline.
Approximate RAM (heap) costs of enabling various features:
+ 632 Serial Telemetry (includes 400 bytes of Rx/Tx buffers)
+ 108 PWM Rcvr
+ 152 PPM Rcvr
+ 112 Spektrum Rcvr
+ 24 S.Bus (Should be closer to 68 since driver is still using
static memory)
There are still some drivers that pre-allocate all of their memory
as static data. It'll take some work to convert those over to
dynamically allocating their instance data.
PWM and PPM can now coexist in the same load and be
selected at boot time via the hwsettings UAVObject.
This is basically a complete restructuring of the
way the drivers interact with the TIM peripheral in
the STM32.
As a side effect, the PWM and PPM drivers are now
ready to support multiple instances of each.
This also provides the first step toward being able
to reassign some of the PWM input pins to be servo
output pins. Still more work required, but this is
a good start.
transfers from IRQ. Also catch the double 0x70084 event which was locking up
the FSM with -Os enabled. I did this in a cheating way (filtering the event
based on state) but it's the cleanest I can see. Hopefully a DMA version of
I2C will fix this.
can catch it and return -1. Do NOT panic when they are null as this is
something that should be caugth at run time in some cases.
Ideally as a compromise in a task start it could have a set of
PIOS_Assert(ObjectNameHandle()) to make sure the minimal set of objects it
needs are there.
CRC. This wasn't the case on F1. With CRC the last byte of the buffer passed
to PIOS_SPI_TransferBlock is NOT USED. This is the case on both F1 and F2.
Also need to DeInit DMA before enabling or it doesn't enable successfully.
Finally added a timeout which sets a fail on the pios spi transfer in the case
that either of the dma channels fails to enable.
needed by users because if too much changes I change the FS magic and trigger a
wipe.
Possibly the erase should require a particular "magic" object id value to
execute? This would make it harder to do manually through UAVOs though.
This update saves 448 bytes of RAM with the current
crop of UAVObjects. It reduces a 19 byte struct to
8 bytes.
Note: This also introduces a limit of 65.534s for the
update periods.
This allows the GCS to emulate a receiver device via the
telemetry link.
Select "GCS" as your input type in the manualcontrol config
screen and calibrate it as normal.
Note: The expected values for the channels are in microseconds
just like a PWM or PPM input device. The channel values
are validated against minimum/maximum pulse lengths just
like normal receivers.
The small bootloaders (CC and PipX) are out of flash space
so their stopwatch implementation has been swapped out for
one based on the DELAY clock that takes about 500 bytes less
of code space.
Identical functionality is preserved.
This allows the spektrum and sbus receiver drivers to bind
directly to the usart layer using a properly exported API
rather than overriding the interrupt handler.
Bytes are now pushed directly from the usart layer into the
com layer without any buffering. The com layer performs all
of the buffering.
A further benefit from this approach is that we can put all
blocking/non-blocking behaviour into the COM layer and not
in the underlying drivers.
Misc related changes:
- Remove obsolete .handler field from irq configs
- Adapt all users of PIOS_COM_* functions to new API
- Fixup callers of PIOS_USB_HID_Init()
Update to use 32-bit microsecond values.
Remove PIOS_DELAY_DiffuS per consensus (caller can do it easily themselves).
Update the core delay logic per Stac's suggestion to a version that is
resistant to various overflows.
Address the following review feedback items:
- use stdint types
- avoid the use of magic numbers (define CYCCNTENA)
- remove expository comment about sneakiness and corresponding code, replace with something simpler based on the API
- remove commented/#if 0 code
Each channel was previously tracking a separate driver.
Now, channels are grouped within a channel group to save
RAM used for tracking and to better reflect how channels
are actually mapped.
Working spektrum bind routine, depending your TX try BIND_PULSES 3,5,7,9 (5 works with DX7)
Boot process takes too long on MB so bind command misses the window (20-140ms).
the throttle is < 0. This will make things like axis-lock work while armed
without throttle. HOWEVER don't hold your stick in the arming position for a
long time or you can wind up the integrals now.
zero and making the attitude get NaN. Wrote recovery code for that condition
(should never occur) and also force minimum dT to 1 ms (also shouldn't occur)
Also reduce heap has it does not fit in SRAM anymore (not with current compiler).
(that's ok since if there is more space available, it will be reclaimed).
Merge branch 'master' into OP-423_Mathieu_Change_Init_To_Reduce_Memory_Footprint
Conflicts:
flight/CopterControl/System/inc/pios_config.h
flight/Modules/ManualControl/manualcontrol.c
This is a port of a work-in-progress by Sambas onto
the new driver infrastructure needed for boot-time
configuration.
PPM and PWM still don't coexist in a build but this
is closer.
The initial baud rates of each interface are now forced in the
board init code.
Any modules using USARTs should have fields added to
their settings object to allow the user to change the
baud rate from the default by using the COM layer APIs.
Developers requiring custom baud rates before the settings
objects are in place should locally edit the cfg structs
to specify the desired baud rates.
Tested this heap2 at runtime with CC and new compiler since old one (current) triggers strict alliasing error.
That's ok since strict aliasing is disabled on OP, and CC only use heap1.
This should mark an end to the compile-time selection of HW
configurations.
Minor changes in board initialization for all platforms:
- Most config structs are marked static to prevent badly written
drivers from directly referring to config data.
- Adapt to changes in .irq fields in config data.
- Adapt to changes in USART IRQ handling.
Major changes in board initialization for CC:
- Use HwSettings UAVObj to decide which drivers to attach to
the "main" port and the flexi port, and select the appropriate
device configuration data.
- HwSettings allows choosing between Disabled, Telemetry, SBUS,
Spektrum,GPS, and I2C for each of the two ports.
- Use ManualControlSettings.InputMode to init/configure the
appropriate receiver module, and register its available rx channels
with the PIOS_RCVR layer. Can choose between PWM, Spektrum and PPM
at board init time. PPM driver is broken, and SBUS will work once
it is added to this UAVObj as an option.
- CC build now includes code for SBUS, Spektrum and PWM receivers in
every firmware image.
PIOS_USART driver:
- Now handles its own low-level IRQs internally
- If NULL upper-level IRQ handler is bound in at board init time
then rx/tx is satisfied by internal PIOS_USART buffered IO routines
which are (typically) attached to the COM layer.
- If an alternate upper-level IRQ handler is bound in at board init
then that handler is called and expected to clear down the USART
IRQ sources. This is used by Spektrum and SBUS drivers.
PIOS_SBUS and PIOS_SPEKTRUM drivers:
- Improved data/API hiding
- No longer assume they know where their config data is stored which
allows for boot-time alternate configurations for the driver.
- Now registers an upper-level IRQ handlerwith the USART layer to
decouple the driver from which USART it is actually attached to.
This separates the RTC device and interrupt handling
from the devices that rely on the tick notifications.
Drivers can now register tick notification functions
that will be called on each RTC tick event.
All receivers now fall under the same driver API provided
by pios_rcvr.c.
This is part of a larger sequence of commits that will
switch the receiver selection over to boot time dynamic
configuration via UAVObjects.
The FreeRTOS IDLE task was using 512 bytes of stack.
The UAVObject Event task was also using 512 bytes of stack.
Both have been reduced, recovering 400+ bytes of heap.
high RateKp terms. However it might be sensitive to gyro noise (vibrations).
In addition it is mathematically similar to lead shapign so probably only use
one or the other.
stabilization output a bit more resilient to the high frequency noise from
gyros. However this value shouldn't be too high as it will increase the phase
delay of the feedback loop and decrease stability. Default is 5 ms.
Note: this resests the stabilizationsettings object. Sorry guys.
Also implement some ordering (quite ugly still) in the module init and task creation order so we can decide which module to start/init first
and which module to start/init last.
This will be replaced/adapter with the uavobject list later (once it's implemented).
reserving some space for module init and task create parameters to customize module/task creation (this will be usefull once we get the list and customization from customer).
Changes have been made for OP and CC. Tested comped with CC,OP, sim_posix.
Only ran on bench with CC for couple of minutes (code increase expected but no dropping of stack which is good).
This gives task creation at the time wherethe all heap is available.
For CopterControl the following make options are available:
USE_TELEMETRY=[YES|NO|1|3] (default is YES, USART1)
USE_GPS=[YES|NO|1|3] (default is NO, USART3)
USE_SPEKTRUM=[YES|NO|1|3] (default is NO, USART3)
USE_SBUS=[YES|NO|1] (default is NO, USART1 only)
heap reamining is low (about 500) but stacks can be ajusted (specially the 200 bytes from system) to give the level close to 1Ko if needed.
Merge branch 'master' into OP-423_Mathieu_Change_Init_To_Reduce_Memory_Footprint
Conflicts:
flight/CopterControl/System/inc/FreeRTOSConfig.h
flight/CopterControl/System/inc/pios_config.h
- create linker section for those <module>Initialize()
- later this list will incorporate parameters as well. (this probably will be more a OP feature to swap/remove/delete module on the fly.
- this is not done at compile time anymore by Makefile.
- this will allow us to have control on the module start at run-time (not implemented but build the ground for it).
- this simplify the startup (Part of code re-org).
- this change does not affect sim_posix and win32 (since they don't need that)
- ensure it's compiling for PiOS.posix
- port to PiOS.win32 but not tested (not compiled)
- tested on CC
- compile on OP.
- this free ~200 bytes.
- current avalable bytes (is we keep the same remaining bytes on the stack than before) is easily passed the 1.2Ko mark on CC with new gcc (4.5.2)
- this does not include init-reorg for each module (I still think more can be freed)
It was tested being merged with OP-472_CorvusCorax_CopterControl-Guidance_v3
branch, Spektrum on USART3 and GPS on USART1 and seems to work.
Currently defaults mimic original behavior, that is, if USE_SPEKTRUM
is not defined - define USE_PWM and USE_GPS. Thsi should be refactored
later to make it configurable from the Makefile.
Also it was not ported to the OP MB: it currently does not support the
S.Bus hardware and still has original behavior with the patch. But this
is one more step to dynamic configuration of ports.
TODO: This should be dynamic in the future.
But for now define any compatile combination of:
USE_I2C (shared with USART3)
USE_TELEMETRY
USE_GPS
USE_SPEKTRUM
USE_SBUS (USART1 only, it needs an invertor)
and optionally define PIOS_PORT_* to USART port numbers
Defaults are:
#define PIOS_PORT_TELEMETRY 1
#define PIOS_PORT_GPS 3
#define PIOS_PORT_SPEKTRUM 3
#define PIOS_PORT_SBUS 1
#define USE_TELEMETRY
#define USE_GPS
Telemetry, GPS and PWM input are enabled by default.
CAREFULL: the heap section need to be the last section in RAM to avoid overwritting data...
Tested with GCC 4.5.2 this gives 1K of free bytes usable in heap right away (including the 200 bytes saved just by using the new gcc).
This does not include any code re-org yet!
I managed to test CC with heap2 changes and the init stack claimed back to heap once scheduler starts.
the changes of this commit are OP related (just cleanup on CC side):
Arch specific stuff (in reset vector) to hide this from portable code:
- switch back to MSP stack before starting the scheduler so that the sheduler can use the IRQ stack (when/if needed).
- call the C portable function in heap2 to claim some stack back (the number to claim is taken from linker file).
- start the scheduler from reset vector (I move this here from main because it make sense to not go back to C (so that I don't need to copy the rolled stack in case the sheduler returns). This make it more clean.
- Also I have added the call to the mem manager if sheduler return. that way, we don't reset indefinitely if memory runs out. We will go to this handler and figure things out (right now, it's just looping but at least not rebooting. Probably trap NMI would be better (later improvement).
- switch back to MSP stack before starting the scheduler so that the sheduler can use the IRQ stack (when/if needed).
- call the C portable function in heap1 to claim some stack back (the number to claim is taken from linker file).
- start the scheduler from reset vector (I move this here from main because it make sense to not go back to C (so that I don't need to copy the rolled stack in case the sheduler returns). This make it more clean.
- Also I have added the call to the mem manager if sheduler return. that way, we don't reset indefinitely if memory runs out. We will go to this handler and figure things out (right now, it's just looping but at least not rebooting. Probably trap NMI would be better (later improvement).
The part missing for this part is the weak attribute for the function in heap1.c so that we don't have to update everything with empty stub.
I think the weak atrribute for C function called in assembly is arch dependent so I am not sure if this is possible (will look into it, maybe somebody outthere nows).
Right now, it's heap1 dependent and won't work with heap2. I will clean that up the next couple of days.
I did some test and it looks good.
this is without init code re-organization so we don't free as much as we will be it's good starts.
This compile with sim_posix (since it does not affect portable code) so this is really clean.
I only tested this with CC. I will port it for OP when I will work on heap2.
- use IRQStack for ISRs (at begening of SRAM) (let's call it the irq stack)
- use end of heap for stack needed during initialization (let's call it the init stack).
- the systemStats in GCS indicate the remaining bytes in the IRQ stack (this is realy usefull to monitor our (nested) IRQs.
This is the base ground to provide as much memory as possible available at task creation time.
Next step is to re-organize the initialization in order to move all the init out of the thread's stacks onto the init stack.
This will provide as much memory as possible available at task creation time.
Basically the stack during initialization will be destroyed once the scheduler starts and dynamic alloc are made (since the init stack is at the end of the heap). We will need to make sure we don't clobber the heap during initialization otherwise this will lead to stack corruption.
outputs. Warning: This has no failsafes like arming. We should discuss if
this is appropriate.
In addition accessory objects can be routed throught the mixer for collective
or flaperon.
matches. Read the flash first bytewise to compute CRC instead of buffering
which is more RAM efficient but very inefficient as it sets up many one byte
SPI transfers.
Also incremented the filesystem magic flag to trigger an automatic flash wipe
on this upgrade.
- only affect flight/PiOS (no change for posix and win32)
- tested on recent master (some runtime on CC with GCS)
- the new timer feature is not compiled-in since we don't use it yet.
- NO TEST FLIGHT
When running flight software from master (cf74908), my
config was pushing the system module stack usage to within
16 bytes of its limit. This triggers a stack overflow
alarm which prevents the quad from arming/flying.
This change increases the available stack size such
that there are 72 bytes of stack free (a previously stated
safe margin) when my quad is sitting idle and unarmed on
the bench.
The pipxtreme boards use a sector of the on-board flash
for configuration storage. Adjust the memory maps to
reflect this.
The board_info_blob is also extended to include the EE
bank definitions. This should be used by the pipxtreme
firmware rather than determining it based on chip size.
Macros for JTAG program and wipe for each target are now
provided in firmware-defs.mk.
The _wipe target for each firmware and bootloader image will
erase either the bootloader (bl_*_wipe) or firmware (fw_*_wipe)
bank.
Now that every bootloader build has a board info blob,
make all fw and bl images use it.
The following MACROS are removed:
BOARD_TYPE, BOARD_REVISION, BOOTLOADER_VERSION,
START_OF_USER_CODE, HW_TYPE
These values are now ONLY available from the bootloader
flash via the pios_board_info_blob symbol. These values
must not be #defined or otherwise hard-coded into the
firmware in any way. The bootloader flash is the only
valid source for this information.
NOTE: To ensure that we have an upgrade path from an
old bootloader (without board_info_blob) to a
new bootloader (with board_info_blob), it is
essential that the bu_* targets do not depend
on (or validate) the board_info_blob being present
in the bootloader flash.
The USE_BOOTLOADER compile flag was only being used
to determine where the ISR vector table was located.
Provide this explicitly from the linker since it knows
exactly where it is putting the ISR vector table.
- New macros for fw, bl and bu rules in top-level make
- Per-board info factored into make/board/*/board-info.mk
- Per-board info now shared btw. fw, bl and blupd for each board
- BOARD_TYPE, BOARD_REVISION, BOOTLOADER_VERSION, HW_TYPE
- MCU, CHIP, BOARD, MODEL, MODEL_SUFFIX
- START_OF_BL_CODE, START_OF_FW_CODE
- blupd_* goals renamed to bu_*
- all_blupd goal renamed to all_bu
- firmware goals renamed to fw_*, board name goals are preserved
- bu_*_program now writes updater to correct address for all boards
- BL updater firmware builds now produce .opf format including
version info blob.
- BL updater firmware name now includes board name.
- INS makefile brought up to date w.r.t. linker scripts
This does not affect the size of the image or the RAM
used by the firmware image. All debugging symbols are
stripped from the elf file during the conversion to a
.bin file.
The board info blob is stored in the last 128 bytes of the
bootloader's flash bank. You can access this data from the
application firmware like this:
#include <pios_board_info.h>
if (pios_board_info_blob.magic == PIOS_BOARD_INFO_BLOB_MAGIC) {
/* Check some other fields */
}
DO NOT link pios_board_info.c into your application firmware.
Only bootloaders should provide the content for the board info
structure. The application firmware is only a user of the data.
This is done by separating PyMite-dependent sources and making them
dependent on autogenerated python code. This was tested with make -j
on Windows and worked fine. It failed with errors otherwise:
In file included from ../Libraries/PyMite/vm/class.c:28:
../Libraries/PyMite/vm/pm.h:198: fatal error: pmfeatures.h: No such file or directory
This fixes the OP bootloader getting stuck in the
bootloader forever when USB is plugged in.
This also fails hard on being passed an unsupported
timer value so that this can be caught more easily
in the future.
This change is made up of a number of tightly coupled
changes:
- Deprecate the use of the USE_BOOTLOADER command-line
option. It is now hard-coded in each Makefile.
Overriding it on the command line is not allowed.
- Split apart the memory declaration and the section
declaration in all linker files (*_memory.ld and
*_sections.ld).
- Describe the split between bootloader and app sections
of flash in each board's _memory.ld file.
- Change program target to selectively erase flash so
that the installed bootloader is preserved across even
JTAG programming operations.
- All elf files are built with debug symbols and are not
stripped. This should help debugging with gdb. The
images programmed on the boards are all .bin files now
which do not include symbols.
New targets:
- make blupd_all_clean
- make blupd_all
- make blupd_openpilot
- make blupd_ahrs
- make blupd_coptercontrol
- make blupd_pipxtreme
These targets are also included in the 'all_flight' target.